
Hoare Logic and Model Checking
Model Checking
Lecture 7: Introduction and background

Dominic Mulligan
Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group,
University of Cambridge

Academic year 2016–2017

1

Administrivia

Course website:

www.cl.cam.ac.uk/teaching/1617/HLog+ModC/

Contact me with questions/comments: dpm36@cam.ac.uk

Six lecture half course

One and a half supervisions

2

Book

Course mostly follows material in: “Logic in Computer Science:
Modelling and Reasoning about Systems” by Huth and Ryan

Copies in library

Other interesting books:

• “Model Checking” by Clarke, Grumberg, and Peled
• “Principles of Model Checking” by Baier and Katoen

3

Course aims

I have three aims in this course:

1. You should be able to model simple systems in NuSMV, an LTL
model checker,

2. You should be able to write the world’s worst CTL model checker,
3. You should know enough to be able to learn more about the first

two points above in your own time.

I have six 50 minute lectures to:

• Cover 30 years of work in model checking,
• Cover a field that has given rise to multiple Turing Awards,
• Is a great example of a fusion of theory and practice.

4

Model checking: an application
of “formal methods”

Systems as mathematical objects

One common approach to building “better” systems is:

• Treat designs and implementations as mathematical objects
• Use mathematical methods to reason about objects
• Use mathematics to describe behaviour of objects

Systems now amenable to mathematical proof

Can establish theorems about system behaviour:

• Testing can show presence of bugs, but not absence
• Mathematical proof can establish absence of bugs

5

Model checking from distance

We focus on one type of formal method: model checking

A model checker takes as input:

• A formal model of the system to be verified,
• A property of the system to be established.

As output, a model checker gives:

• Either an assurance that the property holds of the system,
• or a counterexample execution, or trace.

6

Origins

Model checking originated in 1980s

Pioneers were Clarke, Emerson, Queille, and Sifakis

Three decades of non-stop development

Multiple existing implementations of model checking

Dedicated conferences and model checking competitions

Clarke, Emerson, and Sifakis won 2007 Turing Award for work

7

What is model checking good for?

Model checking is well suited to reasoning about:

• Concurrent and reactive systems,
• Asynchronous and synchronous circuits and hardware,
• Programs with complex control flow,
• Protocols, etc.

Often have insidious, hard to reproduce bugs

Counterexamples help:

• Refine designs and implementations,
• Aid in “intelligent debugging”

8

Model checking advantages (I)

Model checking is largely “push button”:

• Decidable,
• Requires little interaction from user,
• Can be used by engineers with minimal training,
• Some model checkers can understand Verilog/Java/C files.

Other advantages:

• Can be used early in the design process,
• Can be used repeatedly through implementation phase,
• Many industrial success stories.

9

A general tool for reasoning about systems

Can be used for reasoning about systems, widely construed:

• Railway interlocking mechanisms, traffic lights, etc.
• Cancer pathways, metabolic networks,
• Automated planning as model checking,
• Clinical guidelines (e.g. stroke treatment and care),
• Many other applications...

10

Not a panacea

But there’s also disadvantages:

• State space explosion,
• Some specification languages are unintuitive,
• Still not widely used as matter of course,
• Not well suited to programs with complex data.

11

Temporal properties

FOL?

Q: what language should we express system properties in?

Obvious contender: first-order logic (FOL)

Recall semantics of first-order logic from Logic and Proof :

• Fix a domain,
• Provide interpretations of function symbols and relations,
• Extend to a recursively-defined denotation for formulae, defined
relative to a valuation.

Semantics works well for first-order logic

12

“Static” truth

Truth-value assigned by denotation function never changes

Notion of truth is static

Works well for mathematics: 2 + 2 = 4 unconditionally

Natural numbers do not “evolve” through time

13

A linguistic puzzle

Consider the following utterance:

It is raining

How should a truth value be assigned?

Note that truth of utterance is relative to time and place:

• It may be raining now in Trondheim but is not in Cambridge,
• it may be dry now in Cambridge, but may rain tonight,
• it may never rain in Cambridge again (!?)

14

Other examples

The lift car only moves after the doors have fully closed

After detecting a possible mid-air collision, the aircraft
control software will audibly and visually alert the pilots
before taking evasive action

All uses of free are preceded by an accompanying use
of malloc

15

Moral: systems evolve through time

Like the weather, systems evolve through time

Time-relative properties are called temporal properties

Model checkers establish temporal properties of systems

16

“Dynamic” truth

Need a logic that can handle temporal properties

We also need an alternative notion of truth:

• What is true now need not be true in next state evolution,
• Assign truth values to claims about evolving systems.

Truth is no longer static, but has a dynamic flavour

Propositions hold in some worlds but not others

17

Temporal logics

Idea: use temporal logic for specifying system behaviour

Temporal logic:

• Developed by philosopher A. N. Prior in 1950s (as “tense logic”)
for reasoning about time,

• Applied to verification by Pnueli (1996 Turing Award winner),
• Family of modal logics,
• Modalities make truth of formulae relative to time.

As modal logics, natural notion of truth is Kripkean

Worlds are system states, or timepoints

18

What is time?

Q: how should we model time?

Large design space:

• Is time continuous, or discrete?
• Does the future ‘branch’? Does the past?
• Should we consider time intervals?

Temporal logics exist with all these features (and more!)

In this course:

• We focus on two temporal logics with different conceptions of
time: LTL and CTL

• Both popular industrially and academically

19

Modelling systems

Vending machine

Consider a simple example: a vending machine

Machine can dispense coke, or water

Users insert money and make a drink selection

The machine dispenses their drink, user removes it

How can we model this “system”?

20

Pictorial model of vending machine

21

Some notes

Model is very abstract

We say nothing about e.g. internal electronics of machine

Abstractness dependent on properties we wish to establish

22

Some example properties

From the start state, can we get the machine to dispense
water?

Is there a trace of the machine where both coke and
water are dispensed?

23

Lift

Consider an example: a lift in a two-storey building

The lift has an up and down button

It waits with its doors open for passengers

24

Pictorial model of lift

25

Some example properties

Can the lift ever move without a button being pressed?

Can the lift ever keep passengers inside indefinitely?

26

Clocked sequential circuit

R = register, with a “memory” and initially holding 0
27

Pictorial model of circuit

28

Example properties

Output bit Y is set infinitely often

29

Some notes

We now have two start states: not restraining initial value of X

Representation of states now tied to system being modelled

States no longer mysterious abstract objects

30

A simple imperative program

00 r := x
01 q := 0
02 while y <= r do:
03 r := r - y
04 q := q + 1
05

31

Abstract representation

States modelled as tuples (representation of “state space”):

• Concrete state representation = [0..5]× Z× Z× Z× Z

• State = �pc, x, y, r, q�

Transitions between states follow semantics of language:

• �0, x, y, r, q� → �1, x, y, x, q�
• �1, x, y, r, q� → �2, x, y, r, 0�
• If y ≤ r then �2, x, y, r, q� → �3, x, y, r, q�
• If r < y then �2, x, y, r, q� → �5, x, y, r, q�
• and so on...

32

Example property

We will always eventually reach a point where pc = 5

33

Labelled transition systems

Transition Systems (LTS)

Examples abstracted as transition systems (TS):

• A (finite) set of states S, with initial states S0 ⊆ S

• A transition relation → ⊆ S × S

In this course actions are ignored (use TS rather than LTS)

We only care about transitions and states

Do not care what caused them!

Also satisfy:

• A set of labels, or atomic propositions, AP
• A labelling function L : S → P(AP)

34

Example: handling clocked sequential circuits

Clocked sequential circuit with n inputs, m outputs, k registers

• S = {0, 1}n+k

• S0 = {(a1, . . . , an, c1, . . . , ck) | ci = 0, aj ∈ {0, 1}}
• AP = {x1, . . . , xn, y1, . . . , ym, . . . c1, . . . , cm}
• L = λs. {xi | xi = 1 at s} ∪ {ci | ci = 1 at s} ∪ {yi | yi = 1 at s}
• → = derived from semantics of circuit diagram

35

Kripke Frames

A transition system is also known as a Kripke Frame

Recall from Logic and Proof :

Model for modal logic = Kripke Frame + labelling function
(+ satisfaction relation)

TS and labelling function is model of system

Temporal (modal) logics let us reason about models

36

Summary

• Serious software and hardware faults can and do happen
• Formal methods one way to mitigate or prevent them
• Model checking is one type of formal method
• Has advantages and disadvantages: not a silver bullet
• Can model a system using transition systems
• Can describe properties of systems using temporal logics
• Model checking: means of establishing temporal properties of
models of systems

37

