

Williaŵ Gates BuildiŶg
ϭϱ JJ ThoŵsoŶ AǀeŶue
Caŵďridge CBϯ ϬFD

ǁǁǁ.Đl.Đaŵ.aĐ.uk

INTRODUCTION TO COMPUTER GRAPHICS

COMPUTER SCIENCE TRIPOS PART IA

PETER ROBINSON & RAFAŁ MANTIUK

MICHAELMAS TERM ϮϬϭϲ

This haŶdout iŶĐludes Đopies of the slides that ǁill ďe used iŶ leĐtures. These Ŷotes do Ŷot
ĐoŶstitute a Đoŵplete traŶsĐript of all the leĐtures aŶd theǇ are Ŷot a suďstitute for teǆt ďooks. TheǇ
are iŶteŶded to giǀe a reasoŶaďle sǇŶopsis of the suďjeĐts disĐussed, ďut theǇ giǀe Ŷeither Đoŵplete
desĐriptioŶs Ŷor all the ďaĐkgrouŶd ŵaterial.

Material is ĐopǇright © Neil A DodgsoŶ, Peter RoďiŶsoŶ & Rafał MaŶtiuk, ϭ99ϲ‐ϮϬϭϲ, eǆĐept ǁhere
otherǁise Ŷoted.

All other ĐopǇright ŵaterial is ŵade aǀailaďle uŶder the UŶiǀersitǇ’s liĐeŶĐe.

All rights reserǀed.

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 1

Michaelmas Term 2016

Introduction to Computer Graphics
Peter Robinson & Rafał Mantiuk

www.cl.cam.ac.uk/~pr & ~rkm38

Eight lectures & three practical classes for Part IA CST

Two supervisions suggested

Two exam questions on Paper 3

2
What are Computer Graphics &

Image Processing?

Scene
description

Digital
image

Computer

graphics

Image analysis &

computer vision

Image processing

Image

capture

Image

display

3

Why bother with CG & IP?

ª All visual computer output depends on CG

u  printed output (laser/ink jet/phototypesetter)

u  monitor (CRT/LCD/plasma/DMD)

u  all visual computer output consists of real images generated
by the computer from some internal digital image

ª Much other visual imagery depends on CG & IP

u  TV & movie special effects & post-production

u  most books, magazines,
catalogues, brochures,
junk mail, newspapers,
packaging, posters, flyers

4

What are CG & IP used for?

ª 2D computer graphics
u  graphical user interfaces: Mac, Windows, X…

u  graphic design: posters, cereal packets…

u  typesetting: book publishing, report writing…

ª Image processing
u  photograph retouching: publishing, posters…

u  photocollaging: satellite imagery…

u  art: new forms of artwork based on digitised images

ª 3D computer graphics
u  visualisation: scientific, medical, architectural…

u  Computer Aided Design (CAD)

u  entertainment: special effect, games, movies…

Course Structure

ª Background
u  What is an image? Human vision. Resolution and quantisation. Storage

of images in memory. [1 lecture]

ª Rendering
u  Perspective. Reflection of light from surfaces and shading. Geometric

models. Ray tracing. [3 lectures]

ª Graphics pipeline
u  Polygonal mesh models. Transformations using matrices in 2D and 3D.

Homogeneous coordinates. Projection: orthographic and perspective.
[1 lecture]

ª Graphics hardware and modern OpenGL
u  Vertex processing. Rasterisation. Fragment processing. Working with

meshes and textures. [2 lectures]

ª Technology
u  Colour spaces. Output devices: brief overview of display and printer

technologies. [1 lecture]

5 6

Course books
ª Fundamentals of Computer Graphics

u  Shirley & Marschner
CRC Press 2015 (4th edition)

ª Computer Graphics: Principles & Practice

u  Hughes, van Dam, McGuire, Sklar et al.
Addison-Wesley 2013 (3rd edition)

ª OpenGL Programming Guide:
The Official Guide to Learning OpenGL Version 4.5 with SPIR-V

u  Kessenich, Sellers & Shreiner
Addison Wesley 2016 (7th edition and later)

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 2

Michaelmas Term 2016

7

Introduction to Computer Graphics

ª Background

u  What is an image?

u  Human vision

u  Resolution and quantisation

u  Storage of images in memory

ª Rendering

ª Graphics pipeline

ª Graphics hardware and modern OpenGL

ª Technology

8

 What is an image?

ª two dimensional function

ª value at any point is an intensity or colour

ª not digital!

9

 What is a digital image?

ª a contradiction in terms

u  if you can see it, it’s not digital

u  if it’s digital, it’s just a collection of numbers

ª a sampled and quantised version of a real image

ª a rectangular array of intensity or colour values

10

Image capture
ª a variety of devices can be used

u  scanners

n  line CCD (charge coupled device) in a flatbed scanner

n  spot detector in a drum scanner

u  cameras

n  area CCD

n CMOS camera chips

area CCD
www.hll.mpg.de

flatbed scanner
www.nuggetlab.com

Heidelberg
drum scanner

The image of the
Heidelberg drum
scanner and many
other images in this
section come from
“Handbook of Print
Media”,
by Helmutt Kipphan,
Springer-Verlag, 2001

11

Image capture example

A real image A digital image

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85 106
11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19 42 27

6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62 46 146
49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14 8 243 173

161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51 27 104 41 23

55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240 174 80 227 174 78
227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121 62 22 126 50 24

101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123 241 236 144 238 222
147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26 156 83 38 107 52 21

31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239 232 152 229 209 123 232
193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171 116 49 114 64 29 75 49

24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219 126 240 199 93 218 173 69

188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153 80 122 74 28 80 51 19 19
37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206 103 221 188 83 228 204 98 224

220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104 46 109 59 24 75 48 18 27 33

33 47 100 118 216 177 98 223 189 91 239 209 111 236 213 117 217 200 108 218 200 100 218 206
104 207 175 76 177 131 54 142 88 41 108 65 22 103 59 22 93 53 18 76 50 17 9 10 2 54

76 74 108 111 102 218 194 108 228 203 102 228 200 100 212 180 79 220 182 85 198 158 62 180
138 54 155 106 37 132 82 33 95 51 14 87 48 15 81 46 14 16 15 0 11 6 0 64 90 91 54

80 93 220 186 97 212 190 105 214 177 86 208 165 71 196 150 64 175 127 42 170 117 49 139

89 30 102 53 12 84 43 13 79 46 15 72 42 14 10 13 4 12 8 0 69 104 110 58 96 109 130
128 115 196 154 82 196 148 66 183 138 70 174 125 56 169 120 54 146 97 41 118 67 24 90

52 16 75 46 16 58 42 19 13 7 9 10 5 0 18 11 3 66 111 116 70 100 102 78 103 99 57
71 82 162 111 66 141 96 37 152 102 51 130 80 31 110 63 21 83 44 11 69 42 12 28 8 0

7 5 10 18 4 0 17 10 2 30 20 10 58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23

69 85 31 34 25 53 41 25 21 2 0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26
14 47 35 23

12

 Sampling

ª a digital image is a rectangular array of intensity
values

ª each value is called a pixel

u  “picture element”

ª sampling resolution is normally measured in pixels
per inch (ppi) or dots per inch (dpi)

u  computer monitors have a resolution around 100 ppi

u  laser and ink jet printers have resolutions between 300 and
1200 ppi

u  typesetters have resolutions between 1000 and 3000 ppi

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 3

Michaelmas Term 2016

13

Sampling resolution

2×2 4×4 8×8 16×16

256×256 128×128 64×64 32×32

14

 Quantisation

ª each intensity value is a number

ª for digital storage the intensity values must be
quantised

n  limits the number of different intensities that can be stored

n  limits the brightest intensity that can be stored

ª how many intensity levels are needed for human
consumption

n  8 bits often sufficient

n  some applications use 10 or 12 or 16 bits

n more detail later in the course

ª colour is stored as a set of numbers
n  usually as 3 numbers of 5–16 bits each

n more detail later in the course

15

Quantisation levels
8 bits

(256 levels)
7 bits

(128 levels)
6 bits

(64 levels)
5 bits

(32 levels)

1 bit
(2 levels)

2 bits
(4 levels)

3 bits
(8 levels)

4 bits
(16 levels)

16

What is required for vision?

ª illumination
n  some source of light

ª objects
n which reflect (or transmit) the light

ª eyes
n  to capture the light as an image

direct viewing transmission reflection

17

The spectrum

the short wavelength
end of the spectrum

is violet

the long wavelength
end of the spectrum
is red

violet blue green yellow red

visible light is only a tiny
part of the whole
electromagnetic spectrum

18

The workings of the human visual system

ª to understand the requirements of displays
(resolution, quantisation and colour) we need to
know how the human eye works...

The lens of the eye forms an
image of the world on the

retina: the back surface of
the eye

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 4

Michaelmas Term 2016

19

Structure of the human eye

ª the retina is an array of light
detection cells

ª the fovea is the high
resolution area of the retina

ª the optic nerve takes signals
from the retina to the visual
cortex in the brain

Fig. 2.1 from Gonzalez & Woods

20

The retina

ª consists of about 150 million light receptors

ª retina outputs information to the brain along the
optic nerve

u  there are about one million nerve fibres in the optic nerve

u  the retina performs significant pre-processing to reduce
the number of signals from 150M to 1M

u  pre-processing includes:
n  averaging multiple inputs together

n  colour signal processing

n  local edge detection

www.stlukeseye.com

21

Detailed structure of retinal processing

ª a lot of pre-processing
occurs in the retina
before signals are
passed to the brain

ª many light receptors
have their signals
combined into a single
signal to the brain

www.phys.ufl.edu/~avery/course/3400/vision/retina_schema.jpg

light comes in
from this direction

signals sent to
optic nerve

22

Light detectors in the retina

ª two classes
u  rods

u  cones

ª cones come in three types
u  sensitive to short, medium and long wavelengths

u  allow you to see in colour

ª the cones are concentrated in the macula, at the
centre of the retina

ª the fovea is a densely packed region in the centre of
the macula
u  contains the highest density of cones

u  provides the highest resolution vision

23

Foveal vision

ª 150,000 cones per square millimetre in the fovea
u  high resolution

u  colour

ª outside fovea: mostly rods
u  lower resolution

n  many rods’ inputs are combined to produce one signal to the visual
cortex in the brain

u  principally monochromatic
n  there are very few cones, so little input available to provide colour

information to the brain

u  provides peripheral vision
n  allows you to keep the high resolution region in context

n  without peripheral vision you would walk into things, be unable to find
things easily, and generally find life much more difficult

24
Distribution of rods & cones

Fig. 2.2 from Gonzalez & Woods
www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

cones in the fovea

rods & cones outside the fovea

(1) cones in the fovea are squished together more tightly than
outside the fovea: higher resolution vision;
(2) as the density of cones drops the gaps between them are filled
with rods

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 5

Michaelmas Term 2016

25

Colour vision

u  there are three types of cone

u  each responds to a different
spectrum

n  very roughly long, medium,
and short wavelengths

n  each has a response function:
l(λ), m(λ), s(λ)

u  different numbers of the different types

n  far fewer of the short wavelength receptors

n  so cannot see fine detail in blue

u  overall intensity response of the cones can be calculated

n  y(λ) = l(λ) + m(λ) + s(λ)

n  y = k ∫ P(λ) y(λ) dλ is the perceived luminance in the fovea

n  y = k ∫ P(λ) r(λ) dλ is the perceived luminance outside the fovea r(λ) is the response
function of the rods

26

Distribution of different cone types

ª this is about 1° of visual angle

ª distribution is:
u  7% short, 37% medium, 56% long

ª short wavelength receptors

u  regularly distributed

u  not in the central 1/3°

u  outside the fovea, only 1% of cones
are short

ª long & medium

u  about 3:2 ratio long:medium

www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

simulated cone distribution at
the centre of the fovea

27

Colour signals sent to the brain

u  the signal that is sent to the brain is pre-processed by the retina

u  this theory explains:
n  colour-blindness effects

n why red, yellow, green and blue are
perceptually important colours

n why you can see e.g. a yellowish red
but not a greenish red

+ + =long medium short luminance

– =long medium

+ – =long medium short yellow-blue

red-green

28

Chromatic metamerism

u  many different spectra will induce the same response in our
cones

n  the values of the three perceived values can be calculated as:

l  l = k ∫ P(λ) l(λ) dλ

l m = k ∫ P(λ) m(λ) dλ

l  s = k ∫ P(λ) s(λ) dλ

n  k is some constant, P(λ) is the spectrum of the light incident on the retina

n  two different spectra (e.g. P1(λ) and P2(λ)) can give the same values
of l, m, s

n we can thus fool the eye into seeing (almost) any colour by mixing
correct proportions of some small number of lights

29

Mixing coloured lights

ª by mixing different amounts of red, green,
and blue lights we can generate a wide
range of responses in the human eye

ª not all colours can be created in this way

red

g
re

e
n

blue

g
re

e
n

blue

light

off

red

light

fully on

30

Storing images in memory

ª 8 bits became a de facto standard for greyscale images

u  8 bits = 1 byte

u  16 bits is now being used more widely, 16 bits = 2 bytes

u  an 8 bit image of size W × H can be stored in a block of
W × H bytes

u  one way to do this is to store pixel[x][y] at memory
location base + x + W × y

n memory is 1D, images are 2D

base

base + 1 + 5 × 2

5

5

4
3

2

1

0

0 1 2 3 4

≡

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 6

Michaelmas Term 2016

31

Colour images

u  tend to be 24 bits per pixel
n  3 bytes: one red, one green, one blue

n  increasing use of 48 bits per pixel, 2 bytes per colour plane

u  can be stored as a contiguous block of memory
n  of size W × H × 3

u  more common to store each colour in a separate “plane”

n  each plane contains just W × H values

u  the idea of planes can be extended to other attributes associated
with each pixel

n  alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data
structure containing depth and coverage information), overlay planes (e.g. for
displaying pop-up menus) — see later in the course for details

32

The frame buffer

ª most computers have a special piece of memory
reserved for storage of the current image being
displayed

ª the frame buffer normally consists of dual-ported
Dynamic RAM (DRAM)

u  sometimes referred to as Video RAM (VRAM)

output  
stage

(e.g. DAC)
display

frame  
buffer

B
U

S

33

Introduction to Computer Graphics

ª Background

ª Rendering

u  Perspective

u  Reflection of light from surfaces and shading

u  Geometric models

u  Ray tracing

ª Graphics pipeline

ª Graphics hardware and modern OpenGL

ª Technology

Depth cues

34

Rendering depth

35 36

Perspective in photographs

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 7

Michaelmas Term 2016

Early perspective

ª Presentation at the
Temple

ª Ambrogio Lorenzetti 1342

ª Uffizi Gallery
Florence

37

Wrong perspective

ª Adoring saints

ª Lorenzo Monaco
1407-09

ª National Gallery
London

38

Renaissance perspective

ª Geometrical perspective
Filippo Brunelleschi 1413

ª Holy Trinity fresco

ª Masaccio (Tommaso di Ser Giovanni
di Simone) 1425

ª Santa Maria Novella
Florence

ª De pictura (On painting)
textbook by Leon Battista Alberti
1435

39

More perspective

ª The Annunciation
with Saint Emidius

ª Carlo Crivelli 1486

ª National Gallery London

40

False perspective

41 Calculating
perspective

42

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 8

Michaelmas Term 2016

Illumination and shading

ª Dürer’s method allows us to calculate what part of
the scene is visible in any pixel

ª But what colour should it be?

ª Depends on:

u  lighting

u  shadows

u  properties of surface material

43 44

How do surfaces reflect light?

θ θ θ θ θ

perfect specular
reflection
(mirror)

Imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

45

Comments on reflection

u  the surface can absorb some wavelengths of light
n  e.g. shiny gold or shiny copper

u  specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

u  plastics are good examples of surfaces with:

n  specular reflection in the light’s colour

n  diffuse reflection in the plastic’s colour

46

Calculating the shading of a surface
u  gross assumptions:

n  there is only diffuse (Lambertian) reflection

n  all light falling on a surface comes directly from a light source

l  there is no interaction between objects

n  no object casts shadows on any other

l  so can treat each surface as if it were the only object in the scene

n  light sources are considered to be infinitely distant from the object

l  the vector to the light is the same across the whole surface

u  observation:
n  the colour of a flat surface will be uniform across it, dependent only on the

colour & position of the object and the colour & position of the light sources

47

Diffuse shading calculation

L is a normalised vector pointing in

the direction of the light source

N is the normal to the surface

Il is the intensity of the light source

kd is the proportion of light which is

diffusely reflected by the surface

I is the intensity of the light reflected

by the surface

θ
L

N

I I k

I k N L

l d

l d

=

= ⋅

cos

()

θ

use this equation to calculate the colour of a pixel

48

Diffuse shading: comments

u  can have different Il and different kd for different wavelengths
(colours)

u  watch out for cosθ < 0
n  implies that the light is behind the polygon and so it cannot illuminate this

side of the polygon

u  do you use one-sided or two-sided surfaces?
n  one sided: only the side in the direction of the normal vector can be

illuminated

l  if cosθ < 0 then both sides are black

n  two sided: the sign of cosθ determines which side of the polygon is
illuminated

l  need to invert the sign of the intensity for the back side

u  this is essentially a simple one-parameter (θ) BRDF

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 9

Michaelmas Term 2016

49

Specular reflection

ª Phong developed an easy-to-
calculate approximation to
specular reflection

θ θ
α

N

R

V

L

θ θ

L is a normalised vector pointing in the

direction of the light source

R is the vector of perfect reflection

N is the normal to the surface

V is a normalised vector pointing at the
viewer

Il is the intensity of the light source

ks is the proportion of light which is
specularly reflected by the surface

n is Phong’s ad hoc “roughness” coefficient

I is the intensity of the specularly reflected
light

I I k

I k R V

l s

n

l s

n

=

= ⋅

cos

()

α

Phong Bui-Tuong, “Illumination for computer
generated pictures”, CACM, 18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40

50

Examples

diffuse reflection

specular
reflection

100% 75% 50% 25% 0%

100%

75%

50%

25%

0%

51

Shading: overall equation

u  the overall shading equation can thus be considered to be the
ambient illumination plus the diffuse and specular reflections
from each light source

n  the more lights there are in the scene, the longer this calculation will take

θ θ
α

N
R
i

V

L
i

I I k I k L N I k R V
a a i d i i s i

n

ii

= + ⋅ + ⋅∑∑ () ()

52

The gross assumptions revisited
u  diffuse reflection

u  approximate specular reflection

u  no shadows
n  need to do ray tracing or shadow mapping to get shadows

u  lights at infinity

n  can add local lights at the expense of more calculation

l need to interpolate the L vector

u  no interaction between surfaces

n  cheat!

l  assume that all light reflected off all other surfaces onto a given surface
can be amalgamated into a single constant term: “ambient illumination”,
add this onto the diffuse and specular illumination

Ray tracing

ª Identify point on surface and calculate illumination

ª Given a set of 3D objects, shoot a ray from the eye
through the centre of every pixel and see what
surfaces it hits

53

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

54
Ray tracing: examples

ray tracing easily handles reflection, refraction,
shadows and blur

ray tracing is computationally expensive

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 10

Michaelmas Term 2016

55

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane

determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray

IF the intersection is the closest (so far) to the eye
record intersection point and object

END IF ;

END IF ;
END FOR ;

set pixel’s colour to that of the object at the closest intersection point
END FOR ;

56

Intersection of a ray with an object 1

u  plane

u  polygon or disc
n  intersection the ray with the plane of the polygon

l  as above

n  then check to see whether the intersection point lies inside the polygon

l  a 2D geometry problem (which is simple for a disc)

O

D

ray

plane

: ,

:

P O sD s

P N d

= + ≥

⋅ + =

0

0

N

s
d N O

N D
= −

+ ⋅

⋅

57

Intersection of a ray with an object 2
u  sphere

u  cylinder, cone, torus
n  all similar to sphere

n  try them as an exercise

O

D C
r

()

() ()

a

db
s

a

db
s

acbd

rCOCOc

CODb

DDa

2

2

4

2

2

1

2

2

−−
=

+−
=

−=

−−⋅−=

−⋅=

⋅=

d real d imaginary

0)()(:sphere

0,:ray

2
=−−⋅−

≥+=

rCPCP

ssDOP

58

Ray tracing: shading

u  once you have the intersection of a
ray with the nearest object you can
also:

n  calculate the normal to the object at
that intersection point

n  shoot rays from that point to all of the
light sources, and calculate the diffuse
and specular reflections off the object
at that point

l  this (plus ambient illumination)
gives the colour of the object (at
that point)

O

D C
r

N

light 1

light 2

59

Ray tracing: shadows

u  because you are tracing
rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow

n  also need to watch for self-
shadowing

O

D C
r

N

light 1

light 2

light 3

60

Ray tracing: reflection

u  if a surface is totally or
partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection

n  this is perfect (mirror)
reflection

O

N
1

light

N
2

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 11

Michaelmas Term 2016

61

Ray tracing: transparency & refraction

u  objects can be totally or
partially transparent

n  this allows objects behind the
current one to be seen through
it

u  transparent objects can have
refractive indices

n  bending the rays as they pass
through the objects

u  transparency + reflection
means that a ray can split into
two parts

O

light

D
0

D
1

D'
1

D'
2

D
2

62

Sampling

u  we have assumed so far that each ray
passes through the centre of a pixel

n  i.e. the value for each pixel is the colour of
the object which happens to lie exactly
under the centre of the pixel

u  this leads to:
n  stair step (jagged) edges to objects

n  small objects being missed completely

n  thin objects being missed completely or
split into small pieces

63

Anti-aliasing

u  these artefacts (and others) are jointly known as aliasing

u  methods of ameliorating the effects of aliasing are known as
anti-aliasing

n  in signal processing aliasing is a precisely defined technical term for a

particular kind of artefact

n  in computer graphics its meaning has expanded to include most
undesirable effects that can occur in the image

l  this is because the same anti-aliasing techniques which ameliorate
true aliasing artefacts also ameliorate most of the other artefacts

64

Sampling in ray tracing

u  single point
n  shoot a single ray through the pixel’s

centre

u  super-sampling for anti-aliasing

n  shoot multiple rays through the pixel
and average the result

n  regular grid, random, jittered, Poisson
disc

u  adaptive super-sampling

n  shoot a few rays through the pixel,
check the variance of the resulting
values, if similar enough stop, otherwise
shoot some more rays

65

Types of super-sampling 1

u  regular grid
n  divide the pixel into a number of sub-pixels and

shoot a ray through the centre of each

n  problem: can still lead to noticable aliasing unless
a very high resolution sub-pixel grid is used

u  random
n  shoot N rays at random points in the pixel

n  replaces aliasing artefacts with noise artefacts

l  the eye is far less sensitive to noise than to
aliasing

12 8 4

66

Types of super-sampling 2

u  Poisson disc
n  shoot N rays at random points in

the pixel with the proviso that no
two rays shall pass through the
pixel closer than ε to one another

n  for N rays this produces a better
looking image than pure random
sampling

n  very hard to implement properly

Poisson disc pure random

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 12

Michaelmas Term 2016

67

Types of super-sampling 3

u  jittered
n  divide pixel into N sub-pixels and

shoot one ray at a random point in
each sub-pixel

n  an approximation to Poisson disc
sampling

n  for N rays it is better than pure
random sampling

n  easy to implement

jittered pure randomPoisson disc

68
More reasons for wanting to take

multiple samples per pixel
u  super-sampling is only one reason why we might want to take

multiple samples per pixel

u  many effects can be achieved by distributing the multiple samples
over some range
n  called distributed ray tracing

l N.B. distributed means distributed over a range of values

u  can work in two ways

� each of the multiple rays shot through a pixel is allocated a random value from
the relevant distribution(s)

l  all effects can be achieved this way with sufficient rays per pixel

� each ray spawns multiple rays when it hits an object

l  this alternative can be used, for example, for area lights

69

Examples of distributed ray tracing
n  distribute the samples for a pixel over the pixel area

l  get random (or jittered) super-sampling

l used for anti-aliasing

n  distribute the rays going to a light source over some area

l  allows area light sources in addition to point and directional light sources

l produces soft shadows with penumbrae

n  distribute the camera position over some area

l  allows simulation of a camera with a finite aperture lens

l produces depth of field effects

n  distribute the samples in time

l produces motion blur effects on any moving objects

70

Anti-aliasing

one sample per pixel multiple samples per pixel

71

Area vs point light source

an area light source produces soft shadows a point light source produces hard shadows

72
Finite aperture

1, 120

left, a pinhole camera

below, a finite aperture camera

below left, 12 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects

at the correct distance are in focus

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 13

Michaelmas Term 2016

73
Distributed ray tracing for

specular reflection

u  previously we could only
calculate the effect of perfect
reflection

u  we can now distribute the
reflected rays over the range of
directions from which specularly
reflected light could come

u  provides a method of handling
some of the inter-reflections
between objects in the scene

u  requires a very large number of
rays per pixel

O

light

74

Handling direct illumination

light

light

ª diffuse reflection
u  handled by ray tracing and

polygon scan conversion

u  assumes that the object is a
perfect Lambertian reflector

ª specular reflection

u  also handled by ray tracing and
polygon scan conversion

u  use Phong’s approximation to
true specular reflection

75

Handing indirect illumination: 1

light

light

ª diffuse to specular
u  handled by distributed ray

tracing

ª specular to specular

u  also handled by
distributed ray tracing

76

Handing indirect illumination: 2

light

light

ª diffuse to diffuse
u  handled by radiosity

n  covered in the Part II
Advanced Graphics
course

ª specular to diffuse
u  handled by no usable

algorithm

u  some research work has
been done on this but
uses enormous amounts
of CPU time

77

Multiple inter-reflection

ª light may reflect off many surfaces on its way
from the light to the camera

ª standard ray tracing and polygon scan
conversion can handle a single diffuse or
specular bounce

ª distributed ray tracing can handle multiple
specular bounces

ª radiosity can handle multiple diffuse bounces

ª the general case cannot be handled by any
efficient algorithm

(diffuse | specular)*

diffuse | specular

(diffuse | specular) (specular)*

(diffuse)*

(diffuse | specular)*

78

Introduction to Computer Graphics

ª Background

ª Rendering

ª Graphics pipeline

u  Polygonal mesh models

u  Transformations using matrices in 2D and 3D

u  Homogeneous coordinates

u  Projection: orthographic and perspective

ª Graphics hardware and modern OpenGL

ª Technology

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 14

Michaelmas Term 2016

Unfortunately…

ª Ray tracing is computationally expensive

u  used by hobbyists and for super-high visual quality

ª Video games and user interfaces need something faster

ª So:

u  Model surfaces as polyhedra – meshes of polygons

u  Use composition to build scenes

u  Apply perspective transformation
and project into plane of screen

u  Work out which surface was closest

u  Fill pixels with colour of nearest visible polygon

ª Modern graphics cards have hardware to support this

79

Three-dimensional objects

u  Polyhedral surfaces are made up from
meshes of multiple connected polygons

u  Polygonal meshes

n  open or closed

n manifold or non-manifold

u  Curved surfaces

n must be converted to polygons to be drawn

80

81

Surfaces in 3D: polygons

ª Easier to consider planar polygons

u  3 vertices (triangle) must be planar

u  > 3 vertices, not necessarily planar

this vertex is in
front of the other

three, which are all

in the same plane

a non-planar
“polygon” rotate the polygon

about the vertical axis

should the result be this  

or this?

82

Splitting polygons into triangles

u  Most Graphics Processing Units (GPUs) are optimised to
draw triangles

u  Split polygons with more than three vertices into triangles

which is preferable?

?

83

2D transformations

ª scale

ª rotate

ª translate

ª (shear)

ª why?
u  it is extremely useful to be

able to transform predefined
objects to an arbitrary
location, orientation, and size

u  any reasonable graphics
package will include
transforms

n  2D è Postscript

n  3D è OpenGL

84

Basic 2D transformations
u  scale

n  about origin

n  by factor m

u  rotate
n  about origin

n  by angle θ

u  translate

n  along vector (xo,yo)

u  shear

n  parallel to x axis

n  by factor a

x mx

y my

'

'

=

=

x x y

y x y

' cos sin

' sin cos

= −

= +

θ θ

θ θ

x x x

y y y

o

o

'

'

= +

= +

x x ay

y y

'

'

= +

=

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 15

Michaelmas Term 2016

85

Matrix representation of transformations

ª scale
u  about origin, factor m

ª do nothing

u  identity

x

y

m

m

x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

0

0

x

y

x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

1 0

0 1

x

y

a x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

1

0 1

ª rotate
u  about origin, angle θ

ª shear

u  parallel to x axis, factor a

x

y

x

y

'

'

cos sin

sin cos

⎡

⎣
⎢
⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

θ θ

θ θ

86

Homogeneous 2D co-ordinates

u  translations cannot be represented using simple 2D matrix
multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

u  an infinite number of homogeneous co-ordinates map to
every 2D point

u  w=0 represents a point at infinity

u  usually take the inverse transform to be:

()(, ,) ,x y w x
w

y

w
≡

(,) (, ,)x y x y≡ 1

87

Matrices in homogeneous co-ordinates
ª scale

u  about origin, factor m  

 

 

 

 

ª do nothing

u  identity

x

y

w

m

m

x

y

w

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0 1

ª rotate

u  about origin, angle θ 

 

 

 

 

ª shear

u  parallel to x axis, factor a  
 

x

y

w

x

y

w

'

'

'

cos sin

sin cos

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ θ

θ θ

0

0

0 0 1

x

y

w

a x

y

w

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0 1 0

0 0 1

x

y

w

x

y

w

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

88

Translation by matrix algebra

x

y

w

x

y

x

y

w

o
'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0 1

0 0 1

0

w w'=y y wy
o

'= +x x wx
o

'= +

x

w

x

w
x

'

'
= +

0 0

'

'
y

w

y

w

y
+=

In conventional coordinates

In homogeneous coordinates

89

Concatenating transformations

u  often necessary to perform more than one transformation on the
same object

u  can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

x

y

w

m

m

x

y

w

x

y

w

a x

y

w

' '

' '

' '

'

'

'

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

x

y

w

m

m

a x

y

w

m ma

m

x

y

w

' '

' '

' '

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

0

0 0

0 0 1

shearscale

shearscale both

90

Transformation are not commutative

ª be careful of the order in which you concatenate
transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2

2

2

2

1

2

1

2

2

2

1

2

2

2

1

2

1

2

1

2

1

2

1

2

0

0

0 0 1

2 0 0

0 1 0

0 0 1

0

0

0 0 1

0

0

0 0 1

−

− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

scale

rotatescale then rotate

rotate then scale

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 16

Michaelmas Term 2016

91

Scaling about an arbitrary point

u  scale by a factor m about point (xo,yo)
Œ translate point (xo,yo) to the origin

� scale by a factor m about the origin

� translate the origin to (xo,yo)

(xo,yo)

(0,0)

x

y

w

x

y

x

y

w

o

o

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0 1

0 0 1

x

y

w

m

m

x

y

w

' '

' '

' '

'

'

'

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0 1

x

y

w

x

y

x

y

w

o

o

' ' '

' ' '

' ' '

' '

' '

' '

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0 1

0 0 1

x

y

w

x

y

m

m

x

y

x

y

w

o

o

o

o

' ' '

' ' '

' ' '

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0

0 1

0 0 1

0 0

0 0

0 0 1

1 0

0 1

0 0 1

Exercise: show how to
perform rotation about

an arbitrary point

Œ � �

92

3D transformations
u  3D homogeneous co-ordinates

u  3D transformation matrices

(, , ,) (, ,)x y z w x
w

y

w
z
w

→

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

m

m

m

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cos sin

sin cos

θ θ

θ θ

−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0

0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

θ θ

θ θ

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cos sin

sin cos

θ θ

θ θ

0 0

0 1 0 0

0 0

0 0 0 1

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

translation identity

scale

rotation about x-axis

rotation about y-axis rotation about z-axis

93

3D transformations are not commutative

x

y
z

x

x
z

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces

↔

↔

↔

94

Model transformation 1
n  the graphics package Open Inventor defines a cylinder to be:

l centre at the origin, (0,0,0)

l  radius 1 unit

l height 2 units, aligned along the y-axis

n  this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

n we want to draw a cylinder of:

l  radius 2 units

l  the centres of its two ends located at (1,2,3) and (2,4,5)

v its length is thus 3 units

n what transforms are required?
and in what order should they be applied?

x

y

2

2

Model transformation 2

ª order is important:

u  scale first

u  rotate

u  translate last

ª scaling and translation are straightforward

95

x

y

2

2

x

y

3

4

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

0200

005.10

0002

S

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

4100

3010

5.1001

T

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S

Model transformation 3

ª rotation is a multi-step process

u  break the rotation into steps, each of which is rotation
about a principal axis

u  work these out by taking the desired orientation back to
the original axis-aligned position

l  the centres of its two ends located at (1,2,3) and
(2,4,5)

u  desired axis: (2,4,5)–(1,2,3) = (1,2,2)

u  original axis: y-axis = (0,1,0)

96

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 17

Michaelmas Term 2016

Model transformation 4

u  desired axis: (2,4,5)–(1,2,3) = (1,2,2)

u  original axis: y-axis = (0,1,0)

u  zero the z-coordinate by rotating about the x-axis

97

22

1

22

2
arcsinθ

1000

0θcosθsin0

0θsinθcos0

0001

+
−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=R

y

z

)2,2,1(

()
)0,8,1(

0,22,1 22

=

+

θ

Model transformation 5

u  then zero the x-coordinate by rotating about the z-axis

u  we now have the object’s axis pointing along the y-axis

98

2
2

2

81

1
arcsinφ

1000

0100

00φcosφsin

00φsinφcos

+

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=R

x

y

)0,8,1(

)0,3,0(

0,81,0
2

2

=

⎟
⎠

⎞
⎜
⎝

⎛
+

ϕ

Model transformation 6

ª the overall transformation is:

u  first scale

u  then take the inverse of the rotation we just calculated

u  finally translate to the correct position

99

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
××××=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−−

w

z

y

x

w

z

y

x

SRRT
1

2

1

1

'

'

'

'

Application: display multiple instances

u  transformations allow you to define an object at one
location and then place multiple instances in your scene

100

101

3D ð 2D projection

ª to make a picture

u  3D world is projected to a 2D image

n  like a camera taking a photograph

n  the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)  
centre (0,2,9)

e.g. box size (2,4,3)  
centre (7, 2, 9)  

orientation (27º, 156º)

102

Types of projection

ª parallel

u  e.g.

u  useful in CAD, architecture, etc

u  looks unrealistic

ª perspective

u  e.g.

u  things get smaller as they get farther away

u  looks realistic

n  this is how cameras work

(, ,) (,)x y z x y→

(, ,) (,)x y z x
z

y

z
→

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 18

Michaelmas Term 2016

103

Geometry of perspective projection

y

z

d

(, ,)x y z
(', ',)x y d

x x
d

z

y y
d

z

'

'

=

=

(, ,)0 0 0

104

Projection as a matrix operation

x x
d

z

y y
d

z

'

'

=

=⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10/100

/1000

0010

0001

/

/1 z

y

x

d

d

dz

d

y

x

z
z

1
'=

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values. ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

wz

wy

wx

w

z

y

x

/

/

/

 remember

105
Perspective projection

with an arbitrary camera
u  we have assumed that:

n  screen centre at (0,0,d)

n  screen parallel to xy-plane

n  z-axis into screen

n  y-axis up and x-axis to the right

n  eye (camera) at origin (0,0,0)

u  for an arbitrary camera we can either:

n work out equations for projecting objects about an arbitrary point
onto an arbitrary plane

n  transform all objects into our standard co-ordinate system (viewing
co-ordinates) and use the above assumptions

106

A variety of transformations

n  the modelling transform and viewing transform can be multiplied together to
produce a single matrix taking an object directly from object co-ordinates into
viewing co-ordinates

n  either or both of the modelling transform and viewing transform matrices can
be the identity matrix

l  e.g. objects can be specified directly in viewing co-ordinates, or directly in
world co-ordinates

n  this is a useful set of transforms, not a hard and fast model of how things
should be done

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinates
projection

object in
object

co-ordinates modelling
transform

107

Viewing transformation 1

ª the problem:

u  to transform an arbitrary co-ordinate system to the
default viewing co-ordinate system

ª camera specification in world co-ordinates

u  eye (camera) at (ex,ey,ez)

u  look point (centre of screen) at (lx,ly,lz)

u  up along vector (ux,uy,uz)

n perpendicular to

world

co-ordinates

viewing

co-ordinatesviewing
transform

u

e

l

el

108

Viewing transformation 2

u  translate eye point, (ex,ey,ez), to origin, (0,0,0)

u  scale so that eye point to look point distance, , is distance
from origin to screen centre, d

el

T =

−

−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0

0 1 0

0 0 1

0 0 0 1

e

e

e

x

y

z

el S

el

el

el

= − + − + − =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0

0 0 0

0 0 0

0 0 0 1

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 19

Michaelmas Term 2016

109

Viewing transformation 3

u  need to align line with z-axis
n  first transform e and l into new co-ordinate system

n  then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''= × × = = × ×

22

1

''''

''
arccosθ

1000

0θcos0θsin

0010

0θsin0θcos

zx

z

ll

l

+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=R

x

z

(' ' , ' ' , ' ')l l lx y z

()0
2 2

, ' ' , ' ' ' 'l l ly x z+

θ

110

Viewing transformation 4

u  having rotated the viewing vector onto the yz plane, rotate it
about the x-axis so that it aligns with the z-axis

22

2

''''''

'''
arccosφ

1000

0φcosφsin0

0φsinφcos0

0001

zy

z

ll

l

+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=R

y

z

(, ' ' ' , ' ' ')0 l ly z

()0 0

0 0

2 2
, , ' ' ' ' ' '

(, ,)

l l

d

y z+

=

ϕ

l R l''' ''= ×
1

111

Viewing transformation 5

u  the final step is to ensure that the up vector actually points up,
i.e. along the positive y-axis

n  actually need to rotate the up vector about the z-axis so that it lies in the
positive y half of the yz plane

u R R u'''' = × ×
2 1

why don’t we need to
multiply u by S or T?

u is a vector rather than
a point, vectors do not
get translated

scaling u by a uniform
scaling matrix would
make no difference to the
direction in which it
points

22

3

''''''''

''''
arccosψ

1000

0100

00ψcosψsin

00ψsinψcos

yx

y

uu

u

+
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=R

112

Viewing transformation 6

u  we can now transform any point in world co-ordinates to the
equivalent point in viewing co-ordinate

u  in particular:

u  the matrices depend only on e, l, and u, so they can be pre-
multiplied together

world

co-ordinates

viewing

co-ordinatesviewing
transform

x

y

z

w

x

y

z

w

'

'

'

'

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= × × × × ×

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

R R R S T
3 2 1

e l→ →(, ,) (, ,)0 0 0 0 0 d

M R R R S T= × × × ×
3 2 1

Illumination & shading
ª  Drawing polygons with uniform colours gives poor results

ª  Interpolate colours across polygons

113 114

Illumination & shading

ª Interpolating colours across polygons needs

u  colour at each vertex

u  algorithm to blend between the colours across the polygon

ª Works for ambient lighting and diffuse reflection

ª Specular reflection requires more information than just
the colour

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 20

Michaelmas Term 2016

115

Gouraud shading
u  for a polygonal model, calculate the diffuse illumination at each
vertex

n  calculate the normal at the vertex, and use this to calculate the diffuse
illumination at that point

n  normal can be calculated directly if the polygonal model was derived from a
curved surface

u  interpolate the colour between the
vertices across the polygon

u  surface will look smoothly curved
n  rather than looking like a set of polygons

n  surface outline will still look polygonal

[(', '), ,(, ,)]x y z r g b1 1 1 1 1 1

[(', '), ,
(, ,)]
x y z
r g b
2 2 2

2 2 2

[(', '), ,(, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

116

Flat vs Gouraud shading

u  note how the interior is smoothly
shaded but the outline remains
polygonal

http://computer.howstuffworks.com/question484.htm

117

Phong shading

u  similar to Gouraud shading, but calculate the specular component
in addition to the diffuse component

u  therefore need to interpolate the normal across the polygon in
order to be able to calculate the reflection vector

u  N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence

[(', '), ,(, ,),]x y z r g b1 1 1 1 1 1 1N

[(', '), ,
(, ,),]
x y z
r g b
2 2 2

2 2 2 2N

[(', '), ,(, ,),]x y z r g b3 3 3 3 3 3 3N

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

118

Introduction to Computer Graphics

ª Background

ª Rendering

ª Graphics pipeline

ª Graphics hardware and modern OpenGL
u  GPU & APIs

u  Example OpenGL code

u  OpenGL Rendering pipeline

u  GLSL

u  Transformations & vertex shaders

u  Raster buffers

u  Textures

ª Technology

What is a GPU?

}  Graphics Processing Unit

}  Like CPU (Central
Processing Unit) but for
processing graphics

}  Optimized for floating point

operations on large arrays
of data

}  Vertices, normals, pixels, etc.

119

Transistor count

Intell 8-core Core i7 Haswell-E Nvidia GeForce GTX Titan X

2,600,000,000 transistors 8,000,000,000 transistors

120

What does a GPU do

}  Performs all low-level tasks & a lot of high-level tasks

}  Clipping, rasterisation, hidden surface removal, …

}  Essentially draws millions of triangles very efficiently

}  Procedural shading, texturing, animation, simulation, …

}  Video rendering, de- and encoding, deinterlacing, ...

}  Physics engines

}  Full programmability at several pipeline stages

}  In the recent years GPUs became like CPU

}  fully programmable

}  but optimized for massively parallel operations

121

What makes GPU so fast?

}  3D rendering can be very efficiently parallelized

}  Millions of pixels

}  Millions of triangles

}  Many operations executed at the same time

}  This is why modern GPUs

}  Contain between hundreds and thousands of SIMD processors

}  Single Instruction Multiple Data – operate on large arrays of data

}  >>400 GB/s memory access

}  This is much higher bandwidth than CPU

}  But peak performance can be expected for very specific operations

122

GPU APIs

(Application Programming Interfaces)

OpenGL

}  Multi-platform

}  Open standard API

}  Focus on general 3D
applications

}  Open GL driver manages
the resources

DirectX

}  Microsoft Windows / Xbox

}  Proprietary API

}  Focus on games

}  Application manages
resources

}  Nearly the same functionality

}  Similar performance

123

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

One more API

}  Vulkan – cross platform, open standard

}  Low-overhead API for high performance 3D graphics

}  Compared to OpenGL / DirectX

}  Reduces CPU load

}  Better support of multi-CPU-core architectures

}  Finer control of GPU

}  But

}  The code for drawing a few primitives can take 1000s line of
code

}  Intended for game engines and code that must be very well
optimized

124

GPU for general computing

}  OpenGL and DirectX are not meant to be used for
general purpose computing

}  Example: physical simulation

}  CUDA – NVidia’s architecture for parallel computing

}  C-like programming language

}  With special API for parallel instructions

}  Requires NVidia GPU

}  OpenCL – Similar to CUDA, but open standard

}  Can run on both GPU and CPU

}  Supported by AMD, Intel and Nvidia, Qualcomm, Apple, …

125

GPU and mobile devices

}  OpenGL ES 1.0-3.2

}  Stripped version of OpenGL

}  Removed functionality that is not strictly necessary on mobile
devices

}  Devices

}  iOS: iPad, iPhone, iPod Touch

}  Android phones

}  PlayStation 3

}  Nintendo 3DS

}  and many more

 OpenGL ES 2.0 rendering (iOS)

126

WebGL

}  JavaScript library for 3D rendering in a web browser

}  WebGL 1.0 - based on OpenGL ES 2.0

}  Most modern browsers
support WebGL

}  Microsoft browsers are lagging behind

}  Potentially could be used to create
3D games in a browser

}  and replace Adobe Flash

http://zygotebody.com/

127

OpenGL in Java

}  Standard Java API does not include OpenGL interface

}  But several wrapper libraries exist

}  Java OpenGL – JOGL

}  Lightweight Java Game Library - LWJGL

}  We will use LWJGL 3

}  Seems to be better maintained

}  Access to other APIs (OpenCL, OpenAL, …)

}  We also need a linear algebra library

}  JOML – Java OpenGL Math Library

}  Operations on 2, 3, 4-dimensional vectors and matrices

128

OpenGL History

}  Proprietary library IRIS GL by SGI

}  OpenGL 1.0 (1992)

}  OpenGL 1.2 (1998)

}  OpenGL 2.0 (2004)

}  GLSL

}  Non-power-of-two (NPOT)
textures

}  OpenGL 3.0 (2008)

}  Major overhaul of the API

}  Many features from previous
versions depreciated

}  OpenGL 3.2 (2009)
}  Core and Compatibility profiles

}  Geometry shaders

}  OpenGL 4.0 (2010)
}  Catching up with Direct3D 11

}  OpenGL 4.5 (2014)

129

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

OpenGL example code - overview

Let us draw some triangles

}  Initialize rendering window & OpenGL
context

}  Send the geometry (vertices, triangles,
normals) to the GPU

}  Load and compile Shaders

Initialize OpenGL

Set up inputs

Draw a frame

}  Clear the screen buffer

}  Set the model-view-projection matrix

}  Render geometry

}  Flip the screen buffers

Free resources

131

Geometry objects in OpenGL (OO view)

132

OpenGL as a state-machine

If OpenGL was OO API:

VertexArray va = new
VertexArray();

ArrayBuffer vertices = new
ArrayBuffer(my_data);

va.add(vertices);

But it is not, and you must do:

int va = glGenVertexArrays();

glBindVertexArray(va); // va
becomes “active” VertexArray

int vertices = glGenBuffers();

glBindBuffer(GL_ARRAY_BUFFE
R, vertex_handle); // This adds
vertices to currently bound
VertexArray

133

A more complete example

int vertexArrayObj = glGenVertexArrays(); // Create a name

glBindVertexArray(vertexArrayObj); // Bind a VertexArray

float[] vertPositions = new float[] { -1, -1, 0, 0, 1, 0, 1, -1, 0 }; // x, y, z, x, y, z …

// Java specific code for transforming float[] into an OpenGL-friendly format

FloatBuffer vertex_buffer = BufferUtils.createFloatBuffer(vertPositions.length);

vertex_buffer.put(vertPositions); // Put the vertex array into the CPU buffer

vertex_buffer.flip(); // "flip" is used to change the buffer from
read to write mode

int vertex_handle = glGenBuffers(); // Get an OGL name for a buffer object

glBindBuffer(GL_ARRAY_BUFFER, vertex_handle); // Bring that buffer object
into existence on GPU

glBufferData(GL_ARRAY_BUFFER, vertex_buffer, GL_STATIC_DRAW); //
Load the GPU buffer object with data

134

Note on LWJGL

}  The OpenGL functions and constants can be found in the
LWJGL packages:

}  org.lwjgl.opengl.GL11

}  org.lwjgl.opengl.GL15

}  org.lwjgl.opengl.GL20

}  org.lwjgl.opengl.GL30

}  …

}  For simplicity, package names are omitted in all examples
shown in these slides

135

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Let us draw some triangles

}  Initialize rendering window & OpenGL
context

}  Send the geometry (vertices, triangles,
normals) to the GPU

}  Load and compile Shaders

Initialize OpenGL

Set up inputs

Draw a frame

}  Clear the screen buffer

}  Set the model-view-projection matrix

}  Render geometry

}  Flip the screen buffers

Free resources

136

Rendering 1 of 2

// Step 1: Pass a new model-view-projection matrix to the vertex shader

Matrix4f mvp_matrix; // Model-view-projection matrix

mvp_matrix = new
Matrix4f(camera.getProjectionMatrix()).mul(camera.getViewMatrix());

int mvp_location = glGetUniformLocation(shaders.getHandle(), "mvp_matrix");

FloatBuffer mvp_buffer = BufferUtils.createFloatBuffer(16);

mvp_matrix.get(mvp_buffer);

glUniformMatrix4fv(mvp_location, false, mvp_buffer);

// Step 2: Clear the buffer

glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // Set the background colour to dark grey

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

137

Rendering 2 of 2

// Step 3: Draw our VertexArray as triangles

glBindVertexArray(vertexArrayObj); // Bind the existing VertexArray object

glDrawElements(GL_TRIANGLES, no_of_triangles, GL_UNSIGNED_INT, 0); //
Draw it as triangles

glBindVertexArray(0); // Remove the binding

// Step 4: Swap the draw and back buffers to display the rendered image

glfwSwapBuffers(window);

glfwPollEvents();

138

OpenGL rendering pipeline

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

140

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Processing of vertices, normals,
uv texture coordinates.

141

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
setup

[Optional] Create new
primitives by tessellating existing

primitives.

142

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

[Optional] Operate on
tessellated geometry. Can create

new primitives.

143

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Organizes vertices into
primitives and prepares them for

rendering.

144

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

145

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Generates fragments (pixels) to
be drawn for each primitive.

Interpolates vertex attributes.

scanlines

146

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shader

Clipping Rasterization

Fragment
shader

Screen
buffer

Programmable
stages

Fixed stages

Primitive
assembly

Computes colour per each
fragment (pixel). Can lookup
colour in the texture. Can
modify pixels’ depth value.

147

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

GLSL - fundamentals

Shaders

}  Shaders are small programs executed on a GPU

}  Executed for each vertex, each pixel (fragment), etc.

}  They are written in GLSL (OpenGL Shading Language)

}  Similar to C++ and Java

}  Primitive (int, float) and aggregate data types (ivec3, vec3)

}  Structures and arrays

}  Arithmetic operations on scalars, vectors and matrices

}  Flow control: if, switch, for, while

}  Functions

149

Example of a vertex shader
#version 330

in vec3 position; // vertex position in local space

in vec3 normal; // vertex normal in local space

out vec3 frag_normal; // fragment normal in world space

uniform mat4 mvp_matrix; // model-view-projection matrix

void main()

{

 // Typicaly normal is transformed by the model matrix

 // Since the model matrix is identity in our case, we do not modify normals

 frag_normal = normal;

 // The position is projected to the screen coordinates using mvp_matrix

 gl_Position = mvp_matrix * vec4(position, 1.0);

}

Why is this piece
of code needed?

150

Data types

}  Basic types

}  float, double, int, uint, bool

}  Aggregate types

}  float: vec2, vec3, vec4; mat2, mat3, mat4

}  double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4

}  int: ivec2, ivec3, ivec4

}  uint: uvec2, uvec3, uvec4

}  bool: bvec2, bvec3, bvec4

vec3 V = vec3(1.0, 2.0, 3.0);

mat3 M = mat3(1.0, 2.0, 3.0,

 4.0, 5.0, 6.0,

 7.0, 8.0, 9.0);

151

Indexing components in aggregate types

}  Subscripts: rgba, xyzw, stpq (work exactly the same)

}  float red = color.r;

}  float v_y = velocity.y;

but also

}  float red = color.x;

}  float v_y = velocity.g;

}  With 0-base index:

}  float red = color[0];

}  float m22 = M[1][1]; // second row and column of matrix M

152

Swizzling

You can select the elements of the aggregate type:

}  vec4 rgba_color(1.0, 1.0, 0.0, 1.0);

}  vec3 rgb_color = rgba_color.rgb;

}  vec3 bgr_color = rgba_color.bgr;

}  vec3 luma = rgba_color.ggg;

153

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Arrays

}  Similar to C

float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

}  Size can be checked with “length()”

for(int i = 0; i < lut.length(); i++) {

 lut[i] *= 2;

}

154

Storage qualifiers

}  const – read-only, fixed at compile time

}  in – input to the shader

}  out	– output from the shader

}  uniform – parameter passed from the application (Java),
constant for the primitive

}  buffer – shared with the application

}  shared – shared with local work group (compute
shaders only)

}  Example: const	float	pi=3.14;	

155

Shader inputs and outputs

Vertex
shader

Fragment
shader

out vec3 frag_normal

in vec3 frag_normal

Vertex attribute
interpolation

in vec3 position

in vec3 normal

out vec3 colour

ArrayBuffer (vertices)

ArrayBuffer (normals)
glGetAttribLocation
glBindBuffer
glVertexAttribPointer
glEnableVertexAttribArray
(see the next slide)

FrameBuffer (pixels)

[optional]
glBindFragDataLocation
or
layout(location=?) in GLSL

156

How to specify input to a vertex shader?
//	Get	the	locations	of	the	"position"	vertex	attribute	variable	
in	our	shader	

int	position_loc	=	glGetAttribLocation(shaders_handle,	
"position");	

//	If	the	vertex	attribute	found	

if	(position_loc	!=	-1)	{	

		//	Activate	the	ArrayBuffer	that	should	be	accessed	in	the	
shader	

		glBindBuffer(GL_ARRAY_BUFFER,	vertex_handle);			

		//	Specifies	where	the	data	for	"position"	variable	can	be	
accessed	

		glVertexAttribPointer(position_loc,	3,	GL_FLOAT,	false,	0,	0);	

		//	Enable	that	vertex	attribute	variable	

		glEnableVertexAttribArray(position_loc);	

}	

	

	
157

Passing uniform(s) to a shader

}  In shader:
uniform	mat4	mvp_matrix;	//	model-view-projection	matrix	

}  In Java:
Matrix4f	mvp_matrix;	//	Matrix	to	be	passed	to	the	shader	

...	

int	mvp_location	=	glGetUniformLocation(shaders.getHandle(),	
																			"mvp_matrix");	

FloatBuffer	mvp_buffer	=	BufferUtils.createFloatBuffer(16);	

mvp_matrix.get(mvp_buffer);	

glUniformMatrix4fv(mvp_location,	false,	mvp_buffer);	

Name of the method depends on the data type.
For example, glUniform3fv for Vector3f	

158

GLSL Operators

}  Arithmetic: + - ++ --

}  Multiplication:

}  vec3	*	vec3	– element-wise

}  mat4	*	vec4	– matrix multiplication (with a column vector)

}  Bitwise (integer): <<,	>>,	&,	|,	^	

}  Logical (bool): &&,	||,	^^	

}  Assignment:

float	a=0;	

a	+=	2.0;	//	Equivalent	to	a	=	a	+	2.0	

}  See the quick reference guide at:
https://www.opengl.org/documentation/glsl/

159

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

GLSL Math

}  Trigonometric:

}  radians(deg),	degrees(rad),	sin,	cos,	tan,	
asin,	acos,	atan,	sinh,	cosh,	tanh,	asinh,	
acosh,	atanh	

}  Exponential:

}  pow,	exp,	log,	exp2,	log2,	sqrt,	inversesqrt	

}  Common functions:

}  abs,	round,	floor,	ceil,	min,	max,	clamp,	…	

}  And many more

}  See the quick reference guide at:
https://www.opengl.org/documentation/glsl/

160

GLSL flow control
if(bool)	{	

		//	true	

}	else	{	

		//	false	

}	

	

switch(int_value)	{	

		case	n:	

				//	statements	

				break;	

		case	m:	

				//	statements	

				break;	

		default:	

}		

for(int	i	=	0;	i<10;	i++)	{	

			...	

}	

	

while(n	<	10)	{	

	...	

}	

	

do	{	

	...	

}	while	(n	<	10)	

161

Transformations (Vertex shaders)

Model, View, Projection matrices

Object coordinates

Object centred at the
origin

World coordinates

Model
matrix

To position each
object in the scene.

Could be different
for each object.

163

Model, View, Projection matrices

World coordinates

View matrix

View (camera)
coordinates

Camera at the origin,

pointing at -z

To position all
objects relative to

the camera

164

Model, View, Projection matrices

Projection
matrix

View (camera)
coordinates

Screen coordinates

x and y must be in the range
-1 and 1

To project 3D
coordinates to a 2D

plane. Note that z
coordinate is

retained for depth
testing.

165

The default OpenGL
coordinate system is

right-handed

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

All together

x
s

y
s

z
s

w
s

!

"

#
#
#
#
#

$

%

&
&
&
&
&

= P ⋅V ⋅M ⋅

x

y

z

w

!

"

#
#
#
#

$

%

&
&
&
&

3D world
vertex

coordinates

Screen
coordinates

xs/ws and

ys/ws must be
between
-1 and 1

Projection, view and
model matrices

166

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL

GL_FRONT GL_BACK Colour:

Depth:

GL_FRONT_LEFT GL_FRONT_RIGHT

GL_BACK_LEFT GL_BACK_RIGHT

DEPTH

Stencil: STENCIL

In stereo:

Four components:
RGBA

Typically 8 bits per

component

To block rendering selected pixels
Single component, usually 8 bits.

To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits

168

Double buffering

}  To avoid flicker, tearing

}  Use two buffers (rasters):

}  Front buffer – what is shown on the screen

}  Back buffer – not shown, GPU draws into that buffer

}  When drawing is finished, swap front- and back-buffers

Front buffer – display

Back buffer - draw

1st buffer

2nd buffer

time

169

Triple buffering

}  Do not wait for swapping to start drawing the next
frame

}  Shortcomings

}  More memory needed

}  Higher delay between drawing and displaying
a frame

Front buffer – display

Back buffer - draw

1st buffer

2nd buffer

time

Front buffer – display

Back buffer - draw

time

3rd buffer

Double buffering

Get rid of these gaps

Triple buffering

170

Vertical Synchronization: V-Sync

}  Pixels are copied from colour buffer to monitor raw-by-raw

}  If front & back buffer are swapped during this process:

}  Upper part of the screen contains previous frame

}  Lower part of the screen contains current frame

}  Result: tearing artefact

}  Solution: When V-Sync is enabled

}  glwfSwapInterval(1);	

glSwapBuffers() waits until
the last raw is copied to the display.

171

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Z-Buffer - algorithm

}  Initialize the depth buffer and image buffer for all pixels

color(x, y) = Background_Color,

depth(x, y) = z_far // position of the far clipping plane

}  For every triangle in a scene

}  For every fragment (x, y) representing this triangle

}  Calculate z for current (x, y)

}  if		(z	<	depth(x,	y))	

¨  depth	(x,	y)	=	z	

¨  color	(x,	y)	=	Polygon_Color	(x,	y)	

172

View frustum

}  Controlled by camera parameters: near-, far-clipping
planes and field-of-view

Far-clipping plane

FOV

Near-clipping plane

Z-buffer must store all
these values

173

Textures

(Most important) OpenGL texture types

1D

s 0 1

2D

s

t

0 1
0

1

s

t

p

3D

Texture can have any size but the
sizes that are powers of two (POT, 2n)

may give better performance.

CUBE_MAP Used for environment
mapping

0

0

1
1

1

0

Texel

175

Texture mapping

}  1. Define your texture
function (image) T(u,v)

}  (u,v) are texture
coordinates

176

Texture mapping

}  2. Define the correspondence
between the vertices on the
3D object and the texture
coordinates

177

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Texture mapping

}  3. When rendering, for every surface point compute
texture coordinates. Use the texture function to get
texture value. Use as color or reflectance.

178

Sampling

Up-sampling
More pixels than texels

Values need to be interpolated

Down-sampling
Fewer pixels than texels

Values need to be averaged
over an area of the texture

(usually using a mipmap)

Texture
v

u

179

Nearest neighbor vs.

bilinear interpolatim

A B

C D
X

Interpolate first along
x-axis between AB

and CD, then along

y-axis between the

interpolated points.

180

A B

C D
X

N
e

a
re

s
t
n

e
ig

h
b

o
u

r

B
ili

n
e

a
r

in

te
rp

o
la

ti
o

n

Pick the nearest
texel: D

Texel

181

Texture mapping examples

nearest-
neighbour

bilinear

u

v

182

Up-sampling

nearest-
neighbour

blocky

artefacts

bilinear

blurry

artefacts

u

v

ª if one pixel in the texture map
covers several pixels in the final
image, you get visible artefacts

ª only practical way to prevent this
is to ensure that texture map is of
sufficiently high resolution that it
does not happen

183

Down-sampling

}  if the pixel covers quite a large area
of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Mipmap

}  Textures are often stored at
multiple resolutions as a
mipmap

}  Each level of the pyramid is half
the size of the lower level

}  It provides pre-filtered texture

(area-averaged) when screen
pixels are larger than the full
resulution texels

}  Mipmap requires just 1/3 of the
original texture size to store

184

Down-sampling

without area averaging with area averaging

185

Texture tiling

}  Repetitive patterns can be represented as texture tiles.

}  The texture folds over, so that

}  T(u=1.1, v=0) = T(u=0.1, v=0)

186

Texture atlas

}  A single texture is often used for multiple surfaces and
objects

Example from: http://awshub.com/blog/blog/
2011/11/01/hi-poly-vs-low-poly/

187

Bump (normal) mapping

}  Special kind of texture that
modifies surface normal

}  Surface normal is a vector
that is perpendicular to a
surface

}  The surface is still flat but
shading appears as on an
uneven surface

}  Easily done in fragment

shaders

188

Displacement mapping

}  Texture that modifies surface

}  Better results than bump
mapping since the surface is
not flat

}  Requires geometry shaders

189

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Environment mapping

}  To show environment
reflected by an object

190

Environment mapping

}  Environment cube

}  Each face captures
environment in that
direction

191

Texture objects in OpenGL

192

Setting up a texture
//	Create	a	new	texture	object	in	memory	and	bind	it	

int	texId	=	glGenTextures();	

glActiveTexture(textureUnit);	

glBindTexture(GL_TEXTURE_2D,	texId);	

		

//	All	RGB	bytes	are	aligned	to	each	other	and	each	component	is	
1	byte	

glPixelStorei(GL_UNPACK_ALIGNMENT,	1);	

	

//	Upload	the	texture	data	and	generate	mipmaps	

glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB,	tWidth,	tHeight,	0,		

								GL_RGBA,	GL_UNSIGNED_BYTE,	buf);	

glGenerateMipmap(GL_TEXTURE_2D);	

193

Texture parameters
//Setup	filtering,	i.e.	how	OpenGL	will	interpolate	the	pixels	
when	scaling	up	or	down	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	
GL_LINEAR);	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	
GL_LINEAR_MIPMAP_NEAREST);	

	

	

	

//Setup	wrap	mode,	i.e.	how	OpenGL	will	handle	pixels	outside	of	
the	expected	range	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_S,	
GL_CLAMP_TO_EDGE);	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_T,	
GL_CLAMP_TO_EDGE);	

How to
interpolate in

2D

How to interpolate
between mipmap

levels

194

Fragment shader
#version	330	

uniform	sampler2D	texture_diffuse;	

in	vec2	frag_TextureCoord;	

	

out	vec4	out_Color;	

	

void	main(void)	{	

	out_Color	=	texture(texture_diffuse,	frag_TextureCoord);	

}	

195

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Rendering
//	Bind	the	texture	

glActiveTexture(GL_TEXTURE0);	

glBindTexture(GL_TEXTURE_2D,	texId);	

	

glBindVertexArray(vao);	

glDrawElements(GL_TRIANGLES,	indicesCount,	GL_UNSIGNED_INT,	0);	

glBindVertexArray(0);	

	

glBindTexture(GL_TEXTURE_2D,	0);	

	

	

196

Frame Buffer Objects

Frame Buffer Objects (FBOs)

}  Instead of rendering to the screen buffer (usually
GL_BACK), an image can be rendered to an off-screen
buffer: a Texture or a RenderBuffer

Faster to render to than a texture
but cannot be sampled, pixels can

be only copied. 198

Frame Buffer Object applications

}  Post-processing, tone-mapping,
blooming, etc.

}  Reflections (in water), animated
textures (e.g. TV screen)

}  When the result of rendering is

not shown (e.g. saved to disk)

199

FBO: Code example 1/3

}  Create FBO, attach a Texture (colour) and a RenderBuffer
(depth)

int	color_tex	=	glGenTextures();	

glBindTexture(GL_TEXTURE_2D,	color_tex);	

glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGBA8,	256,	256,	0,	GL_BGRA,	
GL_UNSIGNED_BYTE,	NULL);	

	

int	myFBO	=	glGenFramebuffers();	

glBindFramebuffer(GL_FRAMEBUFFER,	myFBO);	

//Attach	2D	texture	to	this	FBO	

glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_COLOR_ATTACHMENT0,	
GL_TEXTURE_2D,	color_tex,	0);	

	

200

FBO: Code example 2/3
int	depth_rb	=	glGenRenderbuffers();	

glBindRenderbuffer(GL_RENDERBUFFER,	depth_rb);	

glRenderbufferStorage(GL_RENDERBUFFER,	GL_DEPTH_COMPONENT24,	
256,	256);	

//Attach	depth	buffer	to	FBO	

glFramebufferRenderbuffer(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,	
GL_RENDERBUFFER,	depth_rb);	

	

201

Introduction to Graphics Michaelmas Term 2016

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

FBO: Code example 3/3

}  Render
glBindFramebuffer(GL_FRAMEBUFFER,	myFBO);	

glClearColor(0.0,	0.0,	0.0,	0.0);	

glClearDepth(1.0f);	

glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	

	

//	Render	

	

glBindFramebuffer(GL_FRAMEBUFFER,	0);	

	

202

References

}  The OpenGL Programming Guide, 8th
Edition, The Official Guide to Learning
OpenGL by Dave Shreiner et al (2013)
ISBN-10: 0321773039

}  OpenGL quick reference guide

https://www.opengl.org/documentation/
glsl/

}  Google search: „man gl......”

203

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

204

Introduction to Computer Graphics

ª Background

ª Rendering

ª Graphics pipeline

ª Graphics hardware and modern OpenGL

ª Technology

u  Colour spaces

u  Brief overview of display and printer technologies

205

Representing colour

ª we need a mechanism which allows us to represent
colour in the computer by some set of numbers

u  preferably a small set of numbers which can be quantised
to a fairly small number of bits each

ª we will discuss:

u  Munsell’s artists’ scheme

n which classifies colours on a perceptual basis

u  the mechanism of colour vision
n  how colour perception works

u  various colour spaces
n which quantify colour based on either physical or perceptual

models of colour

206

Munsell’s colour classification system

ª three axes
n  hue Ø the dominant colour

n  value Ø bright colours/dark colours

n  chroma Ø vivid colours/dull colours

u  can represent this as a 3D graph

207

Munsell’s colour classification system

ª any two adjacent colours are a standard “perceptual”
distance apart

u  worked out by testing it on people

u  a highly irregular space

n  e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

208

XYZ colour space

ª not every wavelength can be represented as a mix of red,
green, and blue lights

ª but matching & defining coloured light with a mixture of
three fixed primaries is desirable

ª CIE define three standard primaries: X, Y, Z

FvDFH Sec 13.2.2

Y matches the human eye’s response to light of a
constant intensity at each wavelength (luminous-
efficiency function of the eye)

X, Y, and Z are not themselves colours, they are
used for defining colours – you cannot make a light
that emits one of these primaries

XYZ colour space was defined in 1931 by the Commission
Internationale de l’ Éclairage (CIE)

209

CIE chromaticity diagram

ª chromaticity values are defined in terms of x, y, z

n  ignores luminance

n  can be plotted as a 2D function

u  pure colours (single wavelength)
lie along the outer curve

u  all other colours are a mix of
pure colours and hence lie
inside the curve

u  points outside the curve do not
exist as colours

x
X

X Y Z
y

Y

X Y Z
z

Z

X Y Z
x y z=

+ +
=

+ +
=

+ +
∴ + + =, , 1

FvDFH Fig 13.24  
Colour plate 2

580nm

600nm

700nm

560nm

540nm

520nm

500nm

490nm

510nm

480nm

460nm

410nm

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

210

Colour spaces

u  CIE XYZ, Yxy

u  Uniform

n  equal steps in any direction make equal perceptual differences

n CIE L*u*v*, CIE L*a*b*

u  Pragmatic

n  used because they relate directly to the way that the hardware works

n  RGB, CMY, CMYK

u  Munsell-like
n  used in user-interfaces

n  considered to be easier to use for specifying colour than are the pragmatic
colour spaces

n map easily to the pragmatic colour spaces

n  HSV, HLS

211

RGB space

ª all display devices which output light mix red, green
and blue lights to make colour

u  televisions, CRT monitors, video projectors, LCD screens

ª nominally, RGB space is a cube

ª the device puts physical limitations on:

u  the range of colours which can be displayed

u  the brightest colour which can be displayed

u  the darkest colour which can be displayed

212

RGB in XYZ space

ª CRTs and LCDs mix red, green, and blue to make all
other colours

ª the red, green, and blue primaries each map to a point
in XYZ space

ª any colour within the resulting
triangle can be displayed

n  any colour outside the triangle
cannot be displayed

n  for example: CRTs cannot display
very saturated purple, turquoise,
or yellow FvDFH Figs 13.26, 13.27

213

CMY space

ª printers make colour by mixing coloured inks

ª the important difference between inks (CMY) and
lights (RGB) is that, while lights emit light, inks absorb
light

u  cyan absorbs red, reflects blue and green

u  magenta absorbs green, reflects red and blue

u  yellow absorbs blue, reflects green and red

ª CMY is, at its simplest, the inverse of RGB

ª CMY space is nominally a cube

214

Ideal and actual printing ink reflectivities

actual

ideal

215

CMYK space

ª in real printing we use black
(key) as well as CMY

ª why use black?

u  inks are not perfect absorbers

u  mixing C + M + Y gives a muddy
grey, not black

u  lots of text is printed in black:
trying to align C, M and Y perfectly
for black text would be a
nightmare

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

216

Using K

ª if we print using just
CMY then we can get
up to 300% ink at any
point on the paper

ª removing the
achromatic portion of
CMY and replacing
with K reduces the
maximum possible ink
coverage to 200%

217

Image display

ª a handful of technologies cover over 99% of all
display devices

u  active displays
n  cathode ray tube standard for late 20th century

n  liquid crystal display most common today

n  plasma displays briefly popular but power-hungry

n  digital mirror displays increasing use in video projectors

u  printers (passive displays)

n  laser printers the traditional office printer

n  ink jet printers the traditional home printer

n  commercial printers for high volume

218

Liquid crystal displays I

u  liquid crystals can twist the polarisation of light

u  basic control is by the voltage that is applied across the
liquid crystal: either on or off, transparent or opaque

u  greyscale can be achieved with some types of liquid crystal
by varying the voltage

u  colour is achieved with colour filters

219

Liquid crystal displays II

there are two polarizers at right angles to one another
on either side of the liquid crystal: under normal
circumstances these would block all light

there are liquid crystal directors: micro-grooves which

align the liquid crystal molecules next to them

the liquid crystal molecules try to line up with one

another; the micro-grooves on each side are at right
angles to one another which forces the crystals’
orientations to twist gently through 90° as you go from
top to bottom, causing the polarization of the light to
twist through 90°, making the pixel transparent

liquid crystal molecules are polar: they have a positive and a
negative end

applying a voltage across the liquid crystal causes the
molecules to stand on their ends, ruining the twisting
phenomenon, so light cannot get through and the
pixel is opaque

220

Liquid crystal displays III

u  low power consumption compared to CRTs although the
back light uses a lot of power

u  image quality historically not as good as cathode ray tubes,
but improved dramatically over the last ten years

u  uses

n  laptops

n  video projectors

n  rapidly replacing CRTs as desk top displays

n  increasing use as televisions

a three LCD video projector, with colour made by
devoting one LCD panel to each of red, green and

blue, and by splitting the light using dichroic mirrors
which pass some wavelengths and reflect others

221

Digital micromirror devices I

u  developed by Texas Instruments
n  often referred to as Digital Light Processing (DLP) technology

u  invented in 1987, following ten year’s work on deformable
mirror devices

u  manufactured like a silicon chip!

n  a standard 5 volt, 0.8 micron, CMOS process

n micromirrors are coated with a highly reflected aluminium alloy

n  each mirror is 16×16µm2

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

222

Digital micromirror devices II

u  used increasingly in video projectors

u  widely available from late 1990s

u  colour is achieved using either three DMD chips or one
chip and a rotating colour filter

Electrophoretic displays I

ª electronic paper widely used in e-books

ª iRex iLiad, Sony Reader, Amazon Kindle

ª 200 dpi passive display

223

Electrophoretic displays II

ª transparent capsules ~40µ diameter

u  filled with dark oil

u  negatively charged 1µ titanium dioxide particles

ª electrodes in substrate attract or repel white particles

ª image persists with no power consumption

224

Electrophoretic displays III

ª colour filters over
individual pixels

ª flexible substrate

using plastic
semiconductors
(Plastic Logic)

225

226

Printers

ª many types of printer

u  ink jet

n  sprays ink onto paper

u  laser printer

n  uses a laser to lay down a pattern of charge on a drum; this picks
up charged toner which is then pressed onto the paper

u  commercial offset printer
n  an image of the whole page is put on a roller

n  this is repeatedly inked and pressed against the paper to print
thousands of copies of the same thing

ª all make marks on paper

u  essentially binary devices: mark/no mark

227

Printer resolution

ª laser printer

u  300–1200dpi

ª ink jet

u  used to be lower resolution & quality than laser printers
but now have comparable resolution

ª phototypesetter for commercial offset printing

u  1200–2400 dpi

ª bi-level devices: each pixel is either on or off

u  black or white (for monochrome printers)

u  ink or no ink (in general)

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

228

What about greyscale?

u  achieved by halftoning
n  divide image into cells, in each cell draw a spot of

the appropriate size for the intensity of that cell

n  on a printer each cell is m×m pixels, allowing m2+1
different intensity levels

n  e.g. 300dpi with 4×4 cells ⇒ 75 cells per inch, 17
intensity levels

n  phototypesetters can make 256 intensity levels in
cells so small you can only just see them

u  an alternative method is dithering
n  dithering photocopies badly, halftoning photocopies

well

will discuss halftoning and dithering in Image Processing section of course

229

Halftoning & dithering examples

Halftoning Dithering

230

What about colour?

ª generally use cyan, magenta, yellow, and black inks
(CMYK)

ª inks aborb colour

u  c.f. lights which emit colour

u  CMY is the inverse of RGB

ª why is black (K) necessary?

u  inks are not perfect aborbers

u  mixing C + M + Y gives a muddy grey, not black

u  lots of text is printed in black: trying to align C, M and Y
perfectly for black text would be a nightmare

see slide 221 CMYK space

231

How do you produce halftoned colour?

u  print four halftone screens, one in each colour

u  carefully angle the screens to prevent interference (moiré) patterns

Standard rulings (in lines per inch)

65 lpi

85 lpi newsprint

100 lpi

120 lpi uncoated offset paper

133 lpi uncoated offset paper

150 lpi matt coated offset paper or art paper 

publication: books, advertising leaflets

200 lpi very smooth, expensive paper 

very high quality publication

150 lpi × 16 dots per cell  

= 2400 dpi phototypesetter  

(16×16 dots per cell = 256

intensity levels)

232

Four colour halftone screens

ª Standard angles

u  Cyan 15°

u  Black 45°

u  Magenta 75°

u  Yellow 90°

ª At bottom is the moiré pattern

u  this is the best possible (minimal)
moiré pattern

u  produced by this optimal set of
angles

u  all four colours printed in black to
highlight the effect

Magenta, Cyan & Black
are at 30° relative to

one another

Yellow (least distinctive

colour) is at 15° relative

to Magenta and Cyan

233

Range of printable colours

a: colour photography
(diapositive)

b: high-quality offset printing

c: newspaper printing

why the hexagonal shape?
 because we can print dots which
only partially overlap making the
situation more complex than for
coloured lights

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

234

Beyond four colour printing

u  printers can be built to do printing in more colours
n  gives a better range of printable colours

u  six colour printing

n  for home photograph printing

n  dark & light cyan, dark & light magenta, yellow, black

u  eight colour printing

n  3× cyan, 3× magenta, yellow, black

n  2× cyan, 2× magenta, yellow, 3× black

u  twelve colour printing

n  3× cyan, 3× magenta, yellow, black
red, green, blue, orange

235

The extra range of colour

ª this gamut is for
so-called HiFi
colour printing

u  uses cyan,
magenta, yellow,
plus red, green and
blue inks

236

Laser printer

237

Ink jet printers

continuous ink jet
(left)

piezo ink jet
(right)

thermal ink jet
or bubble jet
(left)

electrostatic ink jet
(right)

238

Commercial offset printing

u  the plate cylinder is where the
printing plate is held

u  this is dampened and inked
anew on every pass

u  the impression from the plate
cylinder is passed onto the
blanket cylinder

u  it is then transferred it onto the
paper which passes between the
blanket and impression cylinders

u  the blanket cylinder is there so
that the printing plate does not
come into direct contact with
the paper

239

Course review

ª Background

ª Rendering

ª Graphics pipeline

ª Graphics hardware and modern OpenGL

ª Technology

Introduction to Graphics

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Michaelmas Term 2016

240

What next?

ª Further graphics

u  Modelling, splines, subdivision surfaces, complex geometry,
more ray tracing, radiosity, animation

ª Advanced graphics

ª Human-computer interaction

u  Interactive techniques, quantitative and qualitative
evaluation, application design

ª Information theory and coding

u  Fundamental limits, transforms, coding

ª Computer vision

u  Inferring structure from images

241

And then?

ª Graphics

u  multi-resolution modelling

u  animation of human behaviour

u  æsthetically-inspired image processing

ª HCI

u  large displays and new techniques for interaction

u  emotionally intelligent interfaces

u  applications in education and for special needs

u  design theory

ª http://www.cl.cam.ac.uk/research/rainbow/

