Hoare Logic and Model Checking

Model Checking Lecture 11: Model checking for Computation Tree Logic

Dominic Mulligan Based on previous slides by Alan Mycroft and Mike Gordon

Programming, Logic, and Semantics Group University of Cambridge

Academic year 2016–2017

The CTL model checking problem

At the end of this lecture, you should:

- Understand the CTL model checking problem
- $\cdot\,$ Understand the "satisfaction set" of states for CTL formulae
- Know the naïve recursive labelling algorithm for computing satisfaction sets
- Understand CTL model checking is a reachability problem
- Know the computational complexity of CTL model checking

CTL model checking problem

1

Suppose $\mathcal{M} = \langle S, S_0, \rightarrow, \mathcal{L} \rangle$ is a CTL model

Suppose also that $s\in S$ is a state, and Φ is a CTL state formula

We want to establish whether $s \models \Phi$ (as efficiently as possible)

Importantly: we want to establish whether $s \models \Phi$ for all $s \in S_0$

"All possible initial states satisfy Φ "

This is the CTL model checking problem

In \mathcal{M} , define:

$$Sat(\Phi) = \{s \in S \mid s \models \Phi\}$$

The "states that satisfy Φ "

CTL model checking problem can be solved by:

- 1. Computing $Sat(\Phi)$ set for relevant CTL state formula
- 2. Checking whether $S_0 \subseteq Sat(\Phi)$

Then: how do we compute $Sat(\Phi)$?

Simple recursive algorithm

4

Reminder: Existential Normal Form

Recall from last lecture:

- Existential Normal Form formulae have negations "pushed in"
- Only use a subset of modalities
- Theorem: every CTL state formula Φ has an equivalent ENF formula

In this lecture, we work only with ENF formulae (fewer cases to cover)

To extend our algorithm implementations to full CTL:

- Wrap them in another function accepting a CTL formula,
- Use translation hidden in constructive proof of theorem above,
- Call the algorithm on this translated formula

Characterising $Sat(\Phi)$

Suppose Φ is ENF formula

Take a step back:

- We aim to algorithmically compute $Sat(\Phi)$ in order to check $s\models\Phi$ for $s\in S_0$
- But what *is* this set?

Need to first characterise $Sat(\Phi)$ to understand whether algorithm correct

For $\mathcal{M} = \langle S, S_0, \rightarrow, \mathcal{L} \rangle$, we have:

$$Sat(\top) = Sat(p) = \{s \mid p \in \mathcal{L}(s)\}$$
$$Sat(\neg \Phi) = Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$$

Here: $S - Sat(\Phi)$ is relative complement

Note, per setwise reasoning, we have $Sat(\Phi \lor \Psi) = Sat(\Phi) \cup Sat(\Psi)$

Other derived connectives similarly map onto setwise operations

Characterising $Sat(\Phi)$: the $\exists \bigcirc \Phi$ case

For $\mathcal{M} = \langle S, S_0, \rightarrow, \mathcal{L} \rangle$, we have:

 $Sat(\exists \bigcirc \Phi) = \{s \in S \mid Post(s) \cap Sat(\Phi) \neq \{\}\}$

Here, $Post(s) = \{s' \mid s \rightarrow s'\}$

Characterising $Sat(\Phi)$: the $\exists (\Phi \text{ UNTIL } \Psi)$ case

For $\mathcal{M} = \langle S, S_0, \rightarrow, \mathcal{L} \rangle$, we have:

 $Sat(\exists (\Phi \text{ UNTIL } \Psi))$ is the smallest $T \subseteq S$, such that:

1. $Sat(\Psi) \subseteq T$,

2. If $s \in Sat(\Phi)$ with $Post(s) \cap T \neq \{\}$ then $s \in T$

Here, "smallest" is interpreted with respect to set inclusion order

Correctness of characterisation of $Sat(\exists (\Phi \text{ UNTIL } \Psi))$ (1)

Suppose $T = Sat(\exists (\Phi \text{ UNTIL } \Psi))$

 $\exists (\Phi \text{ UNTIL } \Psi) \text{ satisfies an "expansion law":}$

 $\exists (\Phi \text{ UNTIL } \Psi) \equiv \Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \text{ UNTIL } \Psi))$

$$\begin{split} T &= Sat(\exists (\Phi \text{ UNTIL } \Psi)) \\ &= Sat(\Psi \lor (\Phi \land \exists \bigcirc \exists (\Phi \text{ UNTIL } \Psi))) \\ &= Sat(\Psi) \cup (Sat(\Phi) \cap \{s \in S \mid Post(s) \cap Sat(\exists (\Phi \text{ UNTIL } \Psi)) \neq \{\}\}) \\ &= Sat(\Psi) \cup (Sat(\Phi) \cap \{s \in S \mid Post(s) \cap T \neq \{\}\}) \end{split}$$

So:

1. $Sat(\Psi) \subseteq T$ 2. $s \in Sat(\Phi)$ with $Post(s) \cap T \neq \{\}$ implies $s \in T$

Suppose *T* satisfies:

1. $Sat(\Psi) \subseteq T$,

2. If $s \in Sat(\Phi)$ with $Post(s) \cap T \neq \{\}$ then $s \in T$

Aim to show $Sat(\exists (\Phi \text{ UNTIL } \Psi)) \subseteq T$

Suppose $s \in Sat(\exists (\Phi \text{ UNTIL } \Psi))$

Work by cases on whether $s \in Sat(\Psi)$

One case is easy:

If $s \in Sat(\Psi)$ then $s \in T$ per (1) above

Correctness of characterisation of $Sat(\exists (\Phi \cup \Psi))$ (3)

Otherwise suppose $s \notin Sat(\Psi)$

Note $\pi = s_0, s_1, s_2, \ldots$ exists where $s = \pi[0]$ and $\pi \models \Phi$ UNTIL Ψ

Let n > 0 be such $\pi[n] \models \Psi$ and $\pi[i] \models \Phi$ for $0 \le i < n$

Then $\pi[n] \in Sat(\Psi)$ and therefore $\pi[n] \in T$ per (1) above

Then $\pi[n-1] \in Sat(\Phi)$ and $\pi[n-1] \in T$ since $\pi[n] \in Post(\pi[n-1]) \cap T$

Then $\pi[n-2] \in Sat(\Phi)$ and $\pi[n-2] \in T$ since $\pi[n-1] \in Post(\pi[n-2]) \cap T$

Then $\pi[0] \in Sat(\Phi)$ and $\pi[0] \in T$ since $\pi[1] \in Post(\pi[0]) \cap T$ Therefore $s = \pi[0] \in T$, as required

11

Characterising $Sat(\Phi)$: the $\exists(\Box\Phi)$ case

For $\mathcal{M} = \langle S, S_0,
ightarrow, \mathcal{L}
angle$, we have:

 $Sat(\exists(\Box\Phi))$ is the largest $T \subseteq S$, such that:

1. $T \subseteq Sat(\Phi)$

2. If $s \in T$ then $Post(s) \cap T \neq \{\}$

Here, "largest" is interpreted with respect to set inclusion order

12

Correctness of characterisation of $Sat(\exists \Box \Phi)$ (1)

Suppose $T = Sat(\exists \Box \Phi)$

 $\exists \Box \Phi$ also satisfies an "expansion law":

 $\Phi \Box E \bigcirc E \land \Phi \equiv \Phi \Box E$

$$T = Sat(\exists \Box \Phi)$$

= $Sat(\Phi \land \exists \bigcirc \exists \Box \Phi)$
= $Sat(\Phi) \cap \{s \in S \mid Post(s) \cap Sat(\exists \Box \Phi) \neq \{\}\}$
= $Sat(\Phi) \cap \{s \in S \mid Post(s) \cap T \neq \{\}\}$

So:

1. $Sat(\exists \Box \Phi) \subseteq Sat(\Phi)$ 2. $s \in T$ implies $Post(s) \cap T \neq \{\}$

Correctness of characterisation of $Sat(\exists \Box \Phi)$ (2)

Suppose T satisfies:

1. $T \subseteq Sat(\Phi)$ 2. $s \in T$ implies $Post(s) \cap T \neq \{\}$

Aim to show $T \subseteq Sat(\exists \Box \Phi)$

```
Suppose s \in T (for T non-empty), define \pi:
```

 $\pi[0] = s \in T$

 $\pi[1]$ is some state $s_1 \in Post(s_0) \cap T$, which exists as $s_0 \in T$ per (2)

 $\pi[2]$ is some state $s_2 \in Post(s_1) \cap T$, which exists as $s_1 \in T$ per (2)

...

```
Hence \pi[i] \in T \subseteq Sat(\Phi) for all i \ge 0 and \pi \models \Box \Phi and s \in Sat(\exists \Box \Phi)
As this applies to any s \in T, we have T \subseteq Sat(\exists \Box \Phi) as required
```

To this upplies to unity $s \in I$, we have $I \subseteq Sub(\Box \subseteq f)$ as required.

Subprocedure SatExistsUntil

```
Pseudocode for SatExistsUntil:

function SATEXISTSUNTIL(\Phi, \Psi):

T \leftarrow Sat(\Psi)

while {s \in Sat(\Phi) - T \mid Post(s) \cap T \neq \{\}\} \neq \{\} do:

s \leftarrow some state from {s \in Sat(\Phi) - T \mid Post(s) \cap T \neq \{\}\}

T \leftarrow T \cup \{s\}

end while

return T

end function
```

Recursive labelling algorithm

Pseudocode:

function SAT(Φ): switch Φ do: case \top : return Scase p: return $\{s \in S \mid p \in \mathcal{L}(s)\}$ case $\neg \Psi$: return $S - Sat(\Psi)$ case $\Psi \land \Xi$: return $Sat(\Psi) \cap Sat(\Xi)$ case $\exists \bigcirc \Psi$: return $\{s \in S \mid Post(s) \cap Sat(\Psi) \neq \{\}\}$ case $\exists (\Psi \text{ UNTIL } \Xi)$: return SatExistsUntil(Ψ, Ξ) case $\exists (\Box \Psi)$: return SatExistsSquare(Ψ) end function

Subprocedure SatExistsSquare

```
Pseudocode for SatExistsSquare:

function SATEXISTSQUARE(\Phi):

T \leftarrow Sat(\Phi)

while {s \in T \mid Post(s) \cap T = \{\}\} \neq \{\} do

s \leftarrow some state from {s \in T \mid Post(s) \cap T = \{\}\}

T \leftarrow T - \{s\}

end while

return T

end function
```

15

Recall $Sat(\exists (\Phi \text{ UNTIL } \Psi))$ is smallest $T \subseteq S$:

 $Sat(\Psi) \subseteq T$ $s \in Sat(\Phi)$ and $Post(s) \cap T \neq \{\}$ implies $s \in T$

This suggests an iterative procedure for computing $Sat(\exists (\Phi \text{ UNTIL } \Psi))$:

 $T_0 = Sat(\Psi)$ $T_{1+i} = T_i \cup \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \{\}\}$

Iterate until fixed point is reached

 T_i states can reach Ψ -state in at most i steps along Φ -path SatExistsUntil implements this idea

19

CTL model checking as reachability

SatExistsUntil and SatExistsSquare are both "backwards searches" In both cases:

- We start with an initial "guess"
- + Move backwards along \rightarrow transitions, refining guess
- Until we stop

CTL model checking can therefore be seen as a reachability problem

Correctness of algorithm relies crucially on:

- Finiteness of CTL models
- Fixed-point characterisation of CTL

Correctness of recursive labelling algorithm (2)

Recall $Sat(\exists \Box \Phi)$ is largest $T \subseteq S$:

 $T \subseteq Sat(\Phi) \qquad s \in T \text{ implies } Post(s) \cap T \neq \{\}$

This suggests an iterative procedure for computing $Sat(\exists \Box \Phi)$:

 $T_0 = Sat(\Phi)$ $T_{1+i} = T_i \cap \{s \in Sat(\Phi) \mid Post(s) \cap T_i \neq \{\}\}$

Iterate until fixedpoint is reached

SatExistsSquare implements this idea

Computational complexity

Above algorithm is naïve

Can improve performance by considering only strongly connected components during SatExistsSquare

Do not consider this here

Complexity of optimised variant of above algorithm is $O(|\Phi| \cdot (V + E))$:

- \cdot V is number of states in model
- $\cdot E$ is number of transitions in model
- $\cdot \mid \Phi \mid$ is "size" of formula being checked

- \cdot CTL model checking is a reachability problem
- Can model check CTL formulae by computing Sat-set of ENF equivalent
- Satisfaction-set can be computed recursively using a "labelling algorithm"
- Correctness of algorithm depends on fixed-point characterisation of CTL formulae
- Rely crucially on finite models for termination
- Variant of labelling algorithm is $O(|\Phi| \cdot (V+E))$ complexity