
Hoare Logic and Model Checking

Kasper Svendsen

University of Cambridge

CST Part II – 2016/17

Acknowledgement: slides heavily based on previous versions by Mike Gordon and Alan Mycroft

Course overview

This course is about formal techniques for validating software.

Formal methods allow us to formally specify the intended

behaviour of our programs and use mathematical proof systems to

formally prove that our programs satisfy their specification.

In this course we will focus on two techniques:

• Hoare logic (Lectures 1-6)

• Model checking (Lectures 7-12)

1

Course overview

There are many di↵erent formal reasoning techniques of varying

expressivity and level of automation.

typing
model

checking

program

logics

automated manual

2

Formal vs. informal methods

Testing can quickly find obvious bugs:

• only trivial programs can be tested exhaustively

• the cases you do not test can still hide bugs

• coverage tools can help

Formal methods can improve assurance:

• allows us to reason about all possible executions

• can reveal hard-to-find bugs

3

Famous software bugs

At least 3 people were killed due to massive radiation overdoses

delivered by a Therac-25 radiation therapy machine.

• the cause was a race-condition in the control software

An unmanned Ariane 5 rocket blew up on its maiden flight; the

rocket and its cargo were estimated to be worth $500M.

• the cause was an unsafe floating point to integer conversion

4

Formal vs. informal methods

However, formal methods are not a panacea:

• formally verified designs may still not work

• can give a false sense of security

• formal verification can be very expensive and time-consuming

Formal methods should be used in conjunction with testing,

not as a replacement.

5

Lecture plan

Lecture 1: Informal introduction to Hoare logic

Lecture 2: Formal semantics of Hoare logic

Lecture 3: Examples, loop invariants & total correctness

Lecture 4: Mechanised program verification

Lecture 5: Separation logic

Lecture 6: Examples in separation logic

6

Hoare logic

Hoare logic

Hoare logic is a formalism for relating the initial and terminal

state of a program.

Hoare logic was invented in 1969 by Tony Hoare, inspired by earlier

work of Robert Floyd.

Hoare logic is still an active area of research.

7

Hoare logic

Hoare logic uses partial correctness triples for specifying and

reasoning about the behaviour of programs:

{P} C {Q}

Here C is a command and P and Q are state predicates.

• P is called the precondition and describes the initial state

• Q is called the postcondition and describes the terminal state

8

Hoare logic

To define a Hoare logic we need three main components:

• the programming language that we want to reason about,

along with its operational semantics

• an assertion language for defining state predicates,

along with a semantics

• a formal interpretation of Hoare triples, together with a

(sound) formal proof system for deriving Hoare triples

This lecture will introduce each component informally.

In the coming lectures we will cover the formal details.

9

The WHILE language

The WHILE language

WHILE is a prototypical imperative language. Programs consists of

commands, which include branching, iteration and assignments:

C ::= skip | C
1

;C
2

| V := E

| if B then C
1

else C
2

| while B do C

Here E is an expression which evaluates to a natural number and

B is a boolean expression, which evaluates to a boolean.

States are mappings from variables to natural numbers.

10

The WHILE language

The grammar for expressions and boolean includes the usual

arithmetic operations and comparison operators:

E ::= N | V | E
1

+ E
2

| expressions

| E
1

� E
2

| E
1

⇥ E
2

| · · ·

B ::= T | F | E
1

= E
2

boolean expressions

| E
1

 E
2

| E
1

� E
2

| · · ·

Note that expressions do not have side e↵ects.

11

The assertion language

Hoare logic

State predicates P and Q can refer to program variables from C

and will be written using standard mathematical notations together

with logical operators like:

• ^ (“and”), _ (“or”), ¬ (“not”) and) (“implies”)

For instance, the predicate X = Y + 1 ^ Y > 0 describes states in

which the variable Y contains a positive value and the value of X

is equal to the value of Y plus 1.

12

Partial correctness triples

The partial correctness triple {P} C {Q} holds if and only if:

• whenever C is executed in an initial state satisfying P

• and this execution terminates

• then the terminal state of the execution satisfies Q.

For instance,

• {X = 1} X := X + 1 {X = 2} holds

• {X = 1} X := X + 1 {X = 3} does not hold

13

Partial correctness

Partial correctness triples are called partial because they only

specify the intended behaviour of terminating executions.

For instance, {X = 1} while X > 0 do X := X + 1 {X = 0}
holds, because the given program never terminates when executed

from an initial state where X is 1.

Hoare logic also features total correctness triples that strengthen

the specification to require termination.

14

Total correctness

The total correctness triple [P] C [Q] holds if and only if:

• whenever C is executed in an initial state satisfying P

• then the execution must terminate

• and the terminal state must satisfy Q.

There is no standard notation for total correctness triples, but we

will use [P] C [Q].

15

Total correctness

The following total correctness triple does not hold:

[X = 1] while X > 0 do X := X + 1 [X = 0]

• the loop never terminates when executed from an initial state

where X is positive

The following total correctness triple does hold:

[X = 0] while X > 0 do X := X + 1 [X = 0]

• the loop always terminates immediately when executed from

an initial state where X is zero

16

Total correctness

Informally: total correctness = termination + partial correctness.

It is often easier to show partial correctness and termination

separately.

Termination is usually straightforward to show, but there are

examples where it is not: no one knows whether the program

below terminates for all values of X

while X > 1 do

if ODD(X) then X := 3 ⇤ X + 1 else X := X DIV 2

Microsoft’s T2 tool proves systems code terminates.

17

Specifications

Simple examples

{?} C {Q}

• this says nothing about the behaviour of C ,

because ? never holds for any initial state

{>} C {Q}

• this says that whenever C halts, Q holds

{P} C {T}

• this holds for every precondition P and command C ,

because T always holds in the terminate state

18

Simple examples

[P] C [T]

• this says that C always terminates when executed from an

initial state satisfying P

[T] C [Q]

• this says that C always terminates in a state where Q holds

19

Auxiliary variables

Consider a program C that computes the maximum value of two

variables X and Y and stores the result in a variable Z .

Is this a good specification for C?

{>} C {(X  Y) Z = Y) ^ (Y  X) Z = X)}

No! Take C to be X := 0;Y := 0;Z := 0, then C satisfies the

above specification. The postcondition should refer to the initial

values of X and Y .

In Hoare logic we use auxiliary variables which do not occur in the

program to refer to the initial value of variables in postconditions.

20

Auxiliary variables

For instance, {X = x ^ Y = y} C {X = y ^ Y = x}, expresses
that if C terminates then it exchanges the values of variables X

and Y .

Here x and y are auxiliary variables (or ghost variables) which are

not allowed to occur in C and are only used to name the initial

values of X and Y .

Informal convention: program variables are uppercase and auxiliary

variables are lowercase.

21

Formal proof system for Hoare logic

Hoare logic

We will now introduce a natural deduction proof system for partial

correctness triples due to Tony Hoare.

The logic consists of a set of axiom schemas and inference rule

schemas for deriving consequences from premises.

If S is a statement of Hoare logic, we will write ` S to mean that

the statement S is derivable.

22

Hoare logic

The inference rules of Hoare logic will be specified as follows:

` S
1

· · · ` Sn

` S

This expresses that S may be deduced from assumptions S
1

, ..., Sn.

An axiom is an inference rule without any assumptions:

` S

In general these are schemas that may contain meta-variables.

23

Hoare logic

A proof tree for ` S in Hoare logic is a tree with ` S at the root,

constructed using the inference rules of Hoare logic with axioms at

the leaves.

` S
1

` S
2

` S
3

` S
4

` S

We typically write proof trees with the root at the bottom.

24

Formal proof system

` {P} skip {P} ` {P[E/V]} V := E {P}

` {P} C
1

{Q} ` {Q} C
2

{R}
` {P} C

1

;C
2

{R}

` {P ^ B} C
1

{Q} ` {P ^ ¬B} C
2

{Q}
` {P} if B then C

1

else C
2

{Q}

` {P ^ B} C {P}
` {P} while B do C {P ^ ¬B}

25

Formal proof system

` P
1

) P
2

` {P
2

} C {Q
2

} ` Q
2

) Q
1

` {P
1

} C {Q
1

}

` {P
1

} C {Q} ` {P
2

} C {Q}
` {P

1

_ P
2

} C {Q}

` {P} C {Q
1

} ` {P} C {Q
2

}
` {P} C {Q

1

^ Q
2

}

26

The skip rule

` {P} skip {P}

The skip axiom expresses that any assertion that holds before skip

is executed also holds afterwards.

P is a meta-variable ranging over an arbitrary state predicate.

For instance, ` {X = 1} skip {X = 1}.

27

The assignment rule

` {P[E/V]} V := E {P}

Here P[E/V] means the assertion P with the expression E

substituted for all occurences of the variable V .

For instance,

{X + 1 = 2} X := X + 1 {X = 2}

{Y + X = Y + 10} X := Y + X {X = Y + 10}

28

The assignment rule

This assignment axiom looks backwards! Why is it sound?

In the next lecture we will prove it sound, but for now, consider

some plausible alternative assignment axioms:

` {P} V := E {P[E/V]}

We can instantiate this axiom to obtain the following triple which

does not hold:

{X = 0} X := 1 {1 = 0}

29

The rule of consequence

` P
1

) P
2

` {P
2

} C {Q
2

} ` Q
2

) Q
1

` {P
1

} C {Q
1

}

The rule of consequence allows us to strengthen preconditions and

weaken postconditions.

Note: the ` P) Q hypotheses are a di↵erent kind of judgment.

For instance, from {X + 1 = 2} X := X + 1 {X = 2}
we can deduce {X = 1} X := X + 1 {X = 2}.

30

Sequential composition

` {P} C
1

{Q} ` {Q} C
2

{R}
` {P} C

1

;C
2

{R}

If the postcondition of C
1

matches the precondition of C
2

, we can

derive a specification for their sequential composition.

For example, if one has deduced:

• {X = 1} X := X + 1 {X = 2}
• {X = 2} X := X + 1 {X = 3}

we may deduce that {X = 1} X := X + 1;X := X + 1 {X = 3}.
31

The conditional rule

` {P ^ B} C
1

{Q} ` {P ^ ¬B} C
2

{Q}
` {P} if B then C

1

else C
2

{Q}

For instance, to prove that

` {T} if X � Y then Z := X else Z := Y {Z = max(X ,Y)}

It su�ces to prove that ` {T ^X � Y } Z := X {Z = max(X ,Y)}
and ` {T ^ ¬(X � Y)} Z := Y {Z = max(X ,Y)}.

32

The loop rule

` {P ^ B} C {P}
` {P} while B do C {P ^ ¬B}

The loop rule says that

• if P is an invariant of the loop body when the loop condition

succeeds, then P is an invariant for the whole loop

• and if the loop terminates, then the loop condition failed

We will return to be problem of finding loop invariants.

33

Conjunction and disjunction rule

` {P
1

} C {Q} ` {P
2

} C {Q}
` {P

1

_ P
2

} C {Q}

` {P} C {Q
1

} ` {P} C {Q
2

}
` {P} C {Q

1

^ Q
2

}

These rules are useful for splitting up proofs.

Any proof with these rules could be done without using them

• i.e. they are theoretically redundant (proof omitted)

• however, useful in practice

34

Summary

Hoare Logic is a formalism for reasoning about the behaviour of

programs by relating their initial and terminal state.

It uses an assertion logic based on first-order logic to reason about

program states and extends this with Hoare triples to reason about

the programs.

Suggested reading:

• C. A. R. Hoare. An axiomatic basis for computer

programming. 1969.

• R. W. Floyd. Assigning meanings to programs. 1967.

35

