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Document Collections
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Document Collections

IR in the 17th century: Samuel Pepys, the famous English diarist,
subject-indexed his treasured 1000+ books library with key words.
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Document Collections
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What we mean here by document collections

Manning et al, 2008:

Information retrieval (IR) is finding material (usually documents)
of an unstructured nature . . . that satisfies an information need
from within large collections (usually stored on computers).

Document Collection: text units we have built an IR system
over.

Usually documents

But could be

memos
book chapters
paragraphs
scenes of a movie
turns in a conversation...

Lots of them
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What is Information Retrieval?

Manning et al, 2008:

Information retrieval (IR) is finding material (usually documents)
of an unstructured nature . . . that satisfies an information need
from within large collections (usually stored on computers).
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Structured vs Unstructured Data

Unstructured data means that a formal, semantically overt,
easy-for-computer structure is missing.

In contrast to the rigidly structured data used in DB style
searching (e.g. product inventories, personnel records)

SELECT *

FROM business catalogue

WHERE category = ’florist’

AND city zip = ’cb1’

This does not mean that there is no structure in the data

Document structure (headings, paragraphs, lists. . . )
Explicit markup formatting (e.g. in HTML, XML. . . )
Linguistic structure (latent, hidden)
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Information Needs and Relevance

Manning et al, 2008:

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

An information need is the topic about which the user desires
to know more about.

A query is what the user conveys to the computer in an
attempt to communicate the information need.

A document is relevant if the user perceives that it contains
information of value with respect to their personal information
need.
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Types of information needs

Manning et al, 2008:

Information retrieval (IR) is finding material . . . of an unstructured
nature . . . that satisfies an information need from within large
collections . . . .

Known-item search

Precise information seeking search

Open-ended search (“topical search”)
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Information scarcity vs. information abundance

Information scarcity problem (or needle-in-haystack problem):
hard to find rare information

Lord Byron’s first words? 3 years old? Long sentence to the
nurse in perfect English?

. . . when a servant had spilled an urn of hot coffee over his legs, he replied to
the distressed inquiries of the lady of the house, ’Thank you, madam, the
agony is somewhat abated.’ [not Lord Byron, but Lord Macaulay]

Information abundance problem (for more clear-cut
information needs): redundancy of obvious information

What is toxoplasmosis?
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Relevance

Manning et al, 2008:

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Are the retrieved documents

about the target subject
up-to-date?
from a trusted source?
satisfying the user’s needs?

How should we rank documents in terms of these factors?

More on this in a lecture soon

15



How well has the system performed?

The effectiveness of an IR system (i.e., the quality of its search
results) is determined by two key statistics about the system’s
returned results for a query:

Precision: What fraction of the returned results are relevant to
the information need?

Recall: What fraction of the relevant documents in the
collection were returned by the system?

What is the best balance between the two?

Easy to get perfect recall: just retrieve everything
Easy to get good precision: retrieve only the most relevant

There is much more to say about this – lecture 6
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IR today

Web search ( )

Search ground are billions of documents on millions of
computers
issues: spidering; efficient indexing and search; malicious
manipulation to boost search engine rankings
Link analysis covered in Lecture 8

Enterprise and institutional search ( )

e.g company’s documentation, patents, research articles
often domain-specific
Centralised storage; dedicated machines for search.
Most prevalent IR evaluation scenario: US intelligence analyst’s
searches

Personal information retrieval (email, pers. documents; )

e.g., Mac OS X Spotlight; Windows’ Instant Search
Issues: different file types; maintenance-free, lightweight to run
in background
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IR for non-textual media
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Similarity Searches
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Areas of IR

“Ad hoc” retrieval and classification (lectures 1-5)

web retrieval (lecture 8)

Support for browsing and filtering document collections:

Evaluation lecture 6)
Clustering (lecture 7)

Further processing a set of retrieved documents, e.g., by using
natural language processing

Information extraction
Summarisation
Question answering
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Overview

1 Motivation
Definition of “Information Retrieval”
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Boolean Retrieval

In the Boolean retrieval model we can pose any query in the
form of a Boolean expression of terms
i.e., one in which terms are combined with the operators and,
or, and not.
Shakespeare example
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Brutus AND Caesar AND NOT Calpurnia

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

Naive solution: linear scan through all text – “grepping”

In this case, works OK (Shakespeare’s Collected works has less
than 1M words).

But in the general case, with much larger text colletions, we
need to index.

Indexing is an offline operation that collects data about which
words occur in a text, so that at search time you only have to
access the precompiled index.
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The term-document incidence matrix

Main idea: record for each document whether it contains each
word out of all the different words Shakespeare used (about 32K).

Antony
and

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Matrix element (t, d) is 1 if the play in column d contains the
word in row t, 0 otherwise.
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Query “Brutus AND Caesar AND NOT Calpunia”

We compute the results for our query as the bitwise AND between
vectors for Brutus, Caesar and complement (Calpurnia):

Antony
and

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

This returns two documents, “Antony and Cleopatra” and
“Hamlet”.
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Query “Brutus AND Caesar AND NOT Calpunia”

We compute the results for our query as the bitwise AND between
vectors for Brutus, Caesar and complement (Calpurnia):

Antony
and

Julius
Caesar

The
Tempest

Hamlet Othello Macbeth

Cleopatra
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
¬Calpurnia 1 0 1 1 1 1
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
AND 1 0 0 1 0 0

Bitwise AND returns two documents, “Antony and Cleopatra” and
“Hamlet”.
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The results: two documents

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Dominitus Enobarbus]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring, and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius: I did enact Julius Caesar: I was killed i’ the
Capitol; Brutus killed me.
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Bigger collections

Consider N=106 documents, each with about 1000 tokens

109 tokens at avg 6 Bytes per token ⇒ 6GB

Assume there are M=500,000 distinct terms in the collection

Size of incidence matrix is then 500,000 ×106

Half a trillion 0s and 1s
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Can’t build the Term-Document incidence matrix

Observation: the term-document matrix is very sparse

Contains no more than one billion 1s.

Better representation: only represent the things that do occur

Term-document matrix has other disadvantages, such as lack
of support for more complex query operators (e.g., proximity
search)

We will move towards richer representations, beginning with
the inverted index.
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The inverted index

The inverted index consists of

a dictionary of terms (also: lexicon, vocabulary)

and a postings list for each term, i.e., a list that records which
documents the term occurs in.

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57 

Calpurnia 54 1012 31 

179
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Processing Boolean Queries: conjunctive queries

Our Boolean Query

Brutus AND Calpurnia

Locate the postings lists of both query terms and intersect them.

Brutus 1 2 4 45 31 11 174173

54 1012 31 Calpurnia

Intersection 2 31 

Note: this only works if postings lists are sorted
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Algorithm for intersection of two postings

INTERSECT (p1, p2)

1 answer ← <>

2 while p1 6= NIL and p2 6= NIL

3 do if docID(p1) = docID(p2)

4 then ADD (answer, docID(p1))

5 p1 ← next(p1)

6 p2 ← next(p2)

7 if docID(p1) < docID(p2)

8 then p1← next(p1)

9 else p2← next(p2)

10 return answer

Brutus 1 2 4 45 31 11 174173

54 1012 31 Calpurnia

Intersection 2 31 
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Complexity of the Intersection Algorithm

Bounded by worst-case length of postings lists

Thus “officially” O(N), with N the number of documents in
the document collection

But in practice much, much better than linear scanning,
which is asymptotically also O(N)
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Query Optimisation: conjunctive terms

Organise order in which the postings lists are accessed so that least
work needs to be done

Brutus AND Caesar AND Calpurnia

Process terms in increasing document frequency: execute as

(Calpurnia AND Brutus) AND Caesar

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57 

Calpurnia 54 1012 31 

8

9

4

179
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Query Optimisation: disjunctive terms

(maddening OR crowd) AND (ignoble OR strife) AND (killed OR slain)

Process the query in increasing order of the size of each
disjunctive term

Estimate this in turn (conservatively) by the sum of
frequencies of its disjuncts
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Practical Boolean Search

Provided by large commercial information providers
1960s-1990s

Complex query language; complex and long queries

Extended Boolean retrieval models with additional operators –
proximity operators

Proximity operator: two terms must occur close together in a
document (in terms of certain number of words, or within
sentence or paragraph)

Unordered results...
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Examples

Westlaw : Largest commercial legal search service – 500K
subscribers

Medical search

Patent search

Useful when expert queries are carefully defined and
incrementally developed
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Does Google use the Boolean Model?

On Google, the default interpretation of a query [w1 w2 ... wn] is
w1 AND w2 AND ... AND wn

Cases where you get hits which don’t contain one of the w−i :

Page contains variant of wi (morphology, misspelling,
synonym)
long query (n is large)
Boolean expression generates very few hits
wi was in the anchor text

Google also ranks the result set

Simple Boolean Retrieval returns matching documents in no
particular order.
Google (and most well-designed Boolean engines) rank hits
according to some estimator of relevance
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Reading

Manning, Raghavan, Schütze: Introduction to Information
Retrieval (MRS), chapter 1
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Overview

1 Index construction
Postings list and Skip lists
Single-pass Indexing

2 Document and Term Normalisation
Documents
Terms
Reuter RCV1 and Heap’s Law

Index construction

The major steps in inverted index construction:

Collect the documents to be indexed.

Tokenize the text.

Perform linguistic preprocessing of tokens.

Index the documents that each term occurs in.
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Example: index creation by sorting

Term docID Term (sorted) docID
I 1 ambitious 2

did 1 be 2
enact 1 brutus 1
julius 1 brutus 2

Doc 1: caesar 1 capitol 2
I did enact Julius I 1 caesar 1
Caesar: I was killed =⇒ was 1 caesar 2
i’ the Capitol;Brutus Tokenisation killed 1 caesar 2
killed me. i’ 1 did 1

the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 I 1
me 1 i’ 1
so 2 =⇒ it 2
let 2 Sorting julius 1
it 2 killed 1

Doc 2: be 2 killed 2
So let it be with with 2 let 2
Caesar. The noble caesar 2 me 1
Brutus hath told =⇒ the 2 noble 2
you Caesar was Tokenisation noble 2 so 2
ambitious. brutus 2 the 1

hath 2 the 2
told 2 told 2
you 2 you 2

caesar 2 was 1
was 2 was 1

ambitious 2 with 2
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Index creation; grouping step (“uniq”)

Term & doc. freq. Postings list

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Primary sort by term
(dictionary)

Secondary sort (within
postings list) by document
ID

Document frequency (=
length of postings list):

for more efficient
Boolean searching (later
today)
for term weighting
(lecture 4)

keep Dictionary in memory

keep Postings List (much
larger) on disk
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Data structures for Postings Lists

Singly linked list

Allow cheap insertion of documents into postings lists (e.g.,
when recrawling)
Naturally extend to skip lists for faster access

Variable length array

Better in terms of space requirements
Also better in terms of time requirements if memory caches are
used, as they use contiguous memory

Hybrid scheme: linked list of variable length array for each
term.

write posting lists on disk as contiguous block without explicit
pointers
minimises the size of postings lists and number of disk seeks
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Optimisation: Skip Lists

Some postings lists can contain several million entries

Check skip list if present to skip multiple entries

sqrt(L) Skips can be placed evenly for a list of length L.
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Tradeoff Skip Lists

Number of items skipped vs. frequency that skip can be taken

More skips: each pointer skips only a few items, but we can
frequently use it.

Fewer skips: each skip pointer skips many items, but we can
not use it very often.

Skip pointers used to help a lot, but with today’s fast CPUs,
they don’t help that much anymore.
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Algorithm: single-pass in-memory indexing or SPIMI

As we build index, we parse docs one at a time.

The final postings for any term are incomplete until the end.

But for large collections, we cannot keep all postings in
memory and then sort in-memory at the end

We cannot sort very large sets of records on disk either (too
many disk seeks, expensive)

Thus: We need to store intermediate results on disk.

We need a scalable Block-Based sorting algorithm.
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Single-pass in-memory indexing (1)

Abbreviation: SPIMI

Key idea 1: Generate separate dictionaries for each block.

Key idea 2: Accumulate postings in postings lists as they
occur.

With these two ideas we can generate a complete inverted
index for each block.

These separate indexes can then be merged into one big index.

Worked example!
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Single-pass in-memory indexing (2)
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Single-pass in-memory indexing (3)

We could save space in memory by assigning term-ids to
terms for each block-based dictionary

However, we then need to have an in-memory term-term-id
mapping which often does not fit in memory (on a single
machine at least)

This approach is called blocked sort-based indexing BSBI and
you can read about it in the book (Chapter 4.2)
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Overview

1 Index construction
Postings list and Skip lists
Single-pass Indexing

2 Document and Term Normalisation
Documents
Terms
Reuter RCV1 and Heap’s Law

Document and Term Normalisation

To build an inverted index, we need to get from

Input: Friends, Romans, countrymen. So let it be with Caesar. . .

Output: friend roman countryman so

Each token is a candidate for a postings entry.
What are valid tokens to emit?
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Documents

Up to now, we assumed that

We know what a document is.
We can “machine-read” each document

More complex in reality
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Parsing a document

We need do deal with format and language of each document

Format could be excel, pdf, latex, word. . .

What language is it in?

What character set is it in?

Each of these is a statistical classification problem

Alternatively we can use heuristics
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Character decoding

Text is not just a linear stream of logical “characters”...

Determine correct character encoding (Unicode UTF-8) – by
ML or by metadata or heuristics.

Compressions, binary representation (DOC)

Treat XML characters separately (&amp)
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Format/Language: Complications

A single index usually contains terms of several languages.

Documents or their components can contain multiple
languages/format, for instance a French email with a Spanish
pdf attachment

What is the document unit for indexing?

a file?
an email?
an email with 5 attachments?
an email thread?

Answering the question “What is a document?” is not trivial.

Smaller units raise precision, drop recall

Also might have to deal with XML/hierarchies of HTML
documents etc.
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Normalisation

Need to normalise words in the indexed text as well as query
terms to the same form

Example: We want to match U.S.A. to USA

We most commonly implicitly define equivalence classes of
terms.

Alternatively, we could do asymmetric expansion:

window → window, windows
windows → Windows,
windows, window
Windows → Windows

Either at query time, or at index time

More powerful, but less efficient
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Tokenisation

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

neill aren’t

oneill arent

o’neill are n’t

o’ neill aren t

o neill
?

?
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Tokenisation problems: One word or two? (or several)

Hewlett-Packard

State-of-the-art

co-education

the hold-him-back-and-drag-him-away maneuver

data base

San Francisco

Los Angeles-based company

cheap San Francisco-Los Angeles fares

York University vs. New York University
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Numbers

20/3/91
3/20/91
Mar 20, 1991
B-52
100.2.86.144
(800) 234-2333
800.234.2333

Older IR systems may not index numbers...

... but generally it’s a useful feature.
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Chinese: No Whitespace

Need to perform word segmentation

Use a lexicon or supervised machine-learning
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Chinese: Ambiguous segmentation

As one word, means “monk”

As two words, means “and” and “still”
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Other cases of “no whitespace”: Compounding

Compounding in Dutch, German, Swedish

German

Lebensversicherungsgesellschaftsangestellter
leben+s+versicherung+s+gesellschaft+s+angestellter
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Other cases of “no whitespace”: Agglutination

“Agglutinative” languages do this not just for compounds:

Inuit

tusaatsiarunnangittualuujunga
(= “I can’t hear very well”)

Finnish

epäjärjestelmällistyttämättömyydellänsäkäänköhän
(= “I wonder if – even with his/her quality of not
having been made unsystematized”)

Turkish

Çekoslovakyalılaştıramadıklarımızdanmşçasına
(= “as if you were one of those whom we could not
make resemble the Czechoslovacian people”)
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Japanese

Different scripts (alphabets) might be mixed in one language.

Japanese has 4 scripts: kanja, katakana, hiragana, Romanji

no spaces
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Arabic script and bidirectionality

Direction of writing changes in some scripts (writing systems);
e.g., Arabic.

Rendering vs. conceptual order

Bidirectionality is not a problem if Unicode encoding is chosen
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Accents and diacritics

résumé vs. resume

Universität

Meaning-changing in some languages:

peña = cliff, pena = sorrow
(Spanish)

Main questions: will users apply it when querying?
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Case Folding

Reduce all letters to lower case

Even though case can be semantically distinguishing

Fed vs. fed
March vs. march
Turkey vs. turkey
US vs. us

Best to reduce to lowercase because users will use lowercase
regardness of correct capitalisation.
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Stop words

Extremely common words which are of little value in helping
select documents matching a user need

a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of,
on, that, the, to, was, were, will, with

Used to be standard in older IR systems.

Need them to search for

to be or not to be
prince of Denmark
bamboo in water

Length of practically used stoplists has shrunk over the years.

Most web search engines do index stop words.
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More equivalence classing

Thesauri: semantic equivalence, car = automobile

Soundex: phonetic equivalence, Muller = Mueller; lecture 3
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Lemmatisation

Reduce inflectional/variant forms to base form

am, are, is → be
car, car’s, cars’, cars → car
the boy’s cars are different colours → the boy car be different color

Lemmatisation implies doing “proper” reduction to dictionary
headword form (the lemma)

Inflectional morphology (cutting → cut)

Derivational morphology (destruction → destroy)
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Stemming

Stemming is a crude heuristic process that chops off the ends
of words in the hope of achieving what “principled”
lemmatisation attempts to do with a lot of linguistic
knowledge.

language dependent, but fast and space-efficient

does not require a stem dictionary, only a suffix dictionary

Often both inflectional and derivational

automate, automation, automatic → automat

Root changes (deceive/deception, resume/resumption) aren’t
dealt with, but these are rare
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Porter Stemmer

M. Porter, “An algorithm for suffix stripping”, Program
14(3):130-137, 1980

Most common algorithm for stemming English

Results suggest it is at least as good as other stemmers

Syllable-like shapes + 5 phases of reductions

Of the rules in a compound command, select the top one and
exit that compound (this rule will have affecte the longest
suffix possible, due to the ordering of the rules).
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Stemming: Representation of a word

[C] (VC){m}[V]
C : one or more adjacent consonants
V : one or more adjacent vowels

[ ] : optionality
( ) : group operator
{x} : repetition x times
m : the “measure” of a word

shoe [sh]C [oe]V m=0

Mississippi [M]C ([i]V [ss]C )([i]V [ss]C )([i]V [pp]C )[i]V m=3

ears ([ea]V [rs]C ) m=1

Notation: measure m is calculated on the word excluding the suffix of
the rule under consideration
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Porter stemmer: selected rules

SSES → SS
IES → I
SS → SS
S →
caresses → caress
cares → care

(m>0) EED →
EE

feed → feed
agreed → agree

BUT: freed, succeed
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Porter Stemmer: selected rules

(*v*) ED →

plastered → plaster
bled → bled
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Three stemmers: a comparison

Such an analysis can reveal features that are not easily visible from the
variations in the individual genes and can lead to a picture of expression that is
more biologically transparent and accessible to interpretation.

Porter Stemmer

such an analysi can reveal featur that ar not easili visibl from the variat in the
individu gene and can lead to a pictur of express that is more biolog transpar
and access to interpret

Lovins Stemmer

such an analys can reve featur that ar not eas vis from th vari in th individu
gen and can lead to a pictur of expres that is mor biolog transpar and acces to
interpres

Paice Stemmer

such an analys can rev feat that are not easy vis from the vary in the individ
gen and can lead to a pict of express that is mor biolog transp and access to
interpret
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Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries
and decreases it for others.

Example queries where stemming helps

tartan sweaters → sweater, sweaters
sightseeing tour san francisco → tour, tours

Example queries where stemming hurts

operational research → “oper” = operates, operatives, operate,
operation, operational, operative

operating system → operates, operatives, operate, operation,
operational, operative

operative dentistry → operates, operatives, operate, operation,
operational, operative

81

Phrase Queries

We want to answer a query such as [cambridge university] –
as a phrase.

The Duke of Cambridge recently went for a term-long course
to a famous university should not be a match

About 10% of web queries are phrase queries.

Consequence for inverted indexes: no longer sufficient to store
docIDs in postings lists.

Two ways of extending the inverted index:

biword index
positional index
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Biword indexes

Index every consecutive pair of terms in the text as a phrase.

Friends, Romans, Countrymen

Generates two biwords:
friends romans

romans countrymen

Each of these biwords is now a vocabulary term.

Two-word phrases can now easily be answered.
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Longer phrase queries

A long phrase like cambridge university west campus can be
represented as the Boolean query

cambridge university AND university west AND west campus

We need to do post-filtering of hits to identify subset that
actually contains the 4-word phrase.
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Issues with biword indexes

Why are biword indexes rarely used?

False positives, as noted above

Index blowup due to very large term vocabulary
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Positional indexes

Positional indexes are a more efficient alternative to biword
indexes.

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions (offsets)
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Positional indexes: Example

Query: “to1 be2 or3 not4 to5 be6”

to, 993427:
< 1: < 7, 18, 33, 72, 86, 231>;

2: <1, 17, 74, 222, 255>;
4: <8, 16, 190, 429, 433>;
5: <363, 367>;
7: <13, 23, 191>;

. . . . . .>

be, 178239:
< 1: < 17, 25>;

4: < 17, 191, 291, 430, 434>;
5: <14, 19, 101>;

. . . . . .>

Document 4 is a match.
(As always: docid, term, doc freq; new: offsets)
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Proximity search

We just saw how to use a positional index for phrase searches.

We can also use it for proximity search.

employment /4 place

Find all documents that contain employment and place within
4 words of each other.

HIT: Employment agencies that place healthcare workers are
seeing growth.

NO HIT: Employment agencies that have learned to adapt
now place healthcare workers.
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Proximity search

Use the positional index

Simplest algorithm: look at cross-product of positions of (i)
“employment” in document and (ii) “place” in document

Very inefficient for frequent words, especially stop words

Note that we want to return the actual matching positions,
not just a list of documents.

This is important for dynamic summaries etc.
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Proximity intersection

PositionalIntersect(p1, p2, k)

1 answer ←<>
2 while p1 6= nil and p2 6= nil

3 do if docID(p1) = docID(p2)

4 then l ← <>

5 pp1 ← positions(p1)

6 pp2 ← positions(p2)

7 while pp1 6= nil

8 do while pp2 6= nil

9 do if |pos(pp1) pos(pp2)| ≤ k

10 then Add(l , pos(pp2))

11 else if pos(pp2) > pos(pp1)

12 then break

13 pp2 ← next(pp2)

14 while l 6=<> and |l [0] pos(pp1)| > k

15 do Delete(l [0])

16 for each ps l

17 do Add(answer , hdocID(p1), pos(pp1), psi)

18 pp1 ← next(pp1)

19 p1 ← next(p1)

20 p2 ← next(p2)

21 else if docID(p1) < docID(p2)

22 then p1 ← next(p1)

23 else p2 ← next(p2)

24 return answer
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Combination scheme

Biword indexes and positional indexes can be profitably
combined.

Many biwords are extremely frequent: Michael Jackson,
Britney Spears etc

For these biwords, increased speed compared to positional
postings intersection is substantial.

Combination scheme: Include frequent biwords as vocabulary
terms in the index. Do all other phrases by positional
intersection.

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme. Faster than a positional index, at a cost of
26% more space for index.

For web search engines, positional queries are much more
expensive than regular Boolean queries.
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RCV1 collection

Shakespeare’s collected works are not large enough to
demonstrate scalable index construction algorithms.

Instead, we will use the Reuters RCV1 collection.

English newswire articles published in a 12 month period
(1995/6)

N documents 800,000
M terms (= word types) 400,000
T non-positional postings 100,000,000
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Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)

size of dictionary non-positional index positional index
size ∆cml size ∆ cml size ∆cml

unfiltered 484,494 109,971,179 197,879,290
no numbers 473,723 -2 -2 100,680,242 -8 -8 179,158,204 -9 -9
case folding 391,523 -17 -19 96,969,056 -3 -12 179,158,204 -0 -9
30 stopw’s 391,493 -0 -19 83,390,443 -14 -24 121,857,825 -31 -38
150 stopw’s 391,373 -0 -19 67,001,847 -30 -39 94,516,599 -47 -52
stemming 322,383 -17 -33 63,812,300 -4 -42 94,516,599 -0 -52
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How big is the term vocabulary?

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 7020 ≈ 1037 different words of length 20.

The vocabulary will keep growing with collection size.

Heaps’ law: M = kT b

M is the size of the vocabulary, T is the number of tokens in
the collection.

Typical values for the parameters k and b are: 30 ≤ k ≤ 100
and b ≈ 0.5.

Heaps’ law is linear in log-log space.

It is the simplest possible relationship between collection size
and vocabulary size in log-log space.
Empirical law
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Heaps’ law for Reuters

Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.
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Empirical fit for Reuters

Good, as we just saw in the graph.

Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44× 1,000,0200.49 ≈ 38,323

The actual number is 38,365 terms, very close to the
prediction.

Empirical observation: fit is good in general.

96



Take-away

Understanding of the basic unit of classical information
retrieval systems: words and documents: What is a document,
what is a term?

Tokenization: how to get from raw text to terms (or tokens)

More complex indexes for phrases
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Reading

MRS Chapter 2.2

MRS Chapter 2.4

MRS Chapter 4.3
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IR System components

IR System
Query

Document 

Collection

Set of relevant

documents

Document Normalisation

Indexer
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I

Ranking/Matching ModuleQ
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ry
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rm

.
Indexes

Last time: The indexer
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Type/token distinction

Token an instance of a word or term occurring in a document

Type an equivalence class of tokens

In June, the dog likes to chase the cat in the barn.

12 word tokens

9 word types
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Problems with equivalence classing

A term is an equivalence class of tokens.

How do we define equivalence classes?

Numbers (3/20/91 vs. 20/3/91)

Case folding

Stemming, Porter stemmer

Morphological analysis: inflectional vs. derivational

Equivalence classing problems in other languages
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Positional indexes

Postings lists in a nonpositional index: each posting is just a
docID

Postings lists in a positional index: each posting is a docID
and a list of positions

Example query: “to1 be2 or3 not4 to5 be6”

With a positional index, we can answer

phrase queries
proximity queries
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IR System components

IR System
Query

Document 

Collection

Set of relevant

documents

Today: more indexing, some query normalisation
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Upcoming

Tolerant retrieval: What to do if there is no exact match
between query term and document term

Data structures for dictionaries

Hashes
Trees
k-term index
Permuterm index

Spelling correction
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Inverted Index

Brutus 1 2 4 45 31 11 174173

Caesar 1321 2 4 5 6 16 57 

Calpurnia 54 1012 31 

8

9

4

179
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Dictionaries

The dictionary is the data structure for storing the term
vocabulary.

Term vocabulary: the data

Dictionary: the data structure for storing the term vocabulary
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Dictionaries

For each term, we need to store a couple of items:

document frequency
pointer to postings list

How do we look up a query term qi in the dictionary at query time?
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Data structures for looking up terms

Two main classes of data structures: hashes and trees

Some IR systems use hashes, some use trees.

Criteria for when to use hashes vs. trees:

Is there a fixed number of terms or will it keep growing?
What are the relative frequencies with which various keys will
be accessed?
How many terms are we likely to have?
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Hashes

Each vocabulary term is hashed into an integer, its row
number in the array

At query time: hash query term, locate entry in fixed-width
array

Pros: Lookup in a hash is faster than lookup in a tree.
(Lookup time is constant.)

Cons

no way to find minor variants (resume vs. résumé)
no prefix search (all terms starting with automat)
need to rehash everything periodically if vocabulary keeps
growing
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Trees

Trees solve the prefix problem (find all terms starting with
automat).

Simplest tree: binary tree

Search is slightly slower than in hashes: O(logM), where M is
the size of the vocabulary.

O(logM) only holds for balanced trees.

Rebalancing binary trees is expensive.

B-trees mitigate the rebalancing problem.

B-tree definition: every internal node has a number of children
in the interval [a, b] where a, b are appropriate positive
integers, e.g., [2, 4].
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Binary tree
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B-tree
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Trie

An ordered tree data structure that is used to store an
associative array

The keys are strings

The key associated with a node is inferred from the position
of a node in the tree

Unlike in binary search trees, where keys are stored in nodes.

Values are associated only with with leaves and some inner
nodes that correspond to keys of interest (not all nodes).

All descendants of a node have a common prefix of the string
associated with that node → tries can be searched by prefixes

The trie is sometimes called radix tree or prefix tree
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Trie

t

o e

d
na

n

n

i

A

A trie for keys ”A”, ”to”, ”tea”, ”ted”, ”ten”, ”in”, and ”inn”.
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Trie with postings

t

o e

d
na

n

n

i

A

67444

206 117 2476

302

5774310993

1 2 3 5 6 7 8 ...

10423 14301 17998 ...

15 28 29 100 103 298  ...

1 3 4 7 8 9  ....

249  11234   23001 ...

12  56   233  1009 ...

20451  109987  ...
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Wildcard queries

hel*

Find all docs containing any term beginning with “hel”

Easy with trie: follow letters h-e-l and then lookup every term
you find there

*hel

Find all docs containing any term ending with “hel”

Maintain an additional trie for terms backwards

Then retrieve all terms t in subtree rooted at l-e-h

In both cases:

This procedure gives us a set of terms that are matches for
wildcard query

Then retrieve documents that contain any of these terms
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How to handle * in the middle of a term

hel*o

We could look up “hel*” and “*o” in the tries as before and
intersect the two term sets.

Expensive

Alternative: permuterm index

Basic idea: Rotate every wildcard query, so that the * occurs
at the end.

Store each of these rotations in the dictionary (trie)
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Permuterm index

For term hello: add

hello$, ello$h, llo$he, lo$hel, o$hell, $hello

to the trie where $ is a special symbol

for hel*o, look up o$hel*

Problem: Permuterm more than quadrupels the size of the
dictionary compared to normal trie (empirical number).
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k-gram indexes

More space-efficient than permuterm index

Enumerate all character k-grams (sequence of k characters)
occurring in a term

Bi-grams from April is the cruelest month

ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le es st t$ $m mo on
nt th h$

Maintain an inverted index from k-grams to the term that
contain the k-gram
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k-gram indexes

Note that we have two different kinds of inverted indexes:

The term-document inverted index for finding documents
based on a query consisting of terms

The k-gram index for finding terms based on a query
consisting of k-grams
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Processing wildcard terms in a bigram index

Query hel* can now be run as:

$h AND he AND el

... but this will show up many false positives like heel.

Postfilter, then look up surviving terms in term–document
inverted index.

k-gram vs. permuterm index

k-gram index is more space-efficient
permuterm index does not require postfiltering.
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Spelling correction

an asterorid that fell form the sky

In an IR system, spelling correction is only ever run on queries.

The general philosophy in IR is: don’t change the documents
(exception: OCR’ed documents)

Two different methods for spelling correction:
Isolated word spelling correction

Check each word on its own for misspelling
Will only attempt to catch first typo above

Context-sensitive spelling correction

Look at surrounding words
Should correct both typos above
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Isolated word spelling correction

There is a list of “correct” words – for instance a standard
dictionary (Webster’s, OED. . . )

Then we need a way of computing the distance between a
misspelled word and a correct word

for instance Edit/Levenshtein distance
k-gram overlap

Return the “correct” word that has the smallest distance to
the misspelled word.

informaton → information
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Edit distance

Edit distance between two strings s1 and s2 is the minimum
number of basic operations that transform s1 into s2.

Levenshtein distance: Admissible operations are insert,
delete and replace

Levenshtein distance

dog – do 1 (delete)
cat – cart 1 (insert)
cat – cut 1 (replace)
cat – act 2 (delete+insert)
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Levenshtein distance: Distance matrix

s n o w

0 1 2 3 4

o 1 1 2 3 4

s 2 1 3 3 3

l 3 3 2 3 4

o 4 3 3 2 3
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Edit Distance: Four cells

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2

2 1
2 3

2 2
2 4

3 2
4 5

3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3
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Each cell of Levenshtein matrix

Cost of getting here from
my upper left neighbour (by
copy or replace)

Cost of getting here from my
upper neighbour (by delete)

Cost of getting here from my
left neighbour (by insert)

Minimum cost out of these
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Dynamic Programming

Cormen et al:

Optimal substructure: The optimal solution contains within it
subsolutions, i.e, optimal solutions to subproblems

Overlapping subsolutions: The subsolutions overlap and would
be computed over and over again by a brute-force algorithm.

For edit distance:

Subproblem: edit distance of two prefixes

Overlap: most distances of prefixes are needed 3 times (when
moving right, diagonally, down in the matrix)
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Example: Edit Distance oslo – snow

s n o w

0 1 1 2 2 3 3 4 4

o
1
1

1 2
2 1

2 3
2 2

2 4
3 2

4 5
3 3

s
2
2

1 2

3 1
2 3

2 2
3 3
3 3

3 4

4 3

l
3
3

3 2
4 2

2 3

3 2
3 4

3 3
4 4
4 4

o
4
4

4 3
5 3

3 3
4 3

2 4

4 2
4 5

3 3

Edit distance oslo–snow is 3! How do I read out the editing operations that

transform oslo into snow?

cost operation input output

1 delete o *
0 (copy) s s
1 replace l n
0 (copy) o o 130

Using edit distance for spelling correction

Given a query, enumerate all character sequences within a
preset edit distance

Intersect this list with our list of “correct” words

Suggest terms in the intersection to user.
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k-gram indexes for spelling correction

Enumerate all k-grams in the query term

Misspelled word bordroom

bo – or – rd – dr – ro – oo – om

Use k-gram index to retrieve “correct” words that match
query term k-grams
Threshold by number of matching k-grams
Eg. only vocabularly terms that differ by at most 3 k-grams

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲
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Context-sensitive Spelling correction

One idea: hit-based spelling correction

flew form munich

Retrieve correct terms close to each query term

flew → flea
form → from
munich → munch

Holding all other terms fixed, try all possible phrase queries
for each replacement candidate

flea form munich – 62 results
flew from munich –78900 results
flew form munch – 66 results

Not efficient. Better source of information: large corpus of queries,
not documents
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General issues in spelling correction

User interface

automatic vs. suggested correction
“Did you mean” only works for one suggestion; what about
multiple possible corrections?
Tradeoff: Simple UI vs. powerful UI

Cost

Potentially very expensive
Avoid running on every query
Maybe just those that match few documents
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Takeaway

What to do if there is no exact match between query term
and document term

Datastructures for tolerant retrieval:

Dictionary as hash, B-tree or trie
k-gram index and permuterm for wildcards
k-gram index and edit-distance for spelling correction
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Reading

Wikipedia article ”trie”

MRS chapter 3.1, 3.2, 3.3
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Today: The ranker/matcher
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Indexes

Finished with indexing, query normalisation
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Recap: Tolerant Retrieval

What to do when there is no exact match between query term
and document term?

Dictionary as hash, B-tree, trie

Wildcards via permuterm

and k-gram index

k-gram index and edit-distance for spelling correction
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Upcoming

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

And one explanation for why it works: Zipf’s Law

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or don’t.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users

Don’t want to write Boolean queries or wade through 1000s
of results.

This is particularly true of web search.

144

Problem with Boolean search: Feast or famine

Boolean queries often have either too few or too many results.

Query 1

standard AND user AND dlink AND 650
→ 200,000 hits Feast!

Query 2

standard AND user AND dlink AND 650
AND no AND card AND found
→ 0 hits Famine!

In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

In ranked retrieval, “feast or famine” is less of a problem.

Condition: Results that are more relevant are ranked higher
than results that are less relevant. (i.e., the ranking algorithm
works.)
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Scoring as the basis of ranked retrieval

Rank documents in the collection according to how relevant
they are to a query

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.

If the query consists of just one term . . .

lioness

Score should be 0 if the query term does not occur in the
document.
The more frequent the query term in the document, the higher
the score
We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B |
|A ∪ B |

(A 6= ∅ or B 6= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

What is the query-document match score that the Jaccard
coefficient computes for:

Query

“ides of March”

Document

“Caesar died in March”

jaccard(q, d) = 1/6
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What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

It also does not consider that that some terms are inherently
more informative than frequent terms.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.
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Bag of words model

We do not consider the order of words in a document.

Represented the same way:

John is quicker than Mary
Mary is quicker than John

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

152

Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We could just use tf as is (“raw term frequency”).

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d 0 1 2 10 1000
wt,d 0 1 1.3 2 4

Score for a document-query pair: sum over terms t in both q
and d :

tf-matching-score(q, d) =
∑

t∈q∩d (1 + log tft,d )

The score is 0 if none of the query terms is present in the
document.
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Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to reward terms which are rare in the
document collection overall.

Now: excursion to an important statistical observation about
language.
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Zipf’s law

How many frequent vs. infrequent terms should we expect in
a collection?

In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law

The i th most frequent term has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

cfi is collection frequency: the number of occurrences of the
term ti in the collection.
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Zipf’s law

Zipf’s law

The i th most frequent term has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 =

1
2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 =

1
3cf1 etc.

Equivalent: cfi = p · ik and log cfi = log p + k log i (for
k = −1)

Example of a power law
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Zipf’s Law: Examples from 5 Languages

Top 10 most frequent words in some large language samples:

English German Spanish Italian Dutch

1 the 61,847 1 der 7,377,879 1 que 32,894 1 non 25,757 1 de 4,770
2 of 29,391 2 die 7,036,092 2 de 32,116 2 di 22,868 2 en 2,709
3 and 26,817 3 und 4,813,169 3 no 29,897 3 che 22,738 3 het/’t 2,469
4 a 21,626 4 in 3,768,565 4 a 22,313 4 è 18,624 4 van 2,259
5 in 18,214 5 den 2,717,150 5 la 21,127 5 e 17,600 5 ik 1,999
6 to 16,284 6 von 2,250,642 6 el 18,112 6 la 16,404 6 te 1,935
7 it 10,875 7 zu 1,992,268 7 es 16,620 7 il 14,765 7 dat 1,875
8 is 9,982 8 das 1,983,589 8 y 15,743 8 un 14,460 8 die 1,807
9 to 9,343 9 mit 1,878,243 9 en 15,303 9 a 13,915 9 in 1,639
10 was 9,236 10 sich 1,680,106 10 lo 14,010 10 per 10,501 10 een 1,637

BNC,
100Mw

“Deutscher
Wortschatz”,
500Mw

subtitles,
27.4Mw

subtitles,
5.6Mw

subtitles,
800Kw
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Zipf’s law: Rank × Frequency ∼ Constant

English: Rank R Word Frequency f R × f

10 he 877 8770
20 but 410 8200
30 be 294 8820

800 friends 10 8000
1000 family 8 8000

German: Rank R Word Frequency f R × f

10 sich 1,680,106 16,801,060
100 immer 197,502 19,750,200
500 Mio 36,116 18,059,500

1,000 Medien 19,041 19,041,000
5,000 Miete 3,755 19,041,000

10,000 vorläufige 1.664 16,640,000
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Other collections (allegedly) obeying power laws

Sizes of settlements

Frequency of access to web pages

Income distributions amongst top earning 3% individuals

Korean family names

Size of earth quakes

Word senses per word

Notes in musical performances

. . .
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Zipf’s law for Reuters

Fit is not great.
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Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like
arachnocentric.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.

163

Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

log N
dft

instead of N
dft

to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.
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Collection frequency vs. Document frequency

Collection Document
Term frequency frequency
insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Clearly, insurance is a more discriminating search term and
should get a higher weight.

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

tf-idf weight

wt,d = (1 + log tft,d ) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Alternative names: tf.idf, tf x idf
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Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights
∈ R|V |.
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Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as vectors
in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity ≈ negative distance

This allows us to rank relevant documents higher than
nonrelevant documents
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How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√∑

i x
2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√∑

i x
2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi√∑|V |

i=1 q
2
i

√∑|V |
i=1 d

2
i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .
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Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di
(if ~q and ~d are length-normalized).
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Cosine similarity illustrated

0 1
0

1

rich

poor

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ
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Cosine: Example

How similar are the
following novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering Heights

Term frequencies (raw counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

a Term frequencies
a (raw counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Log frequency
weighting

SaS PaP WH
3.06 2.76 2.30
2.0 1.85 2.04

1.30 0.00 1.78
0.00 0.00 2.58

Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

(To simplify this example, we don’t do idf weighting.)

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69
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Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d ) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d )

p (prob idf) max{0, log N−dft
dft

} u (pivoted
unique)

1/u

b (boolean)

{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tft,d )

1+log(avet∈d(tft,d ))

Best known combination of weighting options

Default: no weighting
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tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

Document:
l ogarithmic tf
n o df weighting
c osine normalization

Query:
l ogarithmic tf
t – means idf
n o normalization
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user
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Reading

MRS, Chapter 5.1.2 (Zipf’s Law)

MRS, Chapter 6 (Term Weighting)
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Lecture 5: Language Modelling in Information
Retrieval and Classification

Information Retrieval
Computer Science Tripos Part II

Ronan Cummins1

Natural Language and Information Processing (NLIP) Group

ronan.cummins@cl.cam.ac.uk

2017

1Adapted from Simone Teufel’s original slides
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Upcoming today

Query-likelihood method in IR

Document Language Modelling

Smoothing

Classification
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Overview

1 Query Likelihood

2 Estimating Document Models

3 Smoothing

4 Naive Bayes Classification

Language Model

A model for how humans generate language

Used in many language orientated-tasks (MT, word
prediction, IR)

Usually probabilistic in nature (e.g. multinomial, neural)
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What is a document language model?

A model for how an author generates a document on a
particular topic

The document itself is just one sample from the model (i.e.
ask the author to write the document again and he/she will
invariably write something similar, but not exactly the same)

A probabilistic generative model for documents
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Two Document Models

∑

t∈V
P(t|Md) = 1 (1)
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Query Likelihood Method (I)

Users often pose queries by thinking of words that are likely to
be in relevant documents

The query likelihood approach uses this idea as a principle for
ranking documents

Given a query string q, we rank documents by the likelihood
of their document models Md generating q
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Query Likelihood Method (II)

P(d |q) = P(q|d)P(d)/P(q) (2)

P(d |q) ∝ P(q|d)P(d) (3)

where if we have a uniform prior over P(d) then

P(d |q) ∝ P(q|d) (4)

Note: P(d) is uniform if we have no reason a priori to favour one document over

another. Useful priors (based on aspects such as authority, length, novelty, freshness,

popularity, click-through rate) could easily be incorporated.
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An Example (I)

P(frog said that toad likes frog |M1) =

(0.01 × 0.03 × 0.04 × 0.01 × 0.02× 0.01) (5)

P(frog said that toad likes frog |M2) =

(0.0002 × 0.03× 0.04 × 0.0001 × 0.04× 0.0002) (6)
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An Example (II)

P(q|M1) > P(q|M2) (7)
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Overview

1 Query Likelihood

2 Estimating Document Models

3 Smoothing

4 Naive Bayes Classification

Documents as samples

We now know how to rank document models in a theoretically
principled manner.

But how do we estimate the document model for each
document?

document 1

click go the shears boys click click click

Maximum likelihood estimates

click=0.5, go=0.125, the=0.125, shears=0.125, boys=0.125,
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Zero probability problem (over-fitting)

When using maximum likelihood estimates, documents that
do not contain all query terms will receive a score of zero

Maximum likelihood estimates

click=0.5, go=0.125, the=0.125, shears=0.125, boys=0.125

Sample query

P(shears boys hair |Md) = 0.0

What if the query is long?
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Make sure no non-zero probabilities

Only assign a zero probability when something cannot happen

Remember that the document model is a generative
explanation

If a person was to rewrite the document he/she may include
hair or indeed some other words

Maximum likelihood estimates

click=0.5, go=0.125, the=0.125, shears=0.125, boys=0.125

Some type of smoothing

click=0.4, go=0.1, the=0.1, shears=0.1, boys=0.1, hair=0.01,
man=0.01, the=0.001, bacon=0.0001, .....
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Overview

1 Query Likelihood

2 Estimating Document Models

3 Smoothing

4 Naive Bayes Classification

How to smooth

ML estimates

P̂(t|Md ) =
tft
|d | (8)

Maximum likelihood estimates

click=0.5, go=0.125, the=0.125, shears=0.125, boys=0.125

Linear Smoothing

P̂(t|Md ) = λ
tft
|d | + (1− λ)P̂(t|Mc) (9)

where λ is a smoothing parameter between 0 and 1, and
P̂(t|Mc) =

cft
|c| is the estimated probability of seeing t in general

(i.e. ctt is the frequency of t in the entire document collection of
|c | tokens).
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How to smooth

Linear Smoothing

P̂(t|Md) = λ
tft
|d | + (1− λ)

cft
|c | (10)

Dirichlet Smoothing has been found to be more effective in IR
where λ is |d|

α+|d| . Plugging this in yields:

P̂(t|Md) =
|d |

α+ |d |
tft
|d | +

α

α+ |d |
cft
|c | (11)

where α is interpreted as the background mass (pseudo-counts).

Bayesian Intuition

We should have more trust (belief) in ML estimates that are

derived from longer documents (see the |d|
α+|d| factor).
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Putting this all together

Rank documents according to:

P(q|d) =
∏

t∈q
(

|d |
α+ |d |

tft
|d | +

α

α+ |d |
cft
|c | ) (12)

or

log P(q|d) =
∑

t∈q
log(

|d |
α+ |d |

tft
|d | +

α

α+ |d |
cft
|c | ) (13)
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Pros and Cons

It is principled, intuitive, simple, and extendable

Aspects of tf and idf are incorporated quite naturally

It is computationally efficient for large scale corpora

More complex language models (markov-models) can be
adopted and priors can be added

But more complex models usually involve storing more
parameters (and doing more computation)

Both documents and queries are modelled as simple strings of
symbols

No formal treatment of relevance

Therefore model does not handle relevance feedback
automatically
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Extensions

Relevance-based language models (very much related to
Naive-Bayes classification) incorporate the idea of relevance
and are useful for capturing feedback

Treating the query as being drawn from a query model (useful
for long queries)

Markov-chain models for document modelling

Use different generative distributions (e.g. replacing the
multinomial with neural models)
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Overview

1 Query Likelihood

2 Estimating Document Models

3 Smoothing

4 Naive Bayes Classification

The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier.

We compute the probability of a document d being in a class
c as follows:

P(c |d) ∝ P(c)
∏

1≤k≤nd

P(tk |c)

nd is the length of the document. (number of tokens)

P(tk |c) is the conditional probability of term tk occurring in a
document of class c

P(tk |c) as a measure of how much evidence tk contributes
that c is the correct class.

P(c) is the prior probability of c .

If a document’s terms do not provide clear evidence for one
class vs. another, we choose the c with highest P(c).
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Maximum a posteriori class

Our goal in Naive Bayes classification is to find the “best”
class.

The best class is the most likely or maximum a posteriori
(MAP) class cmap:

cmap = argmax
c∈C

P̂(c |d) = argmax
c∈C

P̂(c)
∏

1≤k≤nd

P̂(tk |c)
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Taking the log

Multiplying lots of small probabilities can result in floating
point underflow.

Since log(xy) = log(x) + log(y), we can sum log probabilities
instead of multiplying probabilities.

Since log is a monotonic function, the class with the highest
score does not change.

So what we usually compute in practice is:

cmap = argmax
c∈C

[log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]
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Naive Bayes classifier

Classification rule:

cmap = argmax
c∈C

[ log P̂(c) +
∑

1≤k≤nd

log P̂(tk |c)]

Simple interpretation:

Each conditional parameter log P̂(tk |c) is a weight that
indicates how good an indicator tk is for c .
The prior log P̂(c) is a weight that indicates the relative
frequency of c .
The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the
class.
We select the class with the most evidence.
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Parameter estimation take 1: Maximum likelihood

Estimate parameters P̂(c) and P̂(tk |c) from train data: How?

Prior:

P̂(c) =
Nc

N

Nc : number of docs in class c ; N: total number of docs

Conditional probabilities:

P̂(t|c) = Tct∑
t′∈V Tct′

Tct is the number of tokens of t in training documents from
class c (includes multiple occurrences)

We’ve made a Naive Bayes independence assumption here:
P̂(tk1 |c) = P̂(tk2 |c), independent of positions k1, k2
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The problem with maximum likelihood estimates: Zeros

C=China

X1=Beijing X2=and X3=Taipei X4=join X5=WTO

P(China|d) ∝ P(China) · P(Beijing|China) · P(and|China)
· P(Taipei|China) · P(join|China) · P(WTO|China)

If WTO never occurs in class China in the train set:

P̂(WTO|China) =
TChina,WTO∑
t′∈V TChina,t′

=
0∑

t′∈V TChina,t′
= 0
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The problem with maximum likelihood estimates: Zeros

If there are no occurrences of WTO in documents in class
China, we get a zero estimate:

P̂(WTO|China) =
TChina,WTO∑
t′∈V TChina,t′

= 0

→ We will get P(China|d) = 0 for any document that
contains WTO!
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To avoid zeros: Add-one smoothing

Before:

P̂(t|c) = Tct∑
t′∈V Tct′

Now: Add one to each count to avoid zeros:

P̂(t|c) = Tct + 1∑
t′∈V (Tct′ + 1)

=
Tct + 1

(
∑

t′∈V Tct′) + B

B is the number of bins – in this case the number of different
words or the size of the vocabulary |V | = M
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Example

docID words in document in c = China?

training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

Estimate parameters of Naive Bayes classifier
Classify test document

|textc | = 8
|textc | = 3
B=6 (vocabulary)
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Example: Parameter estimates

Priors: P̂(c) = 3/4 and P̂(c) = 1/4

Conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of
textc and textc are 8 and 3, respectively, and because the constant
B is 6 as the vocabulary consists of six terms.
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Example: Classification

P̂(c |d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003

P̂(c |d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001

Thus, the classifier assigns the test document to c = China.
The reason for this classification decision is that the three
occurrences of the positive indicator Chinese in d5 outweigh the
occurrences of the two negative indicators Japan and Tokyo.
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Time complexity of Naive Bayes

mode time complexity

training Θ(|D|Lave + |C||V |)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

Lave: average length of a training doc, La: length of the test
doc, Ma: number of distinct terms in the test doc, D: training
set, V : vocabulary, C: set of classes
Θ(|D|Lave) is the time it takes to compute all counts. Note
that |D|Lave is T , the size of our collection.

Θ(|C||V |) is the time it takes to compute the conditional
probabilities from the counts.

Generally: |C||V | < |D|Lave
Test time is also linear (in the length of the test document).

Thus: Naive Bayes is linear in the size of the training set
(training) and the test document (testing). This is optimal.
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Naive Bayes is not so naive

Multinomial model violates two independence assumptions
and yet...

Naive Bayes has won some competitions (e.g., KDD-CUP 97;
prediction of most likely donors for a charity)

More robust to nonrelevant features than some more complex
learning methods

More robust to concept drift (changing of definition of class
over time) than some more complex learning methods

Better than methods like decision trees when we have many
equally important features

A good dependable baseline for text classification (but not the
best)

Optimal if independence assumptions hold (never true for
text, but true for some domains)

Very fast; low storage requirements
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Not covered

Derivation of NB formula

Evaluation of text classification
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Summary

Query-likelihood as a general principle for ranking documents
in an unsupervised manner

Treat queries as strings
Rank documents according to their models

Document language models

Know the difference between the document and the document
model
Multinomial distribution is simple but effective

Smoothing

Reasons for, and importance of, smoothing
Dirichlet (Bayesian) smoothing is very effective

Classification

Text classification is supervised learning
Naive Bayes: simple baseline text classifier
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Reading

Manning, Raghavan, Schütze: Introduction to Information
Retrieval (MRS), chapter 12: Language models for
information retrieval

MRS chapters 13.1-13.4 for text classification
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2017

1Adapted from Simone Teufel’s original slides
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Overview

1 Recap/Catchup

2 Introduction

3 Unranked evaluation

4 Ranked evaluation

5 Benchmarks

6 Other types of evaluation
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Overview

1 Recap/Catchup

2 Introduction
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Summary: Ranked retrieval

In VSM one represents documents and queries as weighted
tf-idf vectors

Compute the cosine similarity between the vectors to rank

Language models rank based on the probability of a document
model generating the query
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Evaluation

Today: how good are the returned documents?
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Measures for a search engine

How fast does it index?

e.g., number of bytes per hour

How fast does it search?

e.g., latency as a function of queries per second

What is the cost per query?

in dollars
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Measures for a search engine

All of the preceding criteria are measurable: we can quantify
speed / size / money

However, the key measure for a search engine is user
happiness.

What is user happiness?

Factors include:
Speed of response
Size of index
Uncluttered UI
We can measure

Rate of return to this search engine
Whether something was bought
Whether ads were clicked

Most important: relevance
(actually, maybe even more important: it’s free)

Note that none of these is sufficient: blindingly fast, but
useless answers won’t make a user happy.
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Most common definition of user happiness: Relevance

User happiness is equated with the relevance of search results
to the query.

But how do you measure relevance?

Standard methodology in information retrieval consists of
three elements.

A benchmark document collection
A benchmark suite of queries
An assessment of the relevance of each query-document pair
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Relevance: query vs. information need

Relevance to what? The query?

Information need i

“I am looking for information on whether drinking red wine is more
effective at reducing your risk of heart attacks than white wine.”

translated into:

Query q

[red wine white wine heart attack]

So what about the following document:

Document d ′

At the heart of his speech was an attack on the wine industry lobby for
downplaying the role of red and white wine in drunk driving.

d ′ is an excellent match for query q . . .

d ′ is not relevant to the information need i .
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Relevance: query vs. information need

User happiness can only be measured by relevance to an
information need, not by relevance to queries.

Sloppy terminology here and elsewhere in the literature: we
talk about query–document relevance judgments even though
we mean information-need–document relevance judgments.
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Precision and recall

Precision (P) is the fraction of retrieved documents that are
relevant

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

Recall (R) is the fraction of relevant documents that are
retrieved

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)
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Precision and recall

w THE TRUTH

WHAT THE Relevant Nonrelevant
SYSTEM Retrieved true positives (TP) false positives (FP)
THINKS Not retrieved false negatives (FN) true negatives (TN)

True

Positives

True Negatives

False

Negatives

False

Positives

Relevant Retrieved

P = TP/(TP + FP)

R = TP/(TP + FN)
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Precision/recall tradeoff

You can increase recall by returning more docs.

Recall is a non-decreasing function of the number of docs
retrieved.

A system that returns all docs has 100% recall!

The converse is also true (usually): It’s easy to get high
precision for very low recall.
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A combined measure: F

F allows us to trade off precision against recall.

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P + R
where β2 =

1− α

α

α ∈ [0, 1] and thus β2 ∈ [0,∞]

Most frequently used: balanced F with β = 1 or α = 0.5

This is the harmonic mean of P and R : 1
F = 1

2 (
1
P + 1

R )
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Example for precision, recall, F1

relevant not relevant

retrieved 20 40 60
not retrieved 60 1,000,000 1,000,060

80 1,000,040 1,000,120

P = 20/(20 + 40) = 1/3

R = 20/(20 + 60) = 1/4

F1 = 2 1
1
1
3

+ 1
1
4

= 2/7
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Accuracy

Why do we use complex measures like precision, recall, and F?

Why not something simple like accuracy?

Accuracy is the fraction of decisions (relevant/nonrelevant)
that are correct.

In terms of the contingency table above,
accuracy = (TP + TN)/(TP + FP + FN + TN).
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Thought experiment

Compute precision, recall and F1 for this result set:

relevant not relevant
retrieved 18 2
not retrieved 82 1,000,000,000

The snoogle search engine below always returns 0 results (“0
matching results found”), regardless of the query.

Snoogle demonstrates that accuracy is not a useful measure in
IR.
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Why accuracy is a useless measure in IR

Simple trick to maximize accuracy in IR: always say no and
return nothing

You then get 99.99% accuracy on most queries.

Searchers on the web (and in IR in general) want to find
something and have a certain tolerance for junk.

It’s better to return some bad hits as long as you return
something.

→ We use precision, recall, and F for evaluation, not accuracy.
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Recall-criticality and precision-criticality

Inverse relationship between precision and recall forces general
systems to go for compromise between them

But some tasks particularly need good precision whereas
others need good recall:

Precision-critical
task

Recall-critical task

Time matters matters less
Tolerance to cases of
overlooked informa-
tion

a lot none

Information Redun-
dancy

There may be
many equally good
answers

Information is typi-
cally found in only
one document

Examples web search legal search, patent
search
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Difficulties in using precision, recall and F

We should always average over a large set of queries.

There is no such thing as a “typical” or “representative” query.

We need relevance judgments for information-need-document
pairs – but they are expensive to produce.

For alternatives to using precision/recall and having to
produce relevance judgments – see end of this lecture.
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Moving from unranked to ranked evaluation

Precision/recall/F are measures for unranked sets.

We can easily turn set measures into measures of ranked lists.

Just compute the set measure for each “prefix”: the top 1,
top 2, top 3, top 4 etc results

This is called Precision/Recall at Rank

Rank statistics give some indication of how quickly user will
find relevant documents from ranked list

243



Precision/Recall @ Rank

Rank Doc

1 d12
2 d123
3 d4
4 d57
5 d157
6 d222
7 d24
8 d26
9 d77
10 d90

Blue documents are relevant

P@n: P@3=0.33, P@5=0.2, P@8=0.25

R@n: R@3=0.33, R@5=0.33, R@8=0.66
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A precision-recall curve

Each point corresponds to a result for the top k ranked hits
(k = 1, 2, 3, 4, . . .)

Interpolation (in red): Take maximum of all future points

Rationale for interpolation: The user is willing to look at more
stuff if both precision and recall get better.
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Another idea: Precision at Recall r

Rank S1 S2

1 X
2 X
3 X
4
5 X
6 X X
7 X
8 X
9 X
10 X

→

S1 S2

p @ r 0.2 1.0 0.5
p @ r 0.4 0.67 0.4
p @ r 0.6 0.5 0.5
p @ r 0.8 0.44 0.57
p @ r 1.0 0.5 0.63
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Averaged 11-point precision/recall graph

Compute interpolated precision at recall levels 0.0, 0.1, 0.2,
. . .

Do this for each of the queries in the evaluation benchmark

Average over queries

The curve is typical of performance levels at TREC (more
later).
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Averaged 11-point precision more formally

P11 pt =
1

11

10∑

j=0

1

N

N∑

i=1

P̃i (rj )

with P̃i (rj ) the precision at the jth recall point in the ith query (out of N)

Define 11 standard recall points rj =
j
10 : r0 = 0, r1 = 0.1 ... r10 = 1

To get P̃i (rj), we can use Pi(R = rj) directly if a new relevant
document is retrieved exacty at rj

Interpolation for cases where there is no exact measurement at rj :

P̃i(rj ) =

{
max(rj ≤ r < rj+1)Pi (R = r) if Pi (R = r) exists

P̃i(rj+1) otherwise

Note that Pi (R = 1) can always be measured.

Worked avg-11-pt prec example for supervisions at end of slides.

248

Mean Average Precision (MAP)

Also called “average precision at seen relevant documents”

Determine precision at each point when a new relevant
document gets retrieved

Use P=0 for each relevant document that was not retrieved

Determine average for each query, then average over queries

MAP =
1

N

N∑

j=1

1

Qj

Qj∑

i=1

P(doci)

with:
Qj number of relevant documents for query j
N number of queries
P(doci ) precision at ith relevant document
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Mean Average Precision: example
(MAP = 0.564+0.623

2 = 0.594)

Query 1
Rank P(doci )

1 X 1.00
2
3 X 0.67
4
5
6 X 0.50
7
8
9

10 X 0.40
11
12
13
14
15
16
17
18
19
20 X 0.25
AVG: 0.564

Query 2
Rank P(doci )

1 X 1.00
2
3 X 0.67
4
5
6
7
8
9

10
11
12
13
14
15 X 0.2
AVG: 0.623

250

ROC curve (Receiver Operating Characteristic)

x-axis: FPR (false positive rate): FP/total actual negatives;

y-axis: TPR (true positive rate): TP/total actual positives,
(also called sensitivity) ≡ recall

FPR = fall-out = 1 - specificity (TNR; true negative rate)

But we are only interested in the small area in the lower left
corner (blown up by prec-recall graph)
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Variance of measures like precision/recall

For a test collection, it is usual that a system does badly on
some information needs (e.g., P = 0.2 at R = 0.1) and really
well on others (e.g., P = 0.95 at R = 0.1).

Indeed, it is usually the case that the variance of the same
system across queries is much greater than the variance of
different systems on the same query.

That is, there are easy information needs and hard ones.
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What we need for a benchmark

A collection of documents

Documents must be representative of the documents we
expect to see in reality.

A collection of information needs

. . . which we will often incorrectly refer to as queries
Information needs must be representative of the information
needs we expect to see in reality.

Human relevance assessments

We need to hire/pay “judges” or assessors to do this.
Expensive, time-consuming
Judges must be representative of the users we expect to see in
reality.
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First standard relevance benchmark: Cranfield

Pioneering: first testbed allowing precise quantitative
measures of information retrieval effectiveness

Late 1950s, UK

1398 abstracts of aerodynamics journal articles, a set of 225
queries, exhaustive relevance judgments of all
query-document-pairs

Too small, too untypical for serious IR evaluation today
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Second-generation relevance benchmark: TREC

TREC = Text Retrieval Conference (TREC)

Organized by the U.S. National Institute of Standards and
Technology (NIST)

TREC is actually a set of several different relevance
benchmarks.

Best known: TREC Ad Hoc, used for first 8 TREC evaluations
between 1992 and 1999

1.89 million documents, mainly newswire articles, 450
information needs

No exhaustive relevance judgments – too expensive

Rather, NIST assessors’ relevance judgments are available
only for the documents that were among the top k returned
for some system which was entered in the TREC evaluation
for which the information need was developed.

255

Sample TREC Query

<num> Number: 508
<title> hair loss is a symptom of what diseases
<desc> Description:
Find diseases for which hair loss is a symptom.
<narr> Narrative:
A document is relevant if it positively connects the loss of head
hair in humans with a specific disease. In this context, “thinning
hair” and “hair loss” are synonymous. Loss of body and/or facial
hair is irrelevant, as is hair loss caused by drug therapy.
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TREC Relevance Judgements

Humans decide which document–query pairs are relevant.
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Example of more recent benchmark: ClueWeb09

1 billion web pages

25 terabytes (compressed: 5 terabyte)

Collected January/February 2009

10 languages

Unique URLs: 4,780,950,903 (325 GB uncompressed, 105 GB
compressed)

Total Outlinks: 7,944,351,835 (71 GB uncompressed, 24 GB
compressed)
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Interjudge agreement at TREC

information number of disagreements
need docs judged

51 211 6
62 400 157
67 400 68
95 400 110
127 400 106
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Impact of interjudge disagreement

Judges disagree a lot. Does that mean that the results of
information retrieval experiments are meaningless?

No.

Large impact on absolute performance numbers

Virtually no impact on ranking of systems

Supposes we want to know if algorithm A is better than
algorithm B

An information retrieval experiment will give us a reliable
answer to this question . . .

. . . even if there is a lot of disagreement between judges.
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Evaluation at large search engines

Recall is difficult to measure on the web

Search engines often use precision at top k , e.g., k = 10 . . .

. . . or use measures that reward you more for getting rank 1
right than for getting rank 10 right.

Search engines also use non-relevance-based measures.

Example 1: clickthrough on first result
Not very reliable if you look at a single clickthrough (you may
realize after clicking that the summary was misleading and the
document is nonrelevant) . . .
. . . but pretty reliable in the aggregate.
Example 2: A/B testing
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A/B testing

Purpose: Test a single innovation

Prerequisite: You have a large search engine up and running.

Have most users use old system

Divert a small proportion of traffic (e.g., 1%) to the new
system that includes the innovation

Evaluate with an “automatic” measure like clickthrough on
first result

Now we can directly see if the innovation does improve user
happiness.

Probably the evaluation methodology that large search
engines trust most
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Take-away today

Focused on evaluation for ad-hoc retrieval

Precision, Recall, F-measure
More complex measures for ranked retrieval
other issues arise when evaluating different tracks, e.g. QA,
although typically still use P/R-based measures

Evaluation for interactive tasks is more involved

Significance testing is an issue

could a good result have occurred by chance?
is the result robust across different document sets?
slowly becoming more common
underlying population distributions unknown, so apply
non-parametric tests such as the sign test
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Reading

MRS, Chapter 8
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Worked Example avg-11-pt prec: Query 1, measured data
points

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Blue for Query 1

Bold Circles measured

Query 1
Rank R P

1 X 0.2 1.00 P̃1(r2) = 1.00
2

3 X 0.4 0.67 P̃1(r4) = 0.67
4
5

6 X 0.6 0.50 P̃1(r6) = 0.50
7
8
9

10 X 0.8 0.40 P̃1(r8)= 0.40
11
12
13
14
15
16
17
18
19

20 X 1.0 0.25 P̃1(r10) = 0.25

Five rjs (r2, r4, r6, r8, r10)
coincide directly with
datapoint
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Worked Example avg-11-pt prec: Query 1, interpolation

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Bold circles measured

thin circles interpolated

Query 1 P̃1(r0) = 1.00

Rank R P P̃1(r1) = 1.00

1 X .20 1.00 P̃1(r2) = 1.00

2 P̃1(r3) = .67

3 X .40 .67 P̃1(r4) = .67
4

5 P̃1(r5) = .50

6 X .60 .50 P̃1(r6) = .50
7
8

9 P̃1(r7) = .40

10 X .80 .40 P̃1(r8)= .40
11
12
13

14 P̃1(r9) = .25
15
16
17
18
19

20 X 1.00 .25 P̃1(r10) = .25

The six other rjs (r0, r1, r3, r5,
r7, r9) are interpolated.
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Worked Example avg-11-pt prec: Query 2, measured data
points

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Blue: Query 1; Red: Query 2

Bold circles measured; thin
circles interpol.

Query 2
Rank Relev. R P

1 X .33 1.00
2
3 X .67 .67
4
5
6
7
8
9

10
11
12
13
14

15 X 1.0 .2 P̃2(r10) = .20

Only r10 coincides with a
measured data point

267

Worked Example avg-11-pt prec: Query 2, interpolation

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Blue: Query 1; Red:
Query 2

Bold circles measured;
thin circles interpol.

P̃2(r0) = 1.00

P̃2(r1) = 1.00

P̃2(r2) = 1.00

Query 2 P̃2(r3) = 1.00
Rank Relev. R P

1 X .33 1.00 P̃2(r4) = .67

2 P̃2(r5) = .67

3 X .67 .67 P̃2(r6) = .67
4
5
6
7
8
9

10
11

12 P̃2(r7) = .20

13 P̃2(r8) = .20

14 P̃2(r9) = .20

15 X 1.0 .2 P̃2(r10) = .20

10 of the rj s are interpolated
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Worked Example avg-11-pt prec: averaging

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Now average at each pj

over N (number of
queries)

→ 11 averages
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Worked Example avg-11-pt prec: area/result

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

0.8 0.9 1

End result:

11 point average precision

Approximation of area
under prec. recall curve
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Motivation

The same word can have different meanings (polysemy)

Two different words can have the same meaning (synonymy)

Vocabulary of searcher may not match that of the documents

Consider the query = {plane fuel}
While this is relatively unambiguous (wrt the meaning of each
word in context), exact matching will miss documents
containing aircraft, airplane, or jet

Relevance feedback and query expansion aim to overcome the
problem of synonymy
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Example
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Improving Recall

Local analysis: query-time analysis on a portion of documents
returned for a user query

Main local method: relevance feedback

Global analysis: perform a global analysis once (e.g., of
collection) to produce thesaurus

Use thesaurus for query expansion
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Overview

1 Introduction

2 Relevance Feedback
Rocchio Algorithm
Relevance-Based Language Models

3 Query Expansion

The Basics

The user issues a (short, simple) query.

The search engine returns a set of documents.

User marks some docs as relevant (possibly some as
non-relevant).

Search engine computes a new representation of the
information need.

Hope: better than the initial query.

Search engine runs new query and returns new results.

New results have (hopefully) better recall (and possibly also
better precision).

A limited form of RF is often expressed as “more like this” or ”find
similar”.
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Example
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Example
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Rocchio Basics

Developed in the late 60s or early 70s.

It was developed using the VSM as its basis.

Therefore, we represent documents as points in a
high-dimensional term space.

Uses centroids to calculate the center of a set of documents.
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Rocchio Diagram

Rocchio aims to find the optimal query ~qopt that maximises:

~qopt = arg max
~q

[sim(~q,Cr )− sim(~q,Cnr )] (1)

where sim(~q,Cr ) is the similarity between a query q and the set of
relevant documents Cr .

Using cosine similarity the optimal query
becomes:

~qopt =
1

|Cr |
∑

~dj∈Cr

~dj −
1

|Cnr |
∑

~dj∈Cnr

~dj (2)

which is the difference between the centroids of the relevant and
non-relevant document vectors.
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Rocchio Diagram

Rocchio aims to find the optimal query ~qopt that maximises:

~qopt = arg max
~q

[sim(~q,Cr )− sim(~q,Cnr )] (1)

where sim(~q,Cr ) is the similarity between a query q and the set of
relevant documents Cr . Using cosine similarity the optimal query
becomes:

~qopt =
1

|Cr |
∑

~dj∈Cr

~dj −
1

|Cnr |
∑

~dj∈Cnr

~dj (2)

which is the difference between the centroids of the relevant and
non-relevant document vectors.
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Rocchio Diagram
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Rocchio in practice

However, we usually do not know the full relevant and
non-relevant sets.

For example, a user might only label a few documents as
relevant.

Therefore, in practice Rocchio is often parameterised as follows:

~qm = α~q0 + β
1

|Cr |
∑

~dj∈Cr

~dj − γ
1

|Cnr |
∑

~dj∈Cnr

~dj (3)

where α, β, and γ are weights that are attached to each
component.
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Rocchio Summary

Rocchio has been shown useful for increasing recall

Contains aspects of positive and negative feedback

Positive feedback is much more valuable (i.e. indications of
what is relevant and γ < β

Reasonable values of the parameters are α = 1.0, β = 0.75,
γ = 0.15
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Relevance-Based Language Models I

The query-likelihood language model (earlier lecture) had no
concept of relevance (if you remember)

Relevance-Based language models take a probabilistic
language modelling approach to modelling relevance

The main assumption is that a document is generated from
either one of two classes (i.e. relevant or non-relevant)

Documents are then ranked according to their probability of
being drawn from the relevance class

P(R|D) =
P(D|R)P(R)

P(D|R)P(R) + P(D|NR)P(NR)
(4)

which is rank equivalent to ranking by log-odds

= log
P(D|R)

P(D|NR)
(5)
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Relevance-Based Language Models II

Lavrenko (2001) introduced the idea of relevance-based
language models

Outlined a number of different generative models

One of the best performing models is one called RM3 (useful
for both relevance and pseudo-relevance feedback)
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Relevance-Based Language Models III

Given a set of known relevant documents R one can estimate
a relevance language model (e.g. multinomial θR)

In practice, this can be smoothed with the original query
model and a background model (not shown)

One could estimate the relevance model as:

(1− π)θR + πθq (6)

where π controls how much of the original query one wishes to
retain.
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Problems?

Relevance feedback is expensive

Relevance feedback creates long modified queries

Long queries are expensive to process

Users are reluctant to provide explicit feedback

Its often hard to understand why a particular document was
retrieved after applying relevance feedback
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When does RF work?

When users are willing to give feedback!

When the user knows the terms in the collection well enough
for an initial query.

When relevant documents contain similar terms (similar to
the cluster hypothesis)

The cluster hypothesis states that if there is a document
from a cluster that is relevant to a search request, then it
is likely that other documents from the same cluster are
also relevant. - Jardine and van Rijsbergen
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Relevance Feedback - Evaluation

How to evaluate if RF works?

Have two collections, with relevance judgements for the same
information needs (queries)

User studies: time taken to find # of relevant documents
(with and without feedback)
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Relevance Feedback - Evaluation

How to evaluate if RF works?

Have two collections, with relevance judgements for the same
information needs (queries)

User studies: time taken to find # of relevant documents
(with and without feedback)
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Other types of relevance feedback

Implicit relevance feedback

Pseudo relevance feedback - when does it work?
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Overview

1 Introduction

2 Relevance Feedback
Rocchio Algorithm
Relevance-Based Language Models

3 Query Expansion

Query Expansion Motivation
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Query Expansion Motivation
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Query Expansion Introduction

Query expansion is another method for increasing recall

We use “global query expansion” to refer to “global methods
for query reformulation”

In global query expansion, the query is modified based on
some global resource, i.e. a resource that is not
query-dependent

Often the problem aims to find (near-)synonyms

Distributional Semantics (word embeddings)

What’s the different between “local” and “global” methods?
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Query Expansion Methods

Use of a controlled vocabulary that is maintained by human
editors (e.g. sets of keywords for publications - Medline)

A manual thesaurus (e.g. wordnet)

An automatically derived thesaurus

Query reformulations based on query log mining (i.e. what the
large search engines do)
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Automatic thesaurus generation I

Let A be a term-document matrix

Where each cell Atd is a weighted count of term t in
document (or window) d

Row normalise the matrix (e.g. L2 normalisation)

Then C = AAT is a term-term similarity matrix

The similarity between any two terms u and v is in Cuv

Given any particular term q, the most similar terms can be
easily retrieved
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Automatic thesaurus generation II

Other approaches involve distributional semantics

Where words with similar meanings appear in similar contexts

Word embeddings - word2vec, glove, etc

Can be useful but global expansion still suffers from problems
of polysemy

A naive approach to word-level expansion might lead to
{apple computer} → {apple fruit computer}
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Summary

QE is transparent in that it allows the user to see (select)
expansion terms

Local approaches (PRF) to expanding queries tend to be more
effective

E.g. {apple computer} → {apple computer jobs iphone ipad
macintosh}
Local approaches tend to automatically disambiguate the
individual query terms. Why?

Query log mining approaches have also been shown to be
useful
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Reading

Manning, Raghavan, Schütze: Introduction to Information
Retrieval (MRS), chapter 9: Relevance feedback and query
expansion, chapter 16.1: Clustering in information retrieval

Victor Lavrenko and W. Bruce Croft: Relevance-Based
Language Models
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Lecture 8: Linkage algorithms and web search
Information Retrieval

Computer Science Tripos Part II

Ronan Cummins1

Natural Language and Information Processing (NLIP) Group

ronan.cummins@cl.cam.ac.uk

2017

1Adapted from Simone Teufel’s original slides
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Upcoming today

Anchor text: What exactly are links on the web and why are
they important for IR?

PageRank: the original algorithm that was used for link-based
ranking on the web

Hubs & Authorities: an alternative link-based ranking
algorithm
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Overview

1 Anchor text

2 PageRank

3 Wrap up

The web as a directed graph

page d1 anchor text page d2
hyperlink

Assumption 1: A hyperlink is a quality signal.

The hyperlink d1 → d2 indicates that d1’s author deems d2
high-quality and relevant.

Assumption 2: The anchor text describes the content of d2.

We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”
Anchor text: “You can find cheap cars here”
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[text of d2] only vs. [text of d2] + [anchor text → d2]

Searching on [text of d2] + [anchor text → d2] is often more
effective than searching on [text of d2] only.

Example: Query IBM

Matches IBM’s copyright page
Matches many spam pages
Matches IBM wikipedia article
May not match IBM home page!
. . . if IBM home page is mostly graphics

Searching on [anchor text → d2] is better for the query IBM.

In this representation, the page with the most occurrences of
IBM is www.ibm.com.
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Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

wwww.ibm.com

Thus: Anchor text is often a better description of a page’s
content than the page itself.

Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)
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Google bombs

A Google bomb is a search with “bad” results due to
maliciously manipulated anchor text.

Google introduced a new weighting function in 2007 that fixed
many Google bombs.

Still some remnants: [dangerous cult] on Google, Bing, Yahoo

Coordinated link creation by those who dislike the Church of
Scientology

Defused Google bombs: [dumb motherf....], [who is a failure?],
[evil empire]

304

A historic google bomb
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Origins of PageRank: Citation Analysis

We can use the same formal representation (as DAG) for

citations in the scientific literature
hyperlinks on the web

Appropriately weighted citation frequency is an excellent
measure of quality . . .

. . . both for web pages and for scientific publications.

Next: PageRank algorithm for computing weighted citation
frequency on the web
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Overview

1 Anchor text

2 PageRank

3 Wrap up

Model behind PageRank: Random walk

Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.

This long-term visit rate is the page’s PageRank.

PageRank = long-term visit rate = steady state probability
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Formalisation of random walk: Markov chains

A Markov chain consists of N states, plus an N ×N transition
probability matrix P .

state = page

At each step, we are on exactly one of the pages.

For 1 ≤ i , j ≤ N, the matrix entry Pij tells us the probability
of j being the next page, given we are currently on page i .

Clearly, for all i,
∑N

j=1 Pij = 1

di dj
Pij
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Example web graph
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Link matrix for example

d0 d1 d2 d3 d4 d5 d6
d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 1 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 1 1 0 1
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Transition probability matrix P for example

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Long-term visit rate

Recall: PageRank = long-term visit rate

Long-term visit rate of page d is the probability that a web
surfer is at page d at a given point in time.

Next: what properties must hold of the web graph for the
long-term visit rate to be well defined?

The web graph must correspond to an ergodic Markov chain.

First a special case: The web graph must not contain dead
ends.
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Dead ends

??

The web is full of dead ends.

Random walk can get stuck in dead ends.

If there are dead ends, long-term visit rates are not
well-defined (or non-sensical).
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Teleporting – to get us out of dead ends

At a dead end, jump to a random web page with prob. 1/N.

At a non-dead end, with probability 10%, jump to a random
web page (to each with a probability of 0.1/N).

With remaining probability (90%), follow a random hyperlink
on the page.

For example, if the page has 4 outgoing links: randomly choose
one with probability (1-0.10)/4=0.225

10% is a parameter, the teleportation rate.

Note: “jumping” from dead end is independent of
teleportation rate.
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Teleporting – formula

P ′ = (1− α) · P + α · T (1)

where T is the teleportation matrix and P is a stochastic matrix

what is T?

An N × N matrix full of 1/N

α is the probability of teleporting
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Result of teleporting

With teleporting, we cannot get stuck in a dead end.

But even without dead ends, a graph may not have
well-defined long-term visit rates.

More generally, we require that the Markov chain be ergodic.
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Ergodic Markov chains

A Markov chain is ergodic iff it is irreducible and aperiodic.

Irreducibility. Roughly: there is a path from any page to any
other page.

Aperiodicity. Roughly: The pages cannot be partitioned such
that the random walker visits the partitions sequentially.

A non-ergodic Markov chain:

1.0

1.0
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Ergodic Markov chains

Theorem: For any ergodic Markov chain, there is a unique
long-term visit rate for each state.

This is the steady-state probability distribution.

Over a long time period, we visit each state in proportion to
this rate.

It doesn’t matter where we start.

Teleporting makes the web graph ergodic.

⇒ Web-graph+teleporting has a steady-state probability
distribution.

⇒ Each page in the web-graph+teleporting has a PageRank.

318

Where we are

We now know what to do to make sure we have a well-defined
PageRank for each page.

Next: how to compute PageRank
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Formalization of “visit”: Probability vector

A probability (row) vector ~x = (x1, . . . , xN) tells us where the
random walk is at any point.

Example:
( 0 0 0 . . . 1 . . . 0 0 0 )

1 2 3 . . . i . . . N-2 N-1 N

More generally: the random walk is on page i with probability
xi .

Example:
( 0.05 0.01 0.0 . . . 0.2 . . . 0.01 0.05 0.03 )

1 2 3 . . . i . . . N-2 N-1 N∑
xi = 1
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Change in probability vector

If the probability vector is ~x = (x1, . . . , xN) at this step, what
is it at the next step?

Recall that row i of the transition probability matrix P tells us
where we go next from state i .

So from ~x , our next state is distributed as ~xP .
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Steady state in vector notation

The steady state in vector notation is simply a vector
~π = (π1, π2, . . . , πN) of probabilities.

(We use ~π to distinguish it from the notation for the
probability vector ~x .)

πi is the long-term visit rate (or PageRank) of page i .

So we can think of PageRank as a very long vector – one
entry per page.
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Steady-state distribution: Example

What is the PageRank / steady state in this example?

d1 d2

0.75

0.25

0.25

0.
75
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Steady-state distribution: Example

x1 x2
Pt(d1) Pt(d2)

P11 = 0.25 P12 = 0.75
P21 = 0.25 P22 = 0.75

t0 0.25 0.75
t1 0.25 0.75 (convergence)

Pt(d1) = Pt−1(d1) · P11 + Pt−1(d2) · P21

0.25 · 0.25 + 0.75 · 0.25 = 0.25
Pt(d2) = Pt−1(d1) · P12 + Pt−1(d2) · P22

0.75 · 0.25 + 0.75 · 0.75 = 0.75

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)
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How do we compute the steady state vector?

In other words: how do we compute PageRank?

Recall: ~π = (π1, π2, . . . , πN) is the PageRank vector, the
vector of steady-state probabilities . . .

. . . and if the distribution in this step is ~x , then the
distribution in the next step is ~xP .

But ~π is the steady state!

So: ~π = ~πP

Solving this matrix equation gives us ~π.

~π is the principal left eigenvector for P . . .

. . . that is, ~π is the left eigenvector with the largest eigenvalue.

All transition probability matrices have largest eigenvalue 1.
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One way of computing the PageRank ~π

Start with any distribution ~x , e.g., uniform distribution

After one step, we’re at ~xP .

After two steps, we’re at ~xP2.

After k steps, we’re at ~xPk .

Algorithm: multiply ~x by increasing powers of P until
convergence.

This is called the power method.

Recall: regardless of where we start, we eventually reach the
steady state ~π.

Thus: we will eventually (in asymptotia) reach the steady
state.
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Computing PageRank: Power method

x1 x2
Pt(d1) Pt(d2)

P11 = 0.1 P12 = 0.9
P21 = 0.3 P22 = 0.7

t0 0 1 0.3 0.7 = ~xP
t1 0.3 0.7 0.24 0.76 = ~xP2

t2 0.24 0.76 0.252 0.748 = ~xP3

t3 0.252 0.748 0.2496 0.7504 = ~xP4

. . . . . .
t∞ 0.25 0.75 0.25 0.75 = ~xP∞

PageRank vector = ~π = (π1, π2) = (0.25, 0.75)

Pt(d1) = Pt−1(d1) ∗ P11 + Pt−1(d2) ∗ P21

Pt(d2) = Pt−1(d1) ∗ P12 + Pt−1(d2) ∗ P22
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PageRank summary

Preprocessing

Given graph of links, build initial matrix P
Ensure all rows sum to 1.0 to update P (for nodes with no
outgoing links use 1/N for each element)
Apply teleportation with parameter α
From modified matrix, compute ~π
~πi is the PageRank of page i .

Query processing

Retrieve pages satisfying the query
Rank them by their PageRank (or at least a combination of
PageRank and the relevance score)
Return reranked list to the user
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PageRank issues

Real surfers are not random surfers.

Examples of non-random surfing: back button, short vs. long
paths, bookmarks, directories – and search!
→ Markov model is not a good model of surfing.
But it’s good enough as a model for our purposes.

Simple PageRank ranking (as described on previous slide)
produces bad results for many pages.

Consider the query [video service]
The Yahoo home page (i) has a very high PageRank and (ii)
contains both video and service.
If we rank all Boolean hits according to PageRank, then the
Yahoo home page would be top-ranked.
Clearly not desirable

In practice: rank according to weighted combination of raw
text match, anchor text match, PageRank & other factors
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Example web graph
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Transition (probability) matrix

d0 d1 d2 d3 d4 d5 d6
d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00
d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00
d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00
d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00
d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00
d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50
d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33
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Transition matrix with teleporting (α = 0.14)

d0 d1 d2 d3 d4 d5 d6
d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02
d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02
d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02
d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02
d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88
d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45
d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31
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Power method vectors ~xPk

~x ~xP1 ~xP2 ~xP3 ~xP4 ~xP5 ~xP6 ~xP7 ~xP8 ~xP9 ~xP10 ~xP11 ~xP12 ~xP13

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11
d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25
d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31
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Example web graph

PageRank 334

How important is PageRank?

Frequent claim: PageRank is the most important component of
web ranking. The reality:

There are several components that are at least as important:
e.g., anchor text, phrases, proximity, tiered indexes . . .

Rumour has it that PageRank in its original form (as
presented here) now has a negligible impact on ranking

However, variants of a page’s PageRank are still an essential
part of ranking.

Google’s official description of PageRank:

“PageRank reflects our view of the importance of web pages by considering

more than 500 million variables and 2 billion terms. Pages that we believe are

important pages receive a higher PageRank and are more likely to appear at

the top of the search results.”

Adressing link spam is difficult and crucial.
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Overview

1 Anchor text

2 PageRank

3 Wrap up

Link Analysis

PageRank is topic independent

We also need to incorporate topicality (i.e. relevance)

There is a version called Topic Sensitive PageRank

And also Hyperlink-Induced Topic Search (HITS)
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Take Home Messages

Anchor text is a useful descriptor of the page it refers to

Links can be used as another useful retrieval signal - one
indicating authority

PageRank can be viewed as the stationary distribution of a
Markov chain

Power iteration is one simple method of calculating the
stationary distribution

Topic sensitive variants exist
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Reading

MRS Chapter 21, excluding 21.3.3.
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