
Hoare Logic and Model Checking

Kasper Svendsen

University of Cambridge

CST Part II – 2016/17

Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft

Introduction

In the previous lecture we saw the informal concepts that

Separation Logic is based on.

This lecture will

• introduce a formal proof system for Separation logic

• present examples to illustrate the power of Separation logic

The lecture will be focused on partial correctness.

1

A proof system for Separation logic

Separation Logic

Separation logic inherits all the partial correctness rules from Hoare

logic that you have already seen and extends them with

• the frame rule

• rules for each new heap-primitive

Some of the derived rules for plain Hoare logic no longer hold for

separation logic (e.g., the rule of constancy).

2

The frame rule

The frame rule expresses that Separation logic triples always

preserve any resources disjoint from the precondition.

` {P} C {Q} mod(C) \ FV (R) = ;
` {P ⇤ R} C {Q ⇤ R}

The second hypothesis ensures that the frame R does not refer to

any program variables modified by the command C .

3

The heap assignment rule

Separation logic triples must assert ownership of any heap-cells

modified by the command. The heap assignment axiom thus

asserts ownership of the heap location being assigned.

` {E
1

7! } [E
1

] := E
2

{E
1

7! E
2

}

Here we use E
1

7! as shorthand for 9v .E
1

7! v .

4

The heap dereference rule

Separation logic triples must ensure the command does not fault.

The heap dereference rule thus asserts ownership of the given heap

location to ensure the location is allocated in the heap.

` {E 7! v ^ X = x} X := [E] {E [x/X] 7! v ^ X = v}

Here the auxiliary variable x is used to refer to the initial value of

X in the postcondition.

5

Separation logic

The assignment rule introduces a new points-to assertion for each

newly allocated location:

` {X = x} X := cons(E
1

, ...,E
n

) {X 7! E
1

[x/X], ...,E
n

[x/X]}

The deallocation rule destroys the points-to assertion for the

location to be deallocated:

` {E 7! } dispose(E) {emp}

6

Swap example

To illustrate these rules, consider the following code-snippet:

C
swap

⌘ A := [X];B := [Y]; [X] := B ; [Y] := A;

We want to show that it swaps the values in the locations

referenced by X and Y , when X and Y do not alias:

{X 7! v
1

⇤ Y 7! v
2

} C
swap

{X 7! v
2

⇤ Y 7! v
1

}

7

Swap example

Below is a proof-outline of the main steps:

{X 7! v
1

⇤ Y 7! v
2

}
A := [X];

{X 7! v
1

⇤ Y 7! v
2

^ A = v
1

}
B := [Y];

{X 7! v
1

⇤ Y 7! v
2

^ A = v
1

^ B = v
2

}
[X] := B ;

{X 7! B ⇤ Y 7! v
2

^ A = v
1

^ B = v
2

}
[Y] := A;

{X 7! B ⇤ Y 7! A ^ A = v
1

^ B = v
2

}
{X 7! v

2

⇤ Y 7! v
1

}

8

Swap example

To prove this first triple, we use the heap-dereference rule to derive:

{X 7! v
1

^ A = a} A := [X] {X [a/A] 7! v
1

^ A = v
1

}

Then we existentially quantify the auxiliary variable a:

{9a.X 7! v
1

^ A = a} A := [X] {9a.X [a/A] 7! v
1

^ A = v
1

}

Applying the rule-of-consequence we obtain:

{X 7! v
1

} A := [X] {X 7! v
1

^ A = v
1

}

Since A := [X] does not modify Y we can frame on Y 7! v
2

:

{X 7! v
1

⇤ Y 7! v
2

} A := [X] {(X 7! v
1

^ A = v
1

) ⇤ Y 7! v
2

}

Lastly, by the rule-of-consequence we obtain:

{X 7! v
1

⇤ Y 7! v
2

} A := [X] {X 7! v
1

⇤ Y 7! v
2

^ A = v
1

}

9

Swap example

For the last application of consequence, we need to show that:

` (X 7! v
1

^ A = v
1

) ⇤ Y 7! v
2

) X 7! v
1

⇤ Y 7! v
2

^ A = v
1

To prove this we need proof rules for the new separation logic

primitives.

10

Separation logic assertions

Separation conjunction is commutative and associative operator

with emp as a neutral element:

` P ⇤ Q , Q ⇤ P
` (P ⇤ Q) ⇤ R , P ⇤ (Q ⇤ R)
` P ⇤ emp , P

Separation conjunction is monotone with respect to implication:

` P
1

) Q
1

` P
2

) Q
2

` P
1

⇤ P
2

) Q
1

⇤ Q
2

11

Separation logic assertions

Separating conjunction distributes over disjunction and

semi-distributes over conjunction:

` (P _ Q) ⇤ R , (P ⇤ R) _ (Q ⇤ R)
` (P ^ Q) ⇤ R) (P ⇤ R) ^ (Q ⇤ R)

Taking R ⌘ X 7! 1_Y 7! 1, P ⌘ X 7! 1 and Q ⌘ X 7! 1 yields a

counterexample to distributivity over conjunction in the other

direction:

6|= (P ⇤ R) ^ (Q ⇤ R)) (P ^ Q) ⇤ R

12

Separation logic assertions

An assertion is pure if it does not contain emp, 7! or ,!.

Separation conjunction and conjunction collapses for pure

assertions:

` P ^ Q) P ⇤ Q when P or Q is pure

` P ⇤ Q) P ^ Q when P and Q are pure

` (P ^ Q) ⇤ R , P ^ (Q ⇤ R) when P is pure

13

Verifying abstract data types

Verifying ADTs

Separation Logic is very well-suited for specifying and reasoning

about data structures typically found in standard libraries such as

lists, queues, stacks, etc.

To illustrate we will specify and verify a library for working with

linked lists in Separation Logic.

14

A linked list library

First we need to define a memory representation for our linked lists.

We will use a singly-linked list, starting from some designated head

variable that refers to the first element of the list and terminating

with a null-pointer.

For instance, we will represent a list containing the values 12, 99

and 37 as follows

12 99 37head

15

Representation predicates

To formalise the memory representation, Separation Logic uses

representation predicates that relate an abstract description of

the state of the data structure with its memory representations.

For our example, we want a predicate list(head ,↵) that relates a

mathematical list, ↵, with its memory representation.

To define such a predicate formally, we need to extend the

assertion logic to reason about mathematical lists, support for

predicates and inductive definitions. We will elide these details.

16

Representation predicates

We are going to define the list(head ,↵) predicate by induction on

the list ↵. We need to consider two cases: the empty list and an

element x appended to a list �.

An empty list is represented as a null-pointer

list(head , [])
def

= head = null

The list x :: � is represented by a reference to two consecutive

heap-cells that contain the value x and a representation of the rest

of the list, respectively

list(head , x :: �)
def

= 9y . head 7! x ⇤ (head + 1) 7! y ⇤ list(y ,�)

17

Representation predicates

The representation predicate allows us to specify the behaviour of

the list operations by their e↵ect on the abstract state of the list

Imagine C
push

is an implementation of an push operation that

pushes the value stored in variable X to the front of the list

referenced by variable HEAD and stores a reference to the new list

in HEAD

We can specify this operation in terms of its behaviour on the

abstract state of the list as follows

{list(HEAD,↵) ^ X = x} C
add

{list(HEAD, x :: ↵)}

18

Representation predicates

We can specify all the operations of the library in a similar manner

{emp} C
new

{list(HEAD, [])}

{list(HEAD,↵) ^ X = x} C
push

{list(HEAD, x :: ↵)}

{list(HEAD, x :: ↵)} C
pop

{list(HEAD,↵) ^ RET = x}
{list(HEAD, [])} C

pop

{list(HEAD, []) ^ RET = null}

{list(HEAD,↵)} C
delete

{emp}

19

Implementation of push

The push operation stores the HEAD pointer pointer into a

temporary variable Y before allocating two consecutive heap-cells

for the new list element and updating HEAP :

C
push

⌘ Y := HEAD;HEAD := cons(X ,Y)

We wish to prove it satisfies the following specification:

{list(HEAD,↵) ^ X = x} C
push

{list(HEAD, x :: ↵)}

20

Proof outline for push

Here is a proof outline for the push operation.

{list(HEAD,↵) ^ X = x}
Y := HEAD

{list(Y ,↵) ^ X = x}
HEAD := cons(X ,Y)

{list(Y ,↵) ⇤ HEAD 7! X ,Y ^ X = x}
{list(HEAD,X :: ↵) ^ X = x}
{list(HEAD, x :: ↵)}

For the cons step we frame o↵ list(Y ,↵) ^ X = x .

21

Implementation of delete

The delete operation iterates down over the list, deallocating

nodes until it reaches the end of the list.

C
delete

⌘ X := HEAD;

while X 6= NULL do

Y := [X + 1];dispose(X);dispose(X + 1);X := Y

To prove that delete satisfies its intended specification,

{list(HEAD,↵)} C
delete

{emp}

we need a suitable invariant: that we own the rest of the list.

22

Proof outline for delete

{list(HEAD,↵)}
X := HEAD;

{list(X ,↵)}
{9↵. list(X ,↵)}
while X 6= NULL do

{9↵. list(X ,↵) ^ X 6= NULL}
(Y := [X + 1];dispose(X);dispose(X + 1);X := Y)

{9↵. list(X ,↵)}
{list(X ,↵) ^ ¬(X 6= NULL)}
{emp}

23

Proof outline for loop-body of delete

To verify the loop-body we need a lemma to unfold the list

representation predicate in the non-null case:

{9↵. list(X ,↵) ^ X 6= NULL}
{9v , t,↵.X 7! v , t ⇤ list(t,↵)}
Y := [X + 1];

{9v ,↵.X 7! v ,Y ⇤ list(Y ,↵)}
dispose(X);dispose(X + 1);

{9↵. list(Y ,↵)}
X := Y

{9↵. list(X ,↵)}

24

Concurrency (not examinable)

Concurrency

Imagine extending our WHILE
p

language with a parallel

composition construct, C
1

||C
2

, which executes the two statements

C
1

and C
2

in parallel.

The statement C
1

||C
2

reduces by interleaving execution steps of C
1

and C
2

, until both have terminated, before continuing program

execution.

For instance, (X := 0||X := 1); print(X) will randomly print 0 or 1.

25

Concurrency

Adding parallelism complicates reasoning by introducing the

possibility of concurrent interference on shared state.

While separation logic does extend to reason about general

concurrent interference, we will focus on two common idioms of

concurrent programming with limited forms of interference:

• disjoint concurrency

• well-synchronised shared state

26

Disjoint concurrency

Disjoint concurrency refers to multiple commands potentially

executing in parallel but all working on disjoint state.

Parallel implementations of divide-and-conquer algorithms can

often be expressed using disjoint concurrency.

For instance, in a parallel merge sort the recursive calls to merge

sort operate on disjoint parts of the underlying array.

27

Disjoint concurrency

The proof rule for disjoint concurrency requires us to split our

resources into two disjoint parts, P
1

and P
2

, and give each parallel

command ownership of one of them.

` {P
1

} C
1

{Q
1

} ` {P
2

} C
2

{Q
2

}
mod(C

1

) \ FV (P
2

,Q
2

) = mod(C
2

) \ FV (P
1

,Q
1

) = ;
` {P

1

⇤ P
2

} C
1

||C
2

{Q
1

⇤ Q
2

}

The third hypothesis ensures C
1

does not modify any program

variables used in the specification of C
2

and vice versa.

28

Disjoint concurrency example

Here is a simple example to illustrate two parallel increment

operations that operate on disjoint parts of the heap:

{X 7! 3 ⇤ Y 7! 4}
{X 7! 3} {Y 7! 4}
A := [X]; [X] := A+ 1 || B := [Y]; [Y] := B + 1

{X 7! 4} {Y 7! 5}

{X 7! 4 ⇤ Y 7! 5}

29

Well-synchronised shared state

Well-synchronised shared state refers to the common concurrency

idiom of using locks to ensure exclusive access to state shared

between multiple threads.

To reason about locking, Concurrent Separation Logic extends

separation logic with lock invariants that describe the resources

protected by locks.

When acquiring a lock, the acquiring thread takes ownership of the

lock invariant and when releasing the lock, must give back

ownership of the lock invariant.

30

Well-synchronised shared state

To illustrate, consider a simplified setting with a single global lock.

We write I ` {P} C {Q} to indicate that we can derive the given

triple assuming the lock invariant is I .

I ` {emp} acquire {I ⇤ locked}

I ` {I ⇤ locked} release {emp}

where I is not allowed to refer to any program variables.

The locked resource ensures the lock can only be released by the

thread that currently has the lock.

31

Well-synchronised shared state example

To illustrate, consider a program with two threads that both access

a number stored in shared heap cell at location x in parallel.

Thread A increments the number by 2 and thread B multiplies the

number by 10. The threads use a lock to ensure their accesses are

well-synchronised.

Assuming x initially contains an even number, we wish to prove

that x is still even after the two parallel threads have terminated.

32

Well-synchronised shared state example

First, we need to define a lock invariant.

The lock invariant needs to own the shared heap cell at location x

and should express that it always contains an even number:

I
def

= 9v . x 7! v ⇤ even(v)

33

...

Assuming the lock invariant I is 9v . x 7! v ⇤ even(v), we have:

{X = x ^ emp}
{X = x ^ emp} {X = x ^ emp}
acquire; acquire;

{X = x ^ I ⇤ locked} {X = x ^ I ⇤ locked}
A := [X]; [X] := A+ 2; || B := [X]; [X] := B ⇤ 10;
{X = x ^ I ⇤ locked} {X = x ^ I ⇤ locked}
release; release;

{X = x ^ emp} {X = x ^ emp}

{X = x ^ emp}

34

Summary

Abstract data types are specified using representation predicates

which relate an abstract model of the state of the data structure

with a concrete memory representation.

Separation logic supports reasoning about well-synchronised

concurrent programs, using lock invariants to guard access to

shared state.

Suggested reading:

• Peter O’Hearn. Resources, Concurrency and Local Reasoning.

35

