
Hoare Logic and Model Checking

Kasper Svendsen

University of Cambridge

CST Part II – 2016/17

Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft

Mechanised Program Verification

It is clear that proofs can be long and boring even if programs

being verified are quite simple.

In this lecture we will sketch the architecture of a simple automated

program verifier and justify it using the rules of Hoare logic.

Our goal is automate the routine bits of proofs in Hoare logic.

1

Mechanisation

Unfortunately, logicians have shown that it is impossible in

principle to design a decision procedure to decide automatically the

truth or falsehood of an arbitrary mathematical statement.

This does not mean that one cannot have procedures that will

prove many useful theorems:

• the non-existence of a general decision procedure merely

shows that one cannot hope to prove everything automatically

• in practice, it is quite possible to build a system that will

mechanise the boring and routine aspects of verification

2

Mechanisation

The standard approach to this will be described in the course

• ideas very old (JC King’s 1969 CMU PhD, Stanford verifier in

1970s)

• used by program verifiers (e.g. Gypsy and SPARK verifier)

• provides a verification front end to di↵erent provers (see Why

system)

3



Architecture of a verifier

Specification to be proved

Annotated specification

Set of logic statements (VCs)

Simplified set of VCs

End of proof

human expert

VC generator

theorem prover

human expert

4

Architecture of a verifier

Specification to be proved

Annotated specification

Set of logic statements (VCs)

Simplified set of VCs

End of proof

human expert

VC generator

theorem prover

human expert

4

VC generator

The VC generator takes as input an annotated program along with

the desired specification.

From these inputs it generates a set of verification conditions

(VCs) expressed in first-order logic.

These VCs have the property that if they hold then the original

program satisfies the desired specification.

Since the VCs are expressed in first-order logic we can use standard

FOL theorem provers to discharge VCs.

5

Using a verifier

The three steps in proving {P} C {Q} with a verifier

1. The program C is annotated by inserting assertions

expressing conditions that are meant to hold whenever

execution reaches the given annotation

2. A set of logical statements called verification conditions is

then generated from the annotated program and desired

specification

3. A theorem prover attempts to prove as many of the

verification conditions it can, leaving the rest to the user

6



Using a verifier

Verifiers are not a silver bullet!

• inserting appropriate annotations is tricky and requires a good

understanding of how the program works

• the verification conditions left over from step 3 may bear little

resembles to annotations and specification written by the user

7

Example

Before diving into the details, lets look at an example.

We will illustrate the process with the following example

{>}
R := X ;Q := 0;

while Y  R do

(R := R � Y ;Q := Q + 1)

{X = R + Y · Q ^ R < Y }

8

Example

Step 1 is to annotated the program with two assertions, �
1

and �
2

{>}
R := X ;Q := 0; {R = X ^ Q = 0} � �

1

while Y  R do {X = R + Y · Q} � �
2

(R := R � Y ;Q := Q + 1)

{X = R + Y · Q ^ R < Y }

The annotations �
1

and �
2

state conditions which are intended to

hold whenever control reaches them

Control reaches �
1

once and reaches �
2

each time the loop body is

executed; �
2

should thus be a loop invariant

9

Example

Step 2 will generate the following four VCs for our example

1. > ) (X = X ^ 0 = 0)

2. (R = X ^ Q = 0)) (X = R + (Y · Q))

3. (X = R+(Y ·Q))^Y  R)) (X = (R�Y )+(Y · (Q+1)))

4. (X = R+(Y ·Q))^¬(Y  R)) (X = R+(Y ·Q)^R < Y )

Notice that these are statements of arithmetic; the constructs of

our programming language have been ’compiled away’

Step 3 uses a standard theorem prover to automatically discharge

as many VCs as possible and let the user prove the rest manually

10



Annotation of Commands

An annotated command is a command with extra assertions

embedded within it

A command is properly annotated if assertions have been

inserted at the following places

• before C2 in C1;C2 if C2 is not an assignment command

• after the word DO in WHILE commands

The inserted assertions should express the conditions one expects

to hold whenever control reaches the assertion

11

Backwards-reasoning proof rules

` P ) Q

` {P} skip {Q}
` {P} C

1

{R} ` {R} C

2

{Q}
` {P} C

1

;C
2

{Q}

` P ) Q[E/V ]

` {P} V := E {Q}
` {P} C {Q[E/V ]}
` {P} C ;V := E {Q}

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

` {P ^ B} C

1

{Q} ` {P ^ ¬B} C

2

{Q}
` {P} if B then C

1

else C

2

{Q}

12

Annotations of Specifications

A properly annotated specification is a specification {P} C {Q}
where C is a properly annotated command

Example: To be properly annotated, assertions should be at points

l

1

and l

2

of the specification below

{X = n}
Y := 1; � l

1

while X = 0 do � l

2

(Y := Y ⇤ X ;X := X � 1)

{X = 0 ^ Y = n!}

13

Generating VCs

Next we need to specify the VC generator

We will specify it as a function VC (P ,C ,Q) that gives a set of

verification conditions for a properly annotated specification

The function will be defined by recursion on C and is easily

implementable

14



Backwards-reasoning proof rules

` P ) Q

` {P} skip {Q}
` {P} C

1

{R} ` {R} C

2

{Q}
` {P} C

1

;C
2

{Q}

` P ) Q[E/V ]

` {P} V := E {Q}
` {P} C {Q[E/V ]}
` {P} C ;V := E {Q}

` P ) I ` {I ^ B} C {I} ` I ^ ¬B ) Q

` {P} while B do C {Q}

` {P ^ B} C

1

{Q} ` {P ^ ¬B} C

2

{Q}
` {P} if B then C

1

else C

2

{Q}

15

Justification of VCs

To prove soundness of the verifier the VC generator should have

the property that if all the VCs generated for {P} C {Q} hold

then the ` {P} C {Q} should be derivable in Hoare Logic

Formally,

8C ,P ,Q. (8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

This will be proven by induction on C

• we have to show the result holds for all primitive commands

• and that it holds for all compound commands C , assuming it

holds for the constituent commands of C

16

VC for assignments

VC (P ,V := E ,Q)
def
= {P ) Q[E/V ]}

Example: The verification condition for

{X = 0} X := X + 1 {X = 1}

is X = 0) (X + 1) = 1.

17

VC for assignments

To justify the VC generated for assignment we need to show

if ` P ) Q[E/V ] then ` {P} V := E {Q}

which holds by the backwards-reasoning assignment rule

This is one of the base-cases for the inductive proof of

(8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

18



VCs for conditionals

VC (P , if S then C

1

else C

2

,Q)
def
=

VC (P ^ S ,C
1

,Q) [ VC (P ^ ¬S ,C
2

,Q)

Example: The verification conditions for

{>} if X � Y then R := X else R := Y {R = max(X ,Y )}

are

• the VCs for {> ^ X � Y } R := X {R = max(X ,Y )}, and
• the VCs for {> ^ ¬(X � Y )} R := Y {R = max(X ,Y )}

19

VCs for conditionals

To justify the VC generated for assignment we need to show that

 (C
1

) ^  (C
2

))  (if S then C

1

else C

2

)

where

 (C )
def
= 8P ,Q. (8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

This is one of the inductive cases of the proof and  (C
1

) and

 (C
2

) are the induction hypotheses

20

VCs for conditions

Let  (C )
def
= 8P ,Q. (8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

Assume  (C
1

),  (C
2

). To show that  (if S then C

1

else C

2

),

assume 8� 2 VC (P , if S then C

1

else C

2

,Q).` �

Since VC (P , if S then C

1

else C

2

,Q) it follows that

8� 2 VC (P ^ S ,C
1

,Q).` � and 8� 2 VC (P ^ ¬S ,C
2

,Q).` �

By the induction hypotheses,  (C
1

) and  (C
2

) it follows that

` {P ^ S} C

1

{Q} and ` {P ^ ¬S} C

2

{Q}

By the conditional rule, ` {P} if S then C

1

else C

2

{Q}

21

VCs for sequences

Since we have restricted the domain of VC to be properly

annotated specifications, we can assume that sequences C
1

;C
2

• have either been annotated with an intermediate assertion, or

• C

2

is an assignment

We define VC for each of these two cases

VC (P ,C
1

; {R} C

2

,Q)
def
= VC (P ,C

1

,R) [ VC (R ,C
2

,Q)

VC (P ,C ;V := E ,Q)
def
= VC (P ,C ,Q[E/V ])

22



VCs for sequences

Example

VC (X = x ^ Y = y ,R := X ;X := Y ;Y := R ,X = y ^ Y = x)

= VC (X = x ^ Y = y ,R := X ;X := Y , (X = y ^ Y = x)[R/Y ])

= VC (X = x ^ Y = y ,R := X ;X := Y ,X = y ^ R = x)

= VC (X = x ^ Y = y ,R := X , (X = y ^ R = x)[Y /X ])

= VC (X = x ^ Y = y ,R := X ,Y = y ^ R = x)

= {X = x ^ Y = y ) (Y = y ^ R = x)[X/R]}
= {X = x ^ Y = y ) (Y = y ^ X = x)}

23

VCs for sequences

To justify the VCs we have to prove that

 (C
1

) ^  (C
2

))  (C
1

; {R} C

2

), and

 (C ))  (C ;V := E )

where  (C )
def
= 8P ,Q. (8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

These proofs are left as exercises and you are strongly encouraged

to try to prove one of them yourselves!

24

VCs for loops

A properly annotated loop has the form

while S do {R} C

We use the annotation R as the invariant and generate the

following VCs

VC (P ,while B do {R} C ,Q)
def
=

{P ) R ,R ^ ¬B ) Q} [ VC (R ^ B ,C ,R)

25

VCs for loops

To justify the VCs for loops we have to prove that

 (C ))  (while B do {R} C )

where  (C )
def
= 8P ,Q. (8� 2 VC (P ,C ,Q).` �)) (` {P} C {Q})

Assume 8� 2 VC (P ,C ,Q).` �.

Then ` P ) R , ` R ^ ¬B ) Q and 8� 2 VC (R ^ B ,C ,R).` �.
Hence, by the induction hypothesis, ` {R ^ B} C {R}.

It follows by the backwards-reasoning rule for loops that

` {P} while B do C {Q}

26



Summary

We have outlined the design of a semi-automated program verifier

based on Hoare Logic

It takes annotated specifications and generates a set of first-order

logic statements that if provable ensure the specification is provable

Intelligence is required to provide the annotations and help the

theorem prover

The soundness of the verifier used justified using a simple inductive

argument and use many of the derived rules for backwards

reasoning from the last lecture

27

Other uses for Hoare triples

So far we have assumed P , C and Q were given and focused on

proving ` {P} C {Q}

What if we are given P and C , can we infer a Q?

Is there a best such Q? (’strongest postcondition’)

What if we are given C and Q, can we infer a P?

Is there a best such P? (’weakest precondition’)

What if we are given P and Q, can we infer a C?

(’program refinement’ or ’program synthesis’)

28

Weakest preconditions

If C is a command and Q is an assertion, then informally

wlp(C ,Q) is the weakest assertions P such that {P} C {Q} holds

• if P and Q are assertions then P is ’weaker’ than Q if Q ) P

• thus, {P} C {Q}, P ) wlp(C ,Q)

Dijkstra gives rules for computing weakest liberal preconditions for

deterministic loop-free code

wlp(V := E ,Q) = Q[E/V ]

wlp(C1;C2,Q) = wlp(C1,wp(C2,Q))

wlp(if B then C

1

else C

2

,Q) = (B ) wlp(C
1

,Q)) ^
(¬B ) wlp(C

2

,Q))

29

Weakest preconditions

While the following property holds for loops

wlp(while B do C ,Q),
if B then wlp(C ,wlp(while B do C ,Q)) else Q

it does not define wlp(while B do C ,Q) as a finite formula

In general, one cannot compute a finite formula for

wlp(while B do C ,Q)

If C is loop-free then we can take the VC for {P} C {Q} to be

P ) wlp(C ,Q), without requiring C to be annotated

30



Program refinement

We have focused on proving programs meet specifications

An alternative is to construct a program that is correct by

construction, by refining a specification into a program

Rigorous development methods such as the B-Method, SPARK and

the Vienna Development Method (VDM) are based on this idea

For more: ”Programming From Specifications” by Carroll Morgan

31

Conclusion

Several practical tools for program verification are based on the

idea of generating VCs from annotated programs

• Gypsy (1970s)

• SPARK (current tool for Ada, used in aerospace & defence)

Weakest liberal preconditions can be used to reduce the number of

annotations required in loop-free code

32


