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From last time

Questions or comments about previous lecture?

Background on syntax and morphology:
I L95 notes (at least http://www.cl.cam.ac.uk/
teaching/1516/L95/introling.pdf)

I Exercises for POS tagging (in materials)
I Bender, Emily M. 2013. Linguistic Fundamentals for

Natural Language Processing: 100 Essentials from
Morphology and Syntax. (more advanced, not just English)

http://www.cl.cam.ac.uk/teaching/1516/L95/introling.pdf
http://www.cl.cam.ac.uk/teaching/1516/L95/introling.pdf
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From last time

Generative models

I NB is a generative model: we train a model of the joint
distribution of observations and classes, P(~f , c).

I Hence, for multinomial NB, this is equivalent to a unigram
model.

I Contrast discriminative models, where we train the
posterior distribution of the class given the observation
P(c|~f )

I Also: discriminant functions — we just train a mapping
from the observation to the class label without the
probability.
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POS tagging overview

POS tagging

They can fish.
I They_PNP can_VM0 fish_VVI ._PUN

Lower ranked:
I They_PNP can_VVB fish_NN2 ._PUN
I They_PNP can_VM0 fish_NN2 ._PUN no full parse

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb
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POS tagging overview

POS lexicon fragment

they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

I Lexicon could be acquired from a dictionary/grammar.
I Possible tag sequences could also come from a grammar.
I For ML approach, we want to acquire probabilities of tags

and tag sequences from data.
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POS tagging overview

Why POS tag?

Not often considered as a task until early 1990s, but much
easier and faster than full parsing:

I Preprocessing before parsing to reduce search space or
for unknown words.

I Simple source of syntactic features for other tasks: e.g.,
named entity recognition (NER).
Sports Direct hit by slide in pound.

I Aiding investigation of language: lexicographers, corpus
linguistics.
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POS tagging overview

POS tagging problem specification

I which language? English? Turkish? Japanese?
I tagset?
I genre? newpaper headlines, chemistry texts
I errors in the data?

He walked in into the room.
I Accuracy for rare words? rare uses of words?

Nearly all published work is on a limited range of standard
datasets . . .
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HMMs for POS tagging

POS tagging as a ML problem

I Classification of items in a sequence.
I Almost always treated as supervised learning.
I Available training data is somewhat limited: human

annotators require fairly extensive training, annotation
guidelines are lengthy, but inter-annotator agreement can
be good (especially compared to most semantic tasks).

I Decide on (approximate) model, learn probabilities
(efficiently), apply model (efficiently).
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HMMs for POS tagging

Modelling POS tagging as a ML problem

I HMM: Hidden Markov Model — POS tags are hidden
states.

I transition probabilities and emission probabilities.
I Standard POS tagging uses HMMs in a simplified way:

probabilities taken from annotated corpora (supervised).
I HMMs can be used unsupervised, but performance for

POS tagging isn’t good.
I Efficient application via Viterbi algorithm.
I Basic model must be augmented with smoothing and

treatment of unknown words.
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HMMs for POS tagging

Assigning probabilities
Estimate the sequence of n tags as the sequence with the
maximum probability, given the sequence of n words:

t̂n
1 = argmax

tn
1

P(tn
1 |wn

1 )

By Bayes theorem:

P(tn
1 |wn

1 ) =
P(wn

1 |tn
1 )P(tn

1 )

P(wn
1 )

Tagging a particular sequence of words so P(wn
1 ) is constant:

t̂n
1 = argmax
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1 )P(tn
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HMMs for POS tagging

Approximations
Bigram assumption: probability of a tag sequence
approximated by the product of the two-tag sequences:

P(tn
1 ) ≈

n∏
i=1

P(ti |ti−1)

Probability of the word estimated on the basis of its own tag
alone:

P(wn
1 |tn

1 ) ≈
n∏

i=1

P(wi |ti)

Hence:

t̂n
1 = argmax

tn
1

n∏
i=1

P(wi |ti)P(ti |ti−1)
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HMMs for POS tagging

More details

I Maximise the overall tag sequence probability — use
Viterbi dynamic programming (details in J+M).

I Actual systems use trigrams — smoothing and backoff are
critical: insufficient data to use 4-grams etc.

I Unseen words.
I Preprocessing: what is a word? formulae etc
I Genre effects: e.g., tag for ‘I’.
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Imperfect training data

Smoothing

I Training data is always incomplete: some tag sequences
are possible but rare, words will not be seen with all their
possible POS tags.

I One zero probability turns everything into zeros!
I In some cases, zero probabilities are correct: e.g.,

probably don’t ever want so to be tagged as a verb.
I But, in general, hold back some probability mass for

unseen events.
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Imperfect training data

Smoothing techniques

I Add-one smoothing: simple, often effective (e.g., Naive
Bayes, we don’t have real probabilities anyway).

I POS tagging:
I use backoff for tag sequences: trigram counts modified by

bigram and unigram counts with appropriate parameter.
I e.g., replace all infrequent words (e.g., count less than 5)

with UNK.
I But: rare tags for frequent words?
I Lots of experimentation . . .
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Imperfect training data

Estimating tags for unknown words

I Distribute the probabilities according to the frequence of
open class tags.

I But morphology: e.g., word ending in ‘ing’ can’t be VVD.
I Additional features: incorporating into HMM is messy . . .
I Most language have much richer morphology than English.
I Also: capitalization etc: ‘Bill’ vs ‘bill’, ‘Gates’ vs ‘gates’.
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State-of-the-art in POS tagging

Improvements to HMMs

I Speed/accuracy trade-off: e.g., ideally want to incorporate
word sequence information:
I have a bad cold . . .
There is a large cold . . .

I Discriminative models better for proper treatment of
additional features (but HMM-based TnT very effective in
practice).

I Bidirectional: HMM maximizes over sequence, but fully
bidirectional is better.

I Character based models: morphology, capitalization etc.
I Until recently, lots of feature engineering.
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State-of-the-art in POS tagging

POS tagging with LSTMs

Paper by Plank et al (2016), in course readings (details on
LSTMs in lecture 7 or 8):

I Different natural languages, different language families.
I LSTMs can make use of pre-trained embeddings

(unsupervised).
I Performance is close to the likely ceiling, but still quite low

on unseen items in some languages.
I Best LSTM variant clearly better than TnT (c 25%

reduction in error rate), but TnT still better with very limited
training data.

Question to think about again: why POS tag?
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State-of-the-art in POS tagging

Before next time

I Try POS tagging some of the sentences from the examples
handout (manually and with an online system: see L90
notes for some URLs).
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