Lecture 3: Index Representation and Tolerant
Retrieval

Information Retrieval
Computer Science Tripos Part Il

Ronan Cummins!

Natural Language and Information Processing (NLIP) Group
i UNIVERSITY OF

ronan.cummins@cl.cam.ac.uk

2017

! Adapted from Simone Teufel’s original slides

ronan.cummins@cl.cam.ac.uk

0 Recap

IR System components

Document
Collection

|

‘ Document Normalisation ‘

‘ Indexer [\
IR System /LQ

Indexes
\Ranking/Matching Module S~ J

Query

(]
Query Norm,|

Set of relevant
documents

Last time: The indexer

100

Type/token distinction

@ Token an instance of a word or term occurring in a document

@ Type an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.J

@ 12 word tokens

@ 9 word types

101

Problems with equivalence classing

A term is an equivalence class of tokens.
How do we define equivalence classes?
Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis: inflectional vs. derivational

Equivalence classing problems in other languages

102

Positional indexes

@ Postings lists in a nonpositional index: each posting is just a
docID

@ Postings lists in a positional index: each posting is a doclD
and a list of positions

@ Example query: “to; bey ors noty tos beg”

@ With a positional index, we can answer

@ phrase queries
e proximity queries

103

IR System components

Collection

|

IR System

Document

Query |——

ul

Query Norm

Ranking/Matching Module

Set of relevant
documents

Today: more indexing, some query normalisation

104

@ Tolerant retrieval: What to do if there is no exact match
between query term and document term
@ Data structures for dictionaries

o Hashes

o Trees

o k-term index

@ Permuterm index

@ Spelling correction

105

© Dictionaries

Inverted Index

- [1)-[2){4){11)[31)-{a5] {173] {174
Coesar [0 ——~[1]-[2]-[a] (5] -[g] -[16]-[57] {132] -[179
- [2){31){54]-101]

106

Dictionaries

@ The dictionary is the data structure for storing the term
vocabulary.

@ Term vocabulary: the data

@ Dictionary: the data structure for storing the term vocabulary

107

Dictionaries

@ For each term, we need to store a couple of items:

@ document frequency
@ pointer to postings list

How do we look up a query term q; in the dictionary at query time?

108

Data structures for looking up terms

@ Two main classes of data structures: hashes and trees

@ Some IR systems use hashes, some use trees.
@ Criteria for when to use hashes vs. trees:

¢ Is there a fixed number of terms or will it keep growing?

o What are the relative frequencies with which various keys will
be accessed?

o How many terms are we likely to have?

109

@ Each vocabulary term is hashed into an integer, its row
number in the array

@ At query time: hash query term, locate entry in fixed-width
array

@ Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

@ Cons

@ no way to find minor variants (resume vs. résumé)

o no prefix search (all terms starting with automat)

o need to rehash everything periodically if vocabulary keeps
growing

110

Trees

Trees solve the prefix problem (find all terms starting with
automat).

@ Simplest tree: binary tree

@ Search is slightly slower than in hashes: O(logM), where M is

the size of the vocabulary.

O(logM) only holds for balanced trees.
Rebalancing binary trees is expensive.
B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].

111

Binary tree

m Nz

iy«

FEIICH N

113

@ An ordered tree data structure that is used to store an
associative array

@ The keys are strings

@ The key associated with a node is inferred from the position
of a node in the tree

@ Unlike in binary search trees, where keys are stored in nodes.

@ Values are associated only with with leaves and some inner
nodes that correspond to keys of interest (not all nodes).

@ All descendants of a node have a common prefix of the string
associated with that node — tries can be searched by prefixes

@ The trie is sometimes called radix tree or prefix tree

114

A trie for keys " A", "in", and "inn

115

Trie with postings

R8|R9]100 103298] ...

n
N @@@@

n
@ -249 -11234 -3001
n
302
2476

1009]...

116

© Wildcard queries

Wildcard queries

hel* |

Find all docs containing any term beginning with “hel”

Easy with trie: follow letters h-e-l and then lookup every term
you find there

*hel |
@ Find all docs containing any term ending with “hel”
@ Maintain an additional trie for terms backwards

@ Then retrieve all terms t in subtree rooted at l-e-h

In both cases:

@ This procedure gives us a set of terms that are matches for
wildcard query

@ Then retrieve documents that contain any of these terms

117

How to handle * in the middle of a term

hel*o |

@ We could look up “hel*" and “*o" in the tries as before and
intersect the two term sets.

o Expensive
@ Alternative: permuterm index

@ Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

@ Store each of these rotations in the dictionary (trie)

118

Permuterm index

For term hello: add

hello$, ello$h, llohe, lohel, o$hell, $hello J

to the trie where $ is a special symbol

lloshe

for hel*o, look up o$heI*J

Problem: Permuterm more than quadrupels the size of the
dictionary compared to normal trie (empirical number).

119

@ More space-efficient than permuterm index

@ Enumerate all character k-grams (sequence of k characters)
occurring in a term

Bi-grams from

ap prriil 1$ $iis s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on
nt th h$

@ Maintain an inverted index from k-grams to the term that
contain the k-gram

etr —— beetroot metric petrify retrieval

120

Note that we have two different kinds of inverted indexes:

@ The term-document inverted index for finding documents
based on a query consisting of terms

@ The k-gram index for finding terms based on a query
consisting of k-grams

121

Processing wildcard terms in a bigram index

@ Query hel* can now be run as:

$h AND he AND el |

@ ... but this will show up many false positives like heel.

@ Postfilter, then look up surviving terms in term—document
inverted index.

@ k-gram vs. permuterm index

o k-gram index is more space-efficient
@ permuterm index does not require postfiltering.

122

© Spelling correction

Spelling correction

an asterorid that fell form the skyJ

@ In an IR system, spelling correction is only ever run on queries.

@ The general philosophy in IR is: don't change the documents
(exception: OCR’ed documents)
@ Two different methods for spelling correction:
o Isolated word spelling correction

@ Check each word on its own for misspelling
@ Will only attempt to catch first typo above

o Context-sensitive spelling correction

@ Look at surrounding words
@ Should correct both typos above

123

Isolated word spelling correction

@ There is a list of “correct” words — for instance a standard
dictionary (Webster's, OED. ..)
@ Then we need a way of computing the distance between a
misspelled word and a correct word
o for instance Edit/Levenshtein distance
o k-gram overlap
@ Return the “correct” word that has the smallest distance to
the misspelled word.

informaton — information |

124

o Edit distance between two strings s; and s is the minimum
number of basic operations that transform s; into s,.

@ Levenshtein distance: Admissible operations are insert,
delete and replace

Levenshtein distance
dog - do 1 (delete)

cat - cart 1 (insert)
cat — cut 1 (replace)
cat - act 2 (deletetinsert)

125

X
g
)
T
S
Q
O
c
T
4+
gt
)
)
O
c
T
4+
2
O
=
Q
+
=
n
(=
(]
>
(]
-

[s]njofw]

3

2134

2134

3133

1
1
1

0
1

2

3131234

413132

o

126

8z
O
O
b
3
[}
e

Edit Distance:

127

Each cell of Levenshtein matrix

Cost of getting here from | Cost of getting here from my
my upper left neighbour (by | upper neighbour (by delete)
copy or replace)
Cost of getting here from my | Minimum cost out of these
left neighbour (by insert)

128

Dynamic Programming

Cormen et al:

@ Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

@ Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:
@ Subproblem: edit distance of two prefixes

@ Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)

129

Example: Edit Distance OSLO — SNOW

BB WWINN | -=~=O
Ol B B || QO k=] N b || et
| W[N N[= D[] =t N[b=t
I[N NN NN N
W W[N] W[N|W[|NW[N
BN W W[W W[wW[N||wW
N BB WW N W
W BB P W WP
W O ||| W W o s

Edit distance 0sLO—-SNOW is 3! How do | read out the editing operations that

transform OSLO into SNOW?

cost operation || input | output
1 delete o *
0 (copy) s s

1 reilace | n

Using edit distance for spelling correction

@ Given a query, enumerate all character sequences within a
preset edit distance

@ Intersect this list with our list of “correct” words

@ Suggest terms in the intersection to user.

131

k-gram indexes for spelling correction

@ Enumerate all k-grams in the query term

Misspelled word

bo—or—-rd —dr—-ro—- 00— om

@ Use k-gram index to retrieve “correct” words that match
query term k-grams

@ Threshold by number of matching k-grams

@ Eg. only vocabularly terms that differ by at most 3 k-grams

BO I—-	aboard	—-	about HoardrooH border				
OR I—-	border	—-	lord	—>	morbid	—-	sordid
RD	—>	aboard	—>	ardent	—+oardroon'{—'	border	

132

Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich |

@ Retrieve correct terms close to each query term

flew — flea
form — from
munich — munch

@ Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich — 62 results
flew from munich —=78900 results
flew form munch — 66 results

Not efficient. Better source of information: large corpus of queries,
not documents

133

General issues in spelling correction

@ User interface
@ automatic vs. suggested correction
@ "“Did you mean” only works for one suggestion; what about
multiple possible corrections?
o Tradeoff: Simple Ul vs. powerful Ul
@ Cost
o Potentially very expensive
@ Avoid running on every query
o Maybe just those that match few documents

134

@ What to do if there is no exact match between query term
and document term
@ Datastructures for tolerant retrieval:

o Dictionary as hash, B-tree or trie
¢ k-gram index and permuterm for wildcards
¢ k-gram index and edit-distance for spelling correction

135

@ Wikipedia article "trie”
@ MRS chapter 3.1, 3.2, 3.3

136

	Recap
	Dictionaries
	Wildcard queries
	Spelling correction

