
Hoare Logic and Model Checking
Model Checking
Lecture 9: A brief look at NuSMV

Dominic Mulligan
Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group,
University of Cambridge

Academic year 2016–2017

1

Learning outcomes

After this lecture you should:

• Be familiar with features of the SMV modelling language
• Be able to check simple LTL specification of models with NuSMV
• Be able to interpret an SMV counterexample trace

NB: all content in this lecture is non-examinable this year

2

NuSMV

An open-source model checker

NuSMV is a state-of-the-art model checker:

• Freely available as pre-built binaries for Windows, Linux, and Mac
• Also available in source form
• Good documentation, and tutorial material

A re-implementation of the SMV model checker:

• Was revolutionary in applying new techniques to model checking
• Could handle large models
• Was popular in semiconductor industry via Cadence SMV

See NuSMV homepage to download: http://nusmv.fbk.eu/

3



NuSMV’s components

NuSMV consists of two components:

• An implementation of SMV modelling language for describing
finite state models

• Implementations of LTL, CTL, and PSL model checking algorithms

PSL = logic for verifying clocked hardware

We focus on LTL here

4

SMV modelling language

One-bit toggle

MODULE main
VAR
bit : boolean;

ASSIGN
init(bit) := FALSE;
next(bit) := !bit;

5

Some notes

SMV models are:

• Split into modules
• Distinguished module called main, entry point similar to Java

NuSMV models declare “state variables” with associated types

Assignments constrain initial states, and describe transitions:

• init(bit) := FALSE is an initial assignment to bit
• next(bit) := !bit dictates how bit evolves

6



Built-in types

SMV has a number of built-in types:

• boolean has the values TRUE and FALSE
• 1..8 denotes a bounded interval of integer values
• array 0..2 of boolean denote a 2-element array

User-defined enumerations are also possible: e.g. {R, Y, G, B}

7

Assignments and non-determinism

Assignments can be made via init and next

If either one is ommitted:

• Assignment is non-deterministic
• Value picked from possible values based on type

Useful for modelling environment, introducing abstraction, etc.

Assignments induce equations used to build underlying model

To ensure model exists, equations are syntactically restricted:

• Variables may only be assigned once,
• No loops within assignments

8

More complex example

MODULE main
VAR
request : boolean;
status : {ready,busy};

ASSIGN
init(status) := {ready};
next(status) :=
case

request : {busy};
TRUE : {ready,busy};

esac;

9

Case statements

In case expression:
case
request : busy;
TRUE : {ready,busy};

esac;

Cases evaluated sequentially, first matching case is taken

Cases need not be deterministic:

• {ready,busy} means status evolves to ready or busy
non-deterministically

• Singleton busy is syntactic sugar for {busy}

10



SMV’s interactive mode

Saving example in short.smv

Load model in NuSMV’s interactive mode:
$ ./bin/NuSMV -int short.smv

Ask NuSMV to set itself up ready for use:
NuSMV > go

This compiles model, sets up variables, and so on
NuSMV > pick_state

Asks NuSMV to pick initial state consistent with assignments

11

Generating traces

Asking NuSMV to randomly generate a trace of length 3:
NuSMV > simulate -v -r -k 3

Produces:
-> State: 1.1 <-
request = FALSE
status = ready

-> State: 1.2 <-
request = FALSE
status = busy

-> State: 1.3 <-
request = FALSE
status = busy

-> State: 1.4 <-
request = FALSE
status = ready

12

LTL model checking

Property:

It is always the case that if a request is made, then
eventually the system will be busy.

Rendered in LTL:

�(request → ♦(status = busy))

Rendered in SMV’s LTL assertion language:
G(request -> F status=busy)

13

Checking the property

Using the check_ltlspec command:
NuSMV > check_ltlspec -p ``G(request -> F status=busy)''

NuSMV checks the property against the model, and produces:
-- specification G(request -> F status = busy) is true

14



Checking a non-property

Non-property:

It is always the case that if there is no request, then there
will be one eventually.

Rendered in LTL:
�(¬request → ♦request)

Rendered in SMV’s LTL assertion language:
G(!request -> F request)

15

Checking the non-property

Once again, using the check_ltlspec command:
NuSMV > check_ltlspec -p ``G(!request -> F request)''

NuSMV produces a counter-example, indicating property is false:
-- specification G (!request->F request) is false
...
Trace Type: Counterexample
-- Loop starts here
-> State: 2.1 <-
request = FALSE
status = ready

-> State: 2.2 <-

i.e. a run of the system where a request is never made is permissible

16

Semaphore: user module

MODULE user(semaphore)
VAR
state : {idle, entering, critical, exiting};

ASSIGN
init(state) := idle;
next(state) :=
case

state = idle : {idle, entering};
state = entering & !semaphore : critical;
state = critical : {critical, exiting};
state = exiting : idle;
TRUE : state;

esac;
next(semaphore) :=
case

state = entering : TRUE;
state = exiting : FALSE;
TRUE : semaphore;

esac;

17

Semaphore: main module

MODULE main
VAR
semaphore : boolean;
process1 : process user(semaphore);
process2 : process user(semaphore);

ASSIGN
init(semaphore) := FALSE;

18



Parameterised modules

SMV allows models to be split into submodules

These modules may be parameterised

Formal parameters are passed when module is instantiated

Actual parameters may be any legal SMV expression

19

Processes

In main module we instantiate user module twice

We have marked each instantiation with the process keyword

This has the effect of introducing “interleaving” concurrency:

• One process is chosen non-deterministically
• All of its assignments are executed in parallel
• Another process is chosen non-deterministically
• And so on...

A built-in scheduler picks a process to run at each step

Two concurrent processes trying to enter critical section

20

Example trace

-> State: 1.1 <-
semaphore = FALSE
process1.state = idle
process2.state = idle

-> Input: 1.2 <-
_process_selector_ = process1
running = FALSE
process2.running = FALSE
process1.running = TRUE

-> State: 1.2 <-
semaphore = FALSE
process1.state = entering
process2.state = idle

...

Transitions are interleaved by scheduler picking a process to execute

21

Counter: counter cell module

MODULE counter(increment)
VAR
digits : 0..9;

ASSIGN
init(digits) := 0;
next(digits) := increment ? (digits + 1) mod 10 : digits;

DEFINE
overflow := digits = 9;

22



Counter: main module

MODULE main
VAR
counter1 : counter(TRUE);
counter2 : counter(counter1.overflow);
result : 0..99;

ASSIGN
result := counter1.digits + counter2.digits * 10;

LTLSPEC
G(result = 1)

23

Definitions and immediate assignments

In counter cell we made use of DEFINE:

• Introduces new definition
• Can be thought of as a macro: digits = 9 will replace
overflow throughout

Further, made use of an immediate assignment:
result := counter1.digits + counter2.digits * 10

Constrains value of result using counter1.digits and
counter2.digits

24

Inline LTL specifications

LTL specification can be embedded within a model

Need not be provided interactively within NuSMV shell

Use LTLSPEC block to provide an LTL formula as specification

Run NuSMV in batch mode to check property:
$ ./bin/NuSMV counter.smv

Gives same output as interactive mode

25

Case study



Recall: clocked circuit

R is a register, with initial value 0
26

Recall: pictorial model

27

Modelling a register

MODULE register(input)
VAR
last : boolean;
current : boolean;

ASSIGN
init(current) := FALSE;
init(last) := input;
next(current) := last;
next(last) := input;

DEFINE
output := current;

Registers have a “memory” of last input value, and initially read 0

28

Modelling gates

MODULE or_gate(input1, input2)
DEFINE
output := input1 | input2;

MODULE xor_gate(input1, input2)
DEFINE
output := input1 xor input2;

MODULE inverter(input1)
DEFINE
output := !input1;

Note: use of modules overkill here

29



Modelling circuit

MODULE main
VAR
x_input : boolean;
y_output : boolean;
shared_wire : boolean;

OR : or_gate(x_input, shared_wire);
R : register(OR.output);
XOR : xor_gate(x_input, shared_wire);
NOT : inverter(XOR.output);

ASSIGN
shared_wire := R.output;
y_output := NOT.output;

Note: shared_wire to break cycle in circuit diagram

30

Circuit properties

Was our pictorial diagram of circuit behaviour correct?
LTLSPEC
G(x_input & R.output -> y_output)

LTLSPEC
G(!x_input & !R.output -> y_output)

LTLSPEC
G(x_input & R.output -> y_output)

LTLSPEC
G(x_input & !R.output -> !y_output)

31

Computer says yes

NuSMV claims all properties are true

32

Circuit properties

Does setting the input bit to high always imply the register output bit
will eventually read low?
LTLSPEC

G(x_input -> F !R.output)

Is output bit Y set infinitely often?
LTLSPEC

G F y_output

33



Computer says no, for both

(And also produces counterexample traces)

34

Summary

In this lecture you have:

• Become familiar with NuSMV, a state-of-the-art open source
model checker

• Become familiar with NuSMV’s interactive and batch modes
• Been introduced to major elements of the SMV specification
language

• Seen some simple models written in SMV
• Seen some simple verifications/counter examples of LTL
specifications

35


