

Machine Learning for Language Processing (L101)

Ann Copestake

Computer Laboratory
University of Cambridge

October 2016

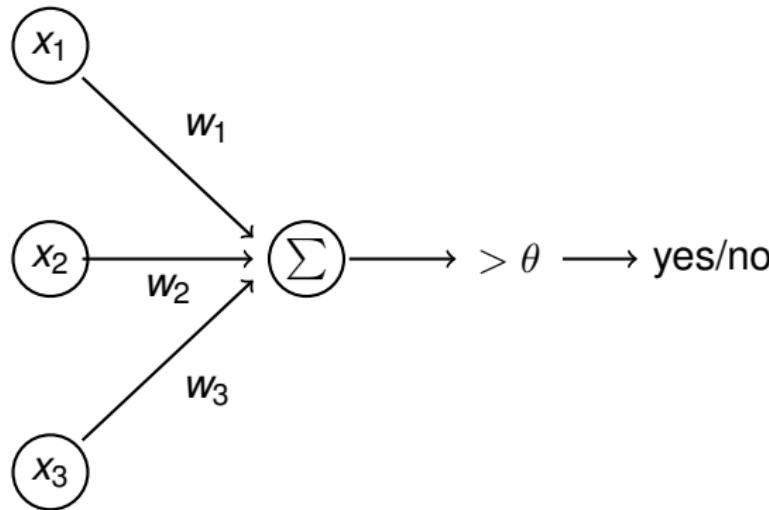
Outline of today's lecture

Perceptron algorithm

Kernels

Interpreting English compound nouns using kernel methods

Perceptron



Dot product of an input vector \vec{x} and a weight vector \vec{w} , compared to a threshold θ

Perceptron

- ▶ The **perceptron** was one of the first neural network architectures (Rosenblatt 1962)
- ▶ Cognitively inspired — but nobody knew much about how real neurons worked then ...
- ▶ Multilayer perceptron is not a perceptron ...
- ▶ **perceptron algorithm** for learning — suitable for classification where **linearly separable**.
- ▶ Many variants: kernel perceptron, **voted perceptron** (which is competitive with techniques such as SVMs).
- ▶ In NLP, mainly for parse selection (alternative to MaxEnt).
- ▶ Description here based on Manning and Schütze: see Stephen Clark's notes for perceptron applied to tagging.

Perceptron learning algorithm

- ▶ Simple example of **gradient descent** (also known as **hill climbing, gradient ascent**).
- ▶ Move the prediction in the direction of the training data via the steepest gradient (i.e., derivative).
- ▶ Theory fairly complex, implementation simple (and **fast!**).
- ▶ Will converge if problem is linearly separable, but:
 - ▶ boundary may flip back and forth — not always clear in training if it will converge or if problem non-linear
 - ▶ results depend on training data order, boundaries non-optimal

Perceptron learning algorithm

θ threshold, \vec{w} weights, \vec{x}_j (numerical) feature vector

$\text{decision}(\vec{x}_j, \vec{w}, \theta)$ is **yes** if $\vec{w} \cdot \vec{x}_j > \theta$ else **no**

initialize \vec{w} and θ to 0

while not converged **do**

for each element \vec{x}_j in training set **do**

$d := \text{decision}(\vec{x}_j, \vec{w}, \theta)$

if $\text{trueclass}(\vec{x}_j) = d$ **then continue**

elseif $\text{trueclass}(\vec{x}_j) = \text{yes}$ **then** $\theta := \theta - 1$

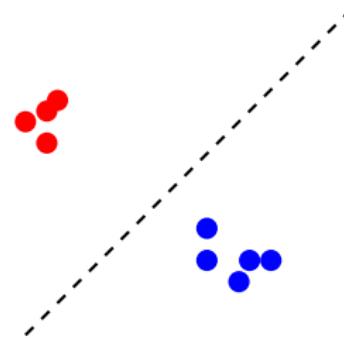
$\vec{w} := \vec{w} + \vec{x}_j$

elseif $\text{trueclass}(\vec{x}_j) = \text{no}$ **then** $\theta := \theta + 1$

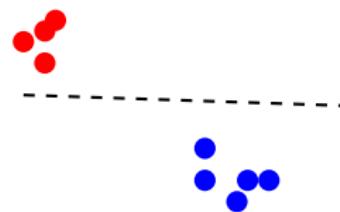
$\vec{w} := \vec{w} - \vec{x}_j$

fi

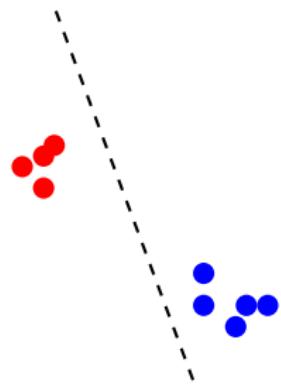
Perceptron boundaries



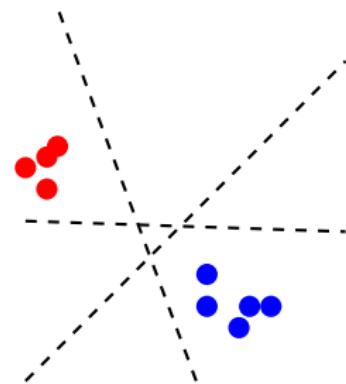
Perceptron boundaries



Perceptron boundaries



Perceptron boundaries



Perceptrons in NLP

- ▶ Introduced to NLP by Collins in 2002 (voted perceptron).
- ▶ Tagging, named entity recognition but primarily used for parse ranking.
- ▶ Can be used in conjunction with **ernels**. e.g., parse ranking: features are all subtrees of parse tree (so exponential number): use **tree kernels**.
- ▶ Kernels allow perceptrons and other methods to be used for problems that are not linearly separable.

Kernel methods

- ▶ Roughly: a **kernel** is a function which allows features to be mapped to an inner product in a higher-dimensional (possibly infinite) feature space.
- ▶ A valid kernel is defined by any symmetric finitely positive semi-definite function (**psd**).
- ▶ Hence, if we prove a function has these properties, then we have a kernel: no need to explicitly represent the mapping.
- ▶ Various similarity measurements are kernels, including **cosine similarity** and **Jensen-Shannon divergence**.

Why kernel methods?

- ▶ Allow structured objects (trees, strings, sets etc) to be classified by vectorial methods.
- ▶ Allow linear classifiers to learn non-linear classification functions.
- ▶ Multiple kernels may be combined to give a new kernel: usually better performance than treating them individually.
- ▶ Can be used in conjunction with a variety of ML methods: e.g., perceptron (first used by Aizerman et al 1964).
- ▶ SVMs use kernels.

Compound noun relations

- ▶ *cheese knife*: knife for cutting cheese
- ▶ *steel knife*: knife made of steel
- ▶ *kitchen knife*: knife characteristically used in the kitchen

Very limited syntactic/phonological cues in English, so assume parser gives: $N1(x)$, $N2(y)$, $\text{compound}(x,y)$.

Language-specific restrictions

German compounds with non-compound translations:

Arzttermin	*doctor appointment	doctor's appointment
Terminvorschlag	* date proposal	proposed date
Terminvereinbarung	* date arrangement	arrangement of a date
Januarhälften	* January half	half of January
Frühlingsanfang	* spring beginning	beginning of spring

Data-driven approaches to compound relation learning

- ▶ Find paraphrases by looking for explicit relationships in corpora: e.g., **knife made of steel**
(Lauer: prepositions, Lapata: verbal compounds)
- ▶ treat as a supervised classification problem:
 1. human annotation of compounds: e.g., **steel knife** annotated with **BE**
 2. use distributional techniques to compare unseen to seen examples.

Girju et al, Turner, Ó Séaghdha (2008) among others.

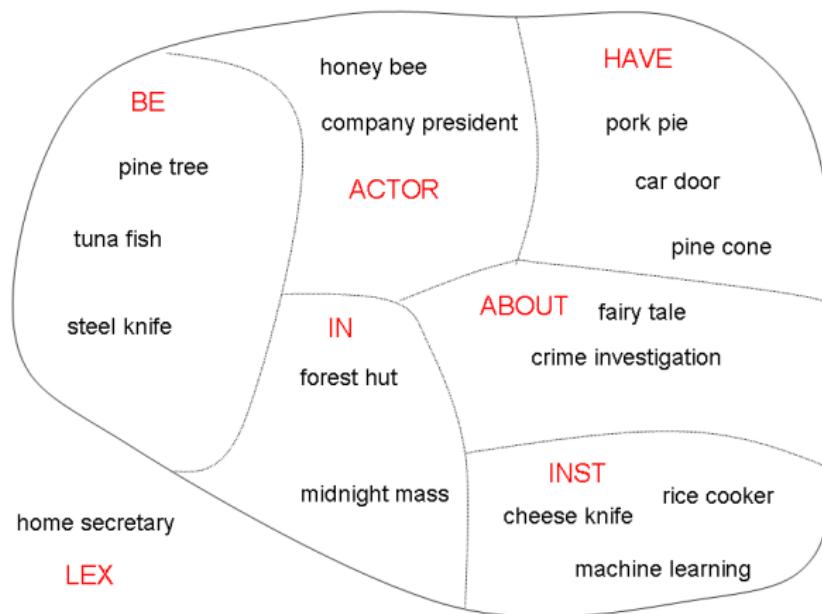
Relation schemes for learning experiments: Ó Séaghdha (2007)

BE, HAVE, INST, ACTOR, IN, ABOUT: (with subclasses)

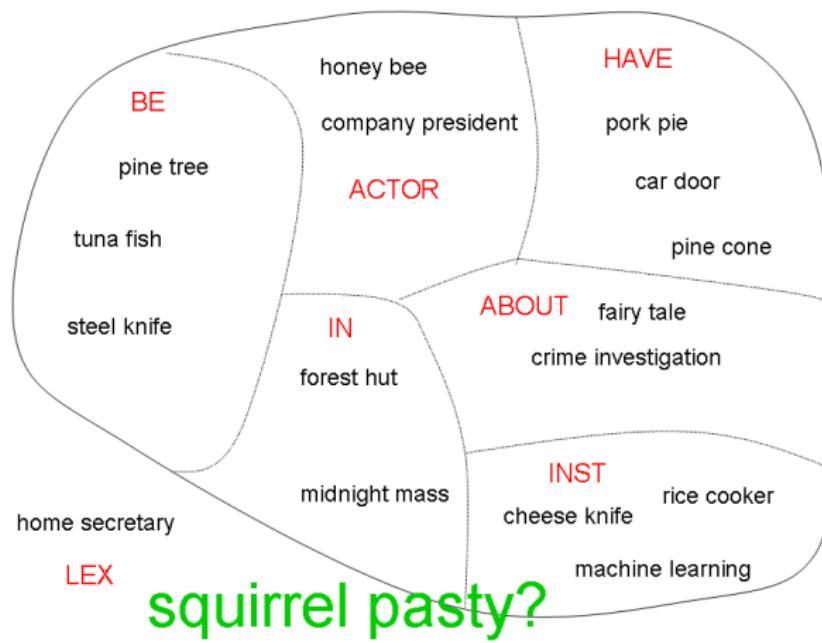
LEX: lexicalised, REL: weird, MISTAG: not a noun compound.

- ▶ Relation scheme based on Levi (1978)
- ▶ Considerable experimentation to define a usable scheme: some classes very rare (therefore not annotated reliably).
- ▶ Annotation of 1400 examples from BNC by two trained annotators, using extensive guidelines.
- ▶ Reasonable interannotator agreement (IAA).

Compound noun relation learning



Compound noun relation learning



Squirrels and pasties

Compound noun relation learning: Ó Séaghdha, 2008

- ▶ Use **distributional methods**: count vectors, acquired from subset of parsed British National Corpus and from Google 5-gram corpus.
- ▶ Distributions normalised to give probabilities.
- ▶ Apply **distributional similarity** to the compound phrase (note difference between compound noun and adjective-noun combination).
- ▶ Treating compounds as single words?
Distributional vector for **pork pie** compared with vector for **squirrel pasty**?

Compound noun relation learning: Ó Séaghdha, 2008

- ▶ Two similarity methods that do work:
 1. Constituent similarity: compounds $x_1 x_2$ and $y_1 y_2$, compare x_1 vs y_1 and x_2 vs y_2 .
squirrel vs pork, pasty vs pie
 2. Relational similarity: compare **sentences** with x_1 and x_2 vs sentences with y_1 and y_2 .
squirrel is very tasty, especially in a pasty vs
pies are filled with tasty pork
- ▶ Comparison using kernel methods: including combined constituent and relational similarity kernels.
- ▶ Best accuracy: about 65% (only slightly lower than agreement between annotators).
- ▶ Same system successfully used for a SEMEVAL task: classifying relationships between unconnected words in a sentence.

Kernel methods vs deep learning

- ▶ Deep learning is now potentially an alternative to kernels for structured input.
- ▶ Deep learning is theoretically more interesting (because less feature engineering, learn structure) but sometimes very difficult to apply to NLP problems.
- ▶ Kernel methods can be fast: Ó Séaghdha's linear kernels took 45 minutes to train on Google 5-gram with a slow CPU.
- ▶ Various hybrid methods are being proposed.