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Michaelmas Term 2016 

Introduction to Computer Graphics 
Peter Robinson & Rafał Mantiuk 

www.cl.cam.ac.uk/~pr & ~rkm38 

Eight lectures & three practical classes for Part IA CST 

Two supervisions suggested 

Two exam questions on Paper 3 

2 
What are Computer Graphics & 

Image Processing? 

Scene
description

Digital
image

Computer

graphics

Image analysis &

computer vision

Image processing

Image

capture

Image

display
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Why bother with CG & IP? 

ª All visual computer output depends on CG 

u  printed output (laser/ink jet/phototypesetter) 

u  monitor (CRT/LCD/plasma/DMD) 

u  all visual computer output consists of real images generated 
by the computer from some internal digital image 

ª Much other visual imagery depends on CG & IP 

u  TV & movie special effects & post-production 

u  most books, magazines,  
catalogues, brochures,  
junk mail, newspapers,  
packaging, posters, flyers 

4 

What are CG & IP used for? 

ª 2D computer graphics 
u  graphical user interfaces: Mac, Windows, X… 

u  graphic design: posters, cereal packets… 

u  typesetting: book publishing, report writing… 

ª Image processing 
u  photograph retouching: publishing, posters… 

u  photocollaging: satellite imagery… 

u  art: new forms of artwork based on digitised images 

ª 3D computer graphics 
u  visualisation: scientific, medical, architectural… 

u  Computer Aided Design (CAD) 

u  entertainment: special effect, games, movies… 

Course Structure 

ª Background 
u  What is an image? Human vision. Resolution and quantisation. Storage 

of images in memory. [1 lecture] 

ª Rendering 
u  Perspective. Reflection of light from surfaces and shading. Geometric 

models. Ray tracing. [3 lectures] 

ª Graphics pipeline 
u  Polygonal mesh models. Transformations using matrices in 2D and 3D. 

Homogeneous coordinates. Projection: orthographic and perspective. 
[1 lecture] 

ª Graphics hardware and modern OpenGL 
u  Vertex processing. Rasterisation. Fragment processing. Working with 

meshes and textures. [2 lectures] 

ª Technology 
u  Colour spaces. Output devices: brief overview of display and printer 

technologies. [1 lecture] 

5 6 

Course books 
ª Fundamentals of Computer Graphics 

u  Shirley & Marschner 
CRC Press 2015 (4th edition) 

ª Computer Graphics: Principles & Practice 

u  Hughes, van Dam, McGuire, Sklar et al. 
Addison-Wesley 2013 (3rd edition) 

ª OpenGL Programming Guide: 
The Official Guide to Learning OpenGL Version 4.5 with SPIR-V 

u  Kessenich, Sellers & Shreiner 
Addison Wesley 2016 (7th edition and later) 
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Introduction to Computer Graphics 

ª Background 

u  What is an image? 

u  Human vision 

u  Resolution and quantisation 

u  Storage of images in memory 

ª Rendering 

ª Graphics pipeline 

ª Graphics hardware and modern OpenGL 

ª Technology 
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 What is an image? 

ª two dimensional function 

ª value at any point is an intensity or colour 

ª not digital! 

9 

 What is a digital image? 

ª a contradiction in terms 

u  if you can see it, it’s not digital 

u  if it’s digital, it’s just a collection of numbers 

ª a sampled and quantised version of a real image 

ª a rectangular array of intensity or colour values 

10 

Image capture 
ª a variety of devices can be used 

u  scanners 

n  line CCD (charge coupled device) in a flatbed scanner 

n  spot detector in a drum scanner 

u  cameras 

n  area CCD 

n CMOS camera chips 

area CCD 
www.hll.mpg.de 

flatbed scanner 
www.nuggetlab.com 

Heidelberg 
drum scanner 

The image of the 
Heidelberg drum 
scanner and many 
other images in this 
section come from 
“Handbook of Print 
Media”, 
by Helmutt Kipphan, 
Springer-Verlag, 2001 

11 

Image capture example 

A real image A digital image

103  59  12  80  56  12  34  30   1  78  79  21 145 156  52 136 143  65 115 129  41 128 143  50  85 106  
11  74  96  14   85  97  23  66  74  23  73  82  29  67  76  21  40  48   7   33  39   9  94  54  19  42  27   

6  19  10   3  59  60  28  102 107  41 208  88  63 204  75  54 197  82  63 179  63  46  158  62  46 146  
49  40  52  65  21  60  68  11  40  51  17   35  37   0  28  29   0  83  50  15   2   0   1  13  14   8  243 173 

161 231 140  69 239 142  89 230 143  90 210 126  79  184  88  48 152  69  35 123  51  27 104  41  23  

55  45   9   36  27   0  28  28   2  29  28   7  40  28  16  13  13   1  224 167 112 240 174  80 227 174  78 
227 176  87 233 177  94  213 149  78 196 123  57 141  72  31 108  53  22 121  62  22  126  50  24 

101  49  35  16  21   1  12   5   0  14  16  11    3   0   0 237 176  83 244 206 123 241 236 144 238 222 
147  221 190 108 215 170  77 190 135  52 136  93  38  76  35   7  113  56  26 156  83  38 107  52  21  

31  14   7   9   6   0   20  14  12 255 214 112 242 215 108 246 227 133 239 232 152  229 209 123 232 
193  98 208 162  64 179 133  47 142  90  32   29  19  27  89  53  21 171 116  49 114  64  29  75  49  

24   10   9   5  11  16   9 237 190  82 249 221 122 241 225 129  240 219 126 240 199  93 218 173  69 

188 135  33 219 186  79  189 184  93 136 104  65 112  69  37 191 153  80 122  74  28   80  51  19  19  
37  47  16  37  32 223 177  83 235 208 105  243 218 125 238 206 103 221 188  83 228 204  98 224 

220 123  210 194 109 192 159  62 150  98  40 116  73  28 146 104  46  109  59  24  75  48  18  27  33  

33  47 100 118 216 177  98  223 189  91 239 209 111 236 213 117 217 200 108 218 200 100  218 206 
104 207 175  76 177 131  54 142  88  41 108  65  22  103  59  22  93  53  18  76  50  17   9  10   2  54  

76  74  108 111 102 218 194 108 228 203 102 228 200 100 212 180  79  220 182  85 198 158  62 180 
138  54 155 106  37 132  82  33   95  51  14  87  48  15  81  46  14  16  15   0  11   6   0   64  90  91  54  

80  93 220 186  97 212 190 105 214 177  86  208 165  71 196 150  64 175 127  42 170 117  49 139  

89  30  102  53  12  84  43  13  79  46  15  72  42  14  10  13   4   12   8   0  69 104 110  58  96 109 130 
128 115 196 154  82  196 148  66 183 138  70 174 125  56 169 120  54 146  97  41  118  67  24  90  

52  16  75  46  16  58  42  19  13   7   9   10   5   0  18  11   3  66 111 116  70 100 102  78 103  99   57  
71  82 162 111  66 141  96  37 152 102  51 130  80  31  110  63  21  83  44  11  69  42  12  28   8   0   

7   5  10   18   4   0  17  10   2  30  20  10  58  88  96  53  88  94   59  91 102  69  99 110  54  80  79  23  

69  85  31  34  25   53  41  25  21   2   0   8   0   0  17  10   4  11   0   0   34  21  13  47  35  23  38  26  
14  47  35  23  
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 Sampling 

ª a digital image is a rectangular array of intensity 
values 

ª each value is called a pixel 

u  “picture element” 

ª sampling resolution is normally measured in pixels 
per inch (ppi) or dots per inch (dpi) 

u  computer monitors have a resolution around 100 ppi 

u  laser and ink jet printers have resolutions between 300 and 
1200 ppi 

u  typesetters have resolutions between 1000 and 3000 ppi 
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Sampling resolution 

2×2 4×4 8×8 16×16 

256×256 128×128 64×64 32×32 

14 

 Quantisation 

ª each intensity value is a number 

ª for digital storage the intensity values must be 
quantised 

n  limits the number of different intensities that can be stored 

n  limits the brightest intensity that can be stored 

ª how many intensity levels are needed for human 
consumption 

n  8 bits often sufficient 

n  some applications use 10 or 12 or 16 bits 

n more detail later in the course 

ª colour is stored as a set of numbers 
n  usually as 3 numbers of 5–16 bits each 

n more detail later in the course 

15 

Quantisation levels 
8 bits 

(256 levels) 
7 bits 

(128 levels) 
6 bits 

(64 levels) 
5 bits 

(32 levels) 

1 bit 
(2 levels) 

2 bits 
(4 levels) 

3 bits 
(8 levels) 

4 bits 
(16 levels) 

16 

What is required for vision? 

ª illumination 
n  some source of light 

ª objects 
n which reflect (or transmit) the light 

ª eyes 
n  to capture the light as an image 

direct viewing transmission reflection 

17 

The spectrum 

the short wavelength 
end of the spectrum 

is violet  

the long wavelength 
end of the spectrum 
is red  

violet       blue       green   yellow        red 

visible light is only a tiny 
part of the whole 
electromagnetic spectrum 

18 

The workings of the human visual system 

ª to understand the requirements of displays 
(resolution, quantisation and colour) we need to 
know how the human eye works... 

The lens of the eye forms an 
image of the world on the 

retina: the back surface of 
the eye
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Structure of the human eye 

ª the retina is an array of light 
detection cells 

ª the fovea is the high 
resolution area of the retina 

ª the optic nerve takes signals 
from the retina to the visual 
cortex in the brain 

Fig. 2.1 from Gonzalez & Woods 

20 

The retina 

ª consists of about 150 million light receptors 

ª retina outputs information to the brain along the 
optic nerve 

u  there are about one million nerve fibres in the optic nerve 

u  the retina performs significant pre-processing to  reduce 
the number of signals from 150M to 1M 

u  pre-processing includes: 
n  averaging multiple inputs together 

n  colour signal processing 

n  local edge detection 

www.stlukeseye.com 

21 

Detailed structure of retinal processing 

ª a lot of pre-processing 
occurs in the retina 
before signals are 
passed to the brain 

ª many light receptors 
have their signals 
combined into a single 
signal to the brain 

www.phys.ufl.edu/~avery/course/3400/vision/retina_schema.jpg 

light comes in 
from this direction 

signals sent to 
optic nerve 

22 

Light detectors in the retina 

ª two classes 
u  rods 

u  cones 

ª cones come in three types 
u  sensitive to short, medium and long wavelengths 

u  allow you to see in colour 

ª the cones are concentrated in the macula, at the 
centre of the retina 

ª the fovea is a densely packed region in the centre of 
the macula 
u  contains the highest density of cones 

u  provides the highest resolution vision 

23 

Foveal vision 

ª 150,000 cones per square millimetre in the fovea 
u  high resolution 

u  colour 

ª outside fovea: mostly rods 
u  lower resolution 

n  many rods’ inputs are combined to produce one signal to the visual 
cortex in the brain 

u  principally monochromatic 
n  there are very few cones, so little input available to provide colour 

information to the brain 

u  provides peripheral vision 
n  allows you to keep the high resolution region in context  

n  without peripheral vision you would walk into things, be unable to find 
things easily, and generally find life much more difficult 

24 
Distribution of rods & cones 

Fig. 2.2 from Gonzalez & Woods 
www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html 

cones in the fovea 

rods & cones outside the fovea 

 
(1) cones in the fovea are squished together more tightly than 
outside the fovea: higher resolution vision; 
(2) as the density of cones drops the gaps between them are filled 
with rods 
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Colour vision 

u  there are three types of cone 

u  each responds to a different 
spectrum 

n  very roughly long, medium, 
and short wavelengths 

n  each has a response function: 
l(λ), m(λ), s(λ) 

u  different numbers of the different types 

n  far fewer of the short wavelength receptors 

n  so cannot see fine detail in blue 

u  overall intensity response of the cones can be calculated 

n  y(λ) = l(λ) + m(λ) + s(λ) 

n  y = k ∫ P(λ) y(λ) dλ is the perceived luminance in the fovea 

n  y = k ∫ P(λ) r(λ) dλ is the perceived luminance outside the fovea r(λ) is the response 
function of the rods

26 

Distribution of different cone types 

ª this is about 1° of visual angle 

ª distribution is: 
u  7% short, 37% medium, 56% long 

ª short wavelength receptors 

u  regularly distributed 

u  not in the central 1/3° 

u  outside the fovea, only 1% of cones 
are short 

ª long & medium  

u  about 3:2 ratio long:medium 

www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html 

simulated cone distribution at 
the centre of the fovea 

27 

Colour signals sent to the brain 

u  the signal that is sent to the brain is pre-processed by the retina 

u  this theory explains: 
n  colour-blindness effects 

n why red, yellow, green and blue are 
perceptually important colours 

n why you can see e.g. a yellowish red 
but not a greenish red 

+ + =long medium short luminance                 

– =long medium

+ – =long medium short yellow-blue                 

red-green                 

28 

Chromatic metamerism 

u  many different spectra will induce the same response in our 
cones 

n  the values of the three perceived values can be calculated as: 

l  l = k ∫ P(λ) l(λ) dλ

l m = k ∫ P(λ) m(λ) dλ

l  s = k ∫ P(λ) s(λ) dλ

n  k is some constant, P(λ) is the spectrum of the light incident on the retina 

n  two different spectra (e.g. P1(λ) and P2(λ)) can give the same values 
of l, m, s 

n we can thus fool the eye into seeing (almost) any colour by mixing 
correct proportions of some small number of lights 

29 

Mixing coloured lights 

ª by mixing different amounts of red, green, 
and blue lights we can generate a wide 
range of responses in the human eye 

ª not all colours can be created in this way 

red

g
re

e
n

blue

g
re

e
n

blue 

light 

off

red 

light 

fully on
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Storing images in memory 

ª 8 bits became a de facto standard for greyscale images 

u  8 bits = 1 byte 

u  16 bits is now being used more widely, 16 bits = 2 bytes 

u  an 8 bit image of size W × H can be stored in a block of 
W × H bytes 

u  one way to do this is to store pixel[x][y] at memory 
location base + x + W × y 

n memory is 1D, images are 2D 

base 

base + 1 + 5 × 2 

5

5

4
3

2

1

0

0   1  2   3   4

≡
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Colour images 

u  tend to be 24 bits per pixel 
n  3 bytes: one red, one green, one blue 

n  increasing use of 48 bits per pixel, 2 bytes per colour plane 

u  can be stored as a contiguous block of memory 
n  of size W × H × 3 

u  more common to store each colour in a separate “plane” 

n  each plane contains just W × H values 

u  the idea of planes can be extended to other attributes associated 
with each pixel 

n  alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data 
structure containing depth and coverage information), overlay planes (e.g. for 
displaying pop-up menus) — see later in the course for details 

32 

The frame buffer 

ª most computers have a special piece of memory 
reserved for storage of the current image being 
displayed 
 
 
 
 

ª the frame buffer normally consists of dual-ported 
Dynamic RAM (DRAM) 

u  sometimes referred to as Video RAM (VRAM) 

output  
stage

(e.g. DAC)
display

frame  
buffer

B
U

S
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Introduction to Computer Graphics 

ª Background 

ª Rendering 

u  Perspective 

u  Reflection of light from surfaces and shading 

u  Geometric models 

u  Ray tracing 

ª Graphics pipeline 

ª Graphics hardware and modern OpenGL 

ª Technology 

Depth cues 

34 

Rendering depth 

35 36 

Perspective in photographs 

Gates Building – the rounded version 
(Stanford) 

Gates Building – the rectilinear version 
(Cambridge) 
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Early perspective 

ª Presentation at the 
Temple 

ª Ambrogio Lorenzetti 1342 

ª Uffizi Gallery 
Florence 

37 

Wrong perspective 

ª Adoring saints 

ª Lorenzo Monaco 
1407-09 

ª National Gallery 
London 

38 

Renaissance perspective 

ª Geometrical perspective 
Filippo Brunelleschi 1413 

ª Holy Trinity fresco 

ª Masaccio (Tommaso di Ser Giovanni 
di Simone) 1425 

ª Santa Maria Novella 
Florence 

ª De pictura (On painting) 
textbook by Leon Battista Alberti 
1435 

39 

More perspective 

ª The Annunciation 
with Saint Emidius 

ª Carlo Crivelli 1486 

ª National Gallery London 

40 

False perspective 

41 Calculating 
perspective 

42 
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Illumination and shading 

ª Dürer’s method allows us to calculate what part of 
the scene is visible in any pixel 

ª But what colour should it be? 

ª Depends on: 

u  lighting 

u  shadows 

u  properties of surface material 

43 44 

How do surfaces reflect light? 

θ θ θ θ θ

perfect specular 
reflection 
(mirror) 

Imperfect specular 
reflection 

diffuse reflection 
(Lambertian reflection) 

Johann Lambert, 18th century German mathematician 

the surface of a specular reflector is facetted, 
each facet reflects perfectly but in a slightly 
different direction to the other facets 

45 

Comments on reflection 

u  the surface can absorb some wavelengths of light 
n  e.g. shiny gold or shiny copper 

u  specular reflection has “interesting” properties at glancing angles 
owing to occlusion of micro-facets by one another 
 
 
 

u  plastics are good examples of surfaces with: 

n  specular reflection in the light’s colour 

n  diffuse reflection in the plastic’s colour 

46 

Calculating the shading of a surface 
u  gross assumptions: 

n  there is only diffuse (Lambertian) reflection 

n  all light falling on a surface comes directly from a light source 

l  there is no interaction between objects 

n  no object casts shadows on any other 

l  so can treat each surface as if it were the only object in the scene 

n  light sources are considered to be infinitely distant from the object 

l  the vector to the light is the same across the whole surface 

u  observation: 
n  the colour of a flat surface will be uniform across it, dependent only on the 

colour & position of the object and the colour & position of the light sources 

47 

Diffuse shading calculation 

L is a normalised vector pointing in 

the direction of the light source

N is the normal to the surface

Il is the intensity of the light source

kd is the proportion of light which is 

diffusely reflected by the surface

I is the intensity of the light reflected 

by the surface

θ
L

N

I I k

I k N L

l d

l d

=

= ⋅

cos

( )

θ

use this equation to calculate the colour of a pixel 

48 

Diffuse shading: comments 

u  can have different Il and different kd for different wavelengths 
(colours) 

u  watch out for cosθ < 0 
n  implies that the light is behind the polygon and so it cannot illuminate this 

side of the polygon 

u  do you use one-sided or two-sided surfaces? 
n  one sided: only the side in the direction of the normal vector can be 

illuminated 

l  if cosθ < 0 then both sides are black 

n  two sided: the sign of cosθ determines which side of the polygon is 
illuminated 

l  need to invert the sign of the intensity for the back side 

u  this is essentially a simple one-parameter (θ) BRDF 
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Specular reflection 

ª Phong developed an easy-to-
calculate approximation to 
specular reflection 

θ θ
α

N

R

V

L

θ θ

L is a normalised vector pointing in the 

direction of the light source

R is the vector of perfect reflection

N is the normal to the surface

V is a normalised vector pointing at the 
viewer

Il is the intensity of the light source

ks is the proportion of light which is 
specularly reflected by the surface

n is Phong’s ad hoc “roughness” coefficient

I is the intensity of the specularly reflected 
light 

I I k

I k R V

l s

n

l s

n

=

= ⋅

cos

( )

α

Phong Bui-Tuong, “Illumination for computer 
generated pictures”, CACM, 18(6), 1975, 311–7 

n=1 n=3 n=7 n=20 n=40 

50 

Examples 

diffuse reflection 

specular 
reflection 

100% 75% 50% 25% 0% 

100% 

75% 

50% 

25% 

0% 

51 

Shading: overall equation 

u  the overall shading equation can thus be considered to be the 
ambient illumination plus the diffuse and specular reflections 
from each light source 
 
 
 
 
 
 

n  the more lights there are in the scene, the longer this calculation will take 

θ θ
α

N
R
i

V

L
i

I I k I k L N I k R V
a a i d i i s i

n

ii

= + ⋅ + ⋅∑∑ ( ) ( )
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The gross assumptions revisited 
u  diffuse reflection 

u  approximate specular reflection 

u  no shadows 
n  need to do ray tracing or shadow mapping to get shadows 

u  lights at infinity 

n  can add local lights at the expense of more calculation 

l need to interpolate the L vector 

u  no interaction between surfaces 

n  cheat! 

l  assume that all light reflected off all other surfaces onto a given surface 
can be amalgamated into a single constant term: “ambient illumination”, 
add this onto the diffuse and specular illumination 

Ray tracing 

ª Identify point on surface and calculate illumination 

ª Given a set of 3D objects, shoot a ray from the eye 
through the centre of every pixel and see what 
surfaces it hits 

53 

shoot a ray through each pixel whatever the ray hits determines the colour of 
that pixel

54 
Ray tracing: examples 

ray tracing easily handles reflection, refraction, 
shadows and blur 

ray tracing is computationally expensive  



Introduction to Graphics 

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 10 

Michaelmas Term 2016 

55 

Ray tracing algorithm 

select an eye point and a screen plane

FOR every pixel in the screen plane

determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray

IF the intersection is the closest (so far) to the eye
record intersection point and object

END IF ;

END IF ;
END FOR ;

set pixel’s colour to that of the object at the closest intersection point
END FOR ;

56 

Intersection of a ray with an object 1 

u  plane 
 
 
 
 
 
 
 
 

u  polygon or disc 
n  intersection the ray with the plane of the polygon 

l  as above 

n  then check to see whether the intersection point lies inside the polygon 

l  a 2D geometry problem (which is simple for a disc) 

O

D

ray

plane

: ,

:

P O sD s

P N d

= + ≥

⋅ + =

0

0

N

s
d N O

N D
= −

+ ⋅

⋅
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Intersection of a ray with an object 2 
u  sphere 

 
 
 
 
 
 
 
 
 

u  cylinder, cone, torus 
n  all similar to sphere 

n  try them as an exercise 

O

D C
r
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Ray tracing: shading 

u  once you have the intersection of a 
ray with the nearest object you can 
also: 

n  calculate the normal to the object at 
that intersection point 

n  shoot rays from that point to all of the 
light sources, and calculate the diffuse 
and specular reflections off the object 
at that point 

l  this (plus ambient illumination) 
gives the colour of the object (at 
that point) 

O

D C
r

N

light 1

light 2
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Ray tracing: shadows 

u  because you are tracing 
rays from the intersection 
point to the light, you can 
check whether another 
object is between the 
intersection and the light 
and is hence casting a 
shadow 

n  also need to watch for self-
shadowing 

O

D C
r

N

light 1

light 2

light 3
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Ray tracing: reflection 

u  if a surface is totally or 
partially reflective then 
new rays can be 
spawned to find the 
contribution to the 
pixel’s colour given by 
the reflection 

n  this is perfect (mirror) 
reflection  

O

N
1

light

N
2
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Ray tracing: transparency & refraction 

u  objects can be totally or 
partially transparent 

n  this allows objects behind the 
current one to be seen through 
it 

u  transparent objects can have 
refractive indices 

n  bending the rays as they pass 
through the objects 

u  transparency + reflection 
means that a ray can split into 
two parts  

O

light

D
0

D
1

D'
1

D'
2

D
2
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Sampling 

u  we have assumed so far that each ray 
passes through the centre of a pixel 

n  i.e. the value for each pixel is the colour of 
the object which happens to lie exactly 
under the centre of the pixel 

u  this leads to: 
n  stair step (jagged) edges to objects 

n  small objects being missed completely 

n  thin objects being missed completely or 
split into small pieces 

63 

Anti-aliasing 

u  these artefacts (and others) are jointly known as aliasing 

u  methods of ameliorating the effects of aliasing are known as 
anti-aliasing 
 
n  in signal processing aliasing is a precisely defined technical term for a 

particular kind of artefact 

n  in computer graphics its meaning has expanded to include most 
undesirable effects that can occur in the image 

l  this is because the same anti-aliasing techniques which ameliorate 
true aliasing artefacts also ameliorate most of the other artefacts 

64 

Sampling in ray tracing 

u  single point 
n  shoot a single ray through the pixel’s 

centre 

u  super-sampling for anti-aliasing 

n  shoot multiple rays through the pixel 
and average the result 

n  regular grid, random, jittered, Poisson 
disc 

u  adaptive super-sampling 

n  shoot a few rays through the pixel, 
check the variance of the resulting 
values, if similar enough stop, otherwise 
shoot some more rays 

65 

Types of super-sampling 1 

u  regular grid 
n  divide the pixel into a number of sub-pixels and 

shoot a ray through the centre of each 

n  problem: can still lead to noticable aliasing unless 
a very high resolution sub-pixel grid is used 

u  random 
n  shoot N rays at random points in the pixel 

n  replaces aliasing artefacts with noise artefacts 

l  the eye is far less sensitive to noise than to 
aliasing 

12 8 4
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Types of super-sampling 2 

u  Poisson disc 
n  shoot N rays at random points in 

the pixel with the proviso that no 
two rays shall pass through the 
pixel closer than ε to one another 

n  for N rays this produces a better 
looking image than pure random 
sampling 

n  very hard to implement properly 

Poisson disc pure random
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Types of super-sampling 3 

u  jittered 
n  divide pixel into N sub-pixels and 

shoot one ray at a random point in 
each sub-pixel 

n  an approximation to Poisson disc 
sampling 

n  for N rays it is better than pure 
random sampling 

n  easy to implement 

jittered pure randomPoisson disc

68 
More reasons for wanting to take 

multiple samples per pixel 
u  super-sampling is only one reason why we might want to take 

multiple samples per pixel 

u  many effects can be achieved by distributing the multiple samples 
over some range 
n  called distributed ray tracing 

l N.B. distributed means distributed over a range of values 

u  can work in two ways 

� each of the multiple rays shot through a pixel is allocated a random value from 
the relevant distribution(s) 

l  all effects can be achieved this way with sufficient rays per pixel 

� each ray spawns multiple rays when it hits an object 

l  this alternative can be used, for example, for area lights 

69 

Examples of distributed ray tracing 
n  distribute the samples for a pixel over the pixel area 

l  get random (or jittered) super-sampling 

l used for anti-aliasing 

n  distribute the rays going to a light source over some area 

l  allows area light sources in addition to point and directional light sources 

l produces soft shadows with penumbrae 

n  distribute the camera position over some area 

l  allows simulation of a camera with a finite aperture lens 

l produces depth of field effects 

n  distribute the samples in time 

l produces motion blur effects on any moving objects 

70 

Anti-aliasing 

one sample per pixel multiple samples per pixel 

71 

Area vs point light source 

an area light source produces soft shadows a point light source produces hard shadows 

72 
Finite aperture 

1, 120 

left, a pinhole camera 

below, a finite aperture camera 

below left, 12 samples per pixel 

below right, 120 samples per pixel 

note the depth of field blur: only objects 

at the correct distance are in focus 
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Distributed ray tracing for 

specular reflection 

u  previously we could only 
calculate the effect of perfect 
reflection 

u  we can now distribute the 
reflected rays over the range of 
directions from which specularly 
reflected light could come 

u  provides a method of handling 
some of the inter-reflections 
between objects in the scene 

u  requires a very large number of 
rays per pixel 

O

light

74 

Handling direct illumination 

light

light

ª diffuse reflection 
u  handled by ray tracing and 

polygon scan conversion 

u  assumes that the object is a 
perfect Lambertian reflector 

ª specular reflection 

u  also handled by ray tracing and 
polygon scan conversion 

u  use Phong’s approximation to 
true specular reflection 

75 

Handing indirect illumination: 1 

light

light

ª diffuse to specular 
u  handled by distributed ray 

tracing 
 
 
 
 

ª specular to specular 

u  also handled by 
distributed ray tracing  

76 

Handing indirect illumination: 2 

light

light

ª diffuse to diffuse   
u  handled by radiosity 

n  covered in the Part II 
Advanced Graphics 
course 
 

ª specular to diffuse 
u  handled by no usable 

algorithm 

u  some research work has 
been done on this but 
uses enormous amounts 
of CPU time 
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Multiple inter-reflection 

ª light may reflect off many surfaces on its way 
from the light to the camera 

ª standard ray tracing and polygon scan 
conversion can handle a single diffuse or 
specular bounce 

ª distributed ray tracing can handle multiple 
specular bounces 

ª radiosity can handle multiple diffuse bounces 

ª the general case cannot be handled by any 
efficient algorithm 

(diffuse | specular)*

diffuse | specular

(diffuse | specular) (specular)*

(diffuse)*

(diffuse | specular )*

78 

Introduction to Computer Graphics 

ª Background 

ª Rendering 

ª Graphics pipeline 

u  Polygonal mesh models 

u  Transformations using matrices in 2D and 3D 

u  Homogeneous coordinates 

u  Projection: orthographic and perspective 

ª Graphics hardware and modern OpenGL 

ª Technology 
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Unfortunately… 

ª Ray tracing is computationally expensive 

u  used by hobbyists and for super-high visual quality 

ª Video games and user interfaces need something faster 

ª So: 

u  Model surfaces as polyhedra – meshes of polygons 

u  Use composition to build scenes 

u  Apply perspective transformation 
and project into plane of screen 

u  Work out which surface was closest 

u  Fill pixels with colour of nearest visible polygon 

ª Modern graphics cards have hardware to support this 
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Three-dimensional objects 

u  Polyhedral surfaces are made up from 
meshes of multiple connected polygons 

u  Polygonal meshes 

n  open or closed 

n manifold or non-manifold 

u  Curved surfaces 

n must be converted to polygons to be drawn 

80 

81 

Surfaces in 3D: polygons 

ª Easier to consider planar polygons 

u  3 vertices (triangle) must be planar 

u  > 3 vertices, not necessarily planar 

this vertex is in 
front of the other 

three, which are all 

in the same plane

a non-planar 
“polygon” rotate the polygon 

about the vertical axis

should the result be this  

or this?
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Splitting polygons into triangles 

u  Most Graphics Processing Units (GPUs) are optimised to 
draw triangles 

u  Split polygons with more than three vertices into triangles 

which is preferable?

? 
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2D transformations 

ª scale 
 
 

ª rotate 
 
 

ª translate 
 
 

ª (shear) 

ª why? 
u  it is extremely useful to be 

able to transform predefined 
objects to an arbitrary 
location, orientation, and size 

u  any reasonable graphics 
package will include 
transforms 

n  2D è Postscript 

n  3D è OpenGL 
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Basic 2D transformations 
u  scale 

n  about origin 

n  by factor m 

u  rotate  
n  about origin 

n  by angle θ 

u  translate 

n  along vector (xo,yo) 
 

u  shear 

n  parallel to x axis 

n  by factor a 

x mx

y my

'

'

=

=

x x y

y x y

' cos sin

' sin cos

= −

= +

θ θ

θ θ

x x x

y y y

o

o

'

'

= +

= +

x x ay

y y

'

'

= +

=
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Matrix representation of transformations 

ª scale 
u  about origin, factor m 

 
 
 
 
 

ª do nothing 

u  identity 

x

y

m

m

x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
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⎣
⎢
⎤

⎦
⎥

0

0

x

y

x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

1 0

0 1

x

y

a x

y

'

'

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

1

0 1

ª rotate 
u  about origin, angle θ 

 
 
 
 
 

ª shear 

u  parallel to x axis, factor a  
 
 

x

y

x

y

'

'

cos sin

sin cos

⎡

⎣
⎢
⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢
⎤

⎦
⎥

θ θ

θ θ
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Homogeneous 2D co-ordinates 

u  translations cannot be represented using simple 2D matrix 
multiplication on 2D vectors, so we switch to 
homogeneous co-ordinates 

u  an infinite number of homogeneous co-ordinates map to 
every 2D point 

u  w=0 represents a point at infinity 

u  usually take the inverse transform to be: 
 

( )( , , ) ,x y w x
w

y

w
≡

( , ) ( , , )x y x y≡ 1
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Matrices in homogeneous co-ordinates 
ª scale

u  about origin, factor m  

 

 

 

 

ª do nothing

u  identity

x

y

w

m

m

x

y

w
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0 0

0 0

0 0 1

ª rotate

u  about origin, angle θ 

 

 

 

 

ª shear

u  parallel to x axis, factor a  
 

x

y

w

x

y

w
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Translation by matrix algebra 

x

y

w

x

y

x

y

w

o
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0
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o
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o
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x

w

x

w
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'
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y
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In conventional coordinates

In homogeneous coordinates
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Concatenating transformations 

u  often necessary to perform more than one transformation on the 
same object 

u  can concatenate transformations by multiplying their matrices 
e.g. a shear followed by a scaling: 
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m
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shearscale

shearscale both
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Transformation are not commutative 

ª be careful of the order in which you concatenate 
transformations 

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2

2

2

2

1

2

1

2

2

2

1

2

2

2
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0
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2 0 0
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scale

rotatescale then rotate

rotate then scale
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Scaling about an arbitrary point 

u  scale by a factor m about point (xo,yo) 
Œ translate point (xo,yo) to the origin 

� scale by a factor m about the origin 

� translate the origin to (xo,yo) 

(xo,yo) 

(0,0) 
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Exercise: show how to 
perform rotation about 

an arbitrary point

Œ � � 
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3D transformations 
u  3D homogeneous co-ordinates 

u  3D transformation matrices 

( , , , ) ( , , )x y z w x
w

y

w
z
w

→
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translation identity 

scale 

rotation about x-axis 

rotation about y-axis rotation about z-axis 
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3D transformations are not commutative 

x 

y 
z 

x 

x 
z 

z 

x 

y 
z 

90° rotation 
about z-axis

90° rotation 
about x-axis

90° rotation 
about z-axis

90° rotation 
about x-axis

opposite 
faces

↔

↔

↔
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Model transformation 1 
n  the graphics package Open Inventor defines a cylinder to be: 

l centre at the origin, (0,0,0) 

l  radius 1 unit 

l height 2 units, aligned along the y-axis 

n  this is the only cylinder that can be drawn, 
but the package has a complete set of 3D transformations 

n we want to draw a cylinder of: 

l  radius 2 units 

l  the centres of its two ends located at (1,2,3) and (2,4,5) 

v its length is thus 3 units 

n what transforms are required? 
and in what order should they be applied? 

x 

y 

2

2

Model transformation 2 

ª order is important: 

u  scale first 

u  rotate  

u  translate last 

ª scaling and translation are straightforward 
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T

translate centre of 
cylinder from (0,0,0) to 
halfway between (1,2,3) 

and (2,4,5) 

scale from 
size (2,2,2) 

to size (4,3,4) 

S 

Model transformation 3 

ª rotation is a multi-step process 

u  break the rotation into steps, each of which is rotation 
about a principal axis 

u  work these out by taking the desired orientation back to 
the original axis-aligned position 

l  the centres of its two ends located at (1,2,3) and 
(2,4,5) 

u  desired axis: (2,4,5)–(1,2,3) = (1,2,2) 

u  original axis: y-axis = (0,1,0) 

96 
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Model transformation 4 

u  desired axis: (2,4,5)–(1,2,3) = (1,2,2) 

u  original axis: y-axis = (0,1,0) 

u  zero the z-coordinate by rotating about the x-axis 
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Model transformation 5 

u  then zero the x-coordinate by rotating about the z-axis 

u  we now have the object’s axis pointing along the y-axis 
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Model transformation 6 

ª the overall transformation is: 

u  first scale 

u  then take the inverse of the rotation we just calculated 

u  finally translate to the correct position 
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Application: display multiple instances 

u  transformations allow you to define an object at one 
location and then place multiple instances in your scene 
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101 

3D ð 2D projection 

ª to make a picture 

u  3D world is projected to a 2D image 

n  like a camera taking a photograph 

n  the three dimensional world is projected onto a plane 

The 3D world is described as a set 
of (mathematical) objects

e.g. sphere radius (3.4)  
centre (0,2,9)

e.g. box size (2,4,3)  
centre (7, 2, 9)  

orientation (27º, 156º)
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Types of projection 

ª parallel 

u  e.g. 

u  useful in CAD, architecture, etc 

u  looks unrealistic 

ª perspective 

u  e.g. 

u  things get smaller as they get farther away 

u  looks realistic 

n  this is how cameras work 

( , , ) ( , )x y z x y→

( , , ) ( , )x y z x
z

y

z
→
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Geometry of perspective projection 

y 

z 

d 

( , , )x y z
( ', ', )x y d

x x
d

z

y y
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z
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'

=
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( , , )0 0 0
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Projection as a matrix operation 
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This is useful in the z-buffer 
algorithm where we need to 
interpolate 1/z values rather 
than z values. ⎥
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Perspective projection 

with an arbitrary camera 
u  we have assumed that: 

n  screen centre at (0,0,d) 

n  screen parallel to xy-plane 

n  z-axis into screen 

n  y-axis up and x-axis to the right 

n  eye (camera) at origin (0,0,0) 

u  for an arbitrary camera we can either: 

n work out equations for projecting objects about an arbitrary point 
onto an arbitrary plane 

n  transform all objects into our standard co-ordinate system (viewing 
co-ordinates) and use the above assumptions 
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A variety of transformations 

n  the modelling transform and viewing transform can be multiplied together to 
produce a single matrix taking an object directly from object co-ordinates into 
viewing co-ordinates 

n  either or both of the modelling transform and viewing transform matrices can 
be the identity matrix 

l  e.g. objects can be specified directly in viewing co-ordinates, or directly in 
world co-ordinates 

n  this is a useful set of transforms, not a hard and fast model of how things 
should be done 

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing 
transform

object in
2D screen

co-ordinates
projection

object in
object

co-ordinates modelling 
transform
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Viewing transformation 1 

ª the problem: 

u  to transform an arbitrary co-ordinate system to the 
default viewing co-ordinate system 

ª camera specification in world co-ordinates 

u  eye (camera) at (ex,ey,ez) 

u  look point (centre of screen) at (lx,ly,lz) 

u  up along vector (ux,uy,uz) 

n perpendicular to 

world

co-ordinates

viewing

co-ordinatesviewing 
transform

u

e

l 

el
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Viewing transformation 2 

u  translate eye point, (ex,ey,ez), to origin, (0,0,0)  
 
 
 
 

u  scale so that eye point to look point distance,      , is distance 
from origin to screen centre, d 
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Viewing transformation 3 

u  need to align line      with z-axis 
n  first transform e and l into new co-ordinate system 

 

n  then rotate e''l'' into yz-plane, rotating about y-axis 
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Viewing transformation 4 

u  having rotated the viewing vector onto the yz plane, rotate it 
about the x-axis so that it aligns with the z-axis 
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Viewing transformation 5 

u  the final step is to ensure that the up vector actually points up, 
i.e. along the positive y-axis 

n  actually need to rotate the up vector about the z-axis so that it lies in the 
positive y half of the yz plane 

u R R u'''' = × ×
2 1

why don’t we need to 
multiply u by S or T? 

u is a vector rather than 
a point, vectors do not 
get translated 
 

scaling u by a uniform 
scaling matrix would 
make no difference to the 
direction in which it 
points 
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Viewing transformation 6 

u  we can now transform any point in world co-ordinates to the 
equivalent point in viewing co-ordinate 
 
 
 

u  in particular: 

u  the matrices depend only on e, l, and u, so they can be pre-
multiplied together 
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Illumination & shading 
ª  Drawing polygons with uniform colours gives poor results 

ª  Interpolate colours across polygons 

113 114 

Illumination & shading 

ª Interpolating colours across polygons needs 

u  colour at each vertex 

u  algorithm to blend between the colours across the polygon 

ª Works for ambient lighting and diffuse reflection 

ª Specular reflection requires more information than just 
the colour 
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Gouraud shading 
u  for a polygonal model, calculate the diffuse illumination at each 
vertex 

n  calculate the normal at the vertex, and use this to calculate the diffuse 
illumination at that point 

n  normal can be calculated directly if the polygonal model was derived from a 
curved surface 

u  interpolate the colour between the  
vertices across the polygon 

u  surface will look smoothly curved 
n  rather than looking like a set of polygons 

n  surface outline will still look polygonal 

[( ', ' ), ,( , , )]x y z r g b1 1 1 1 1 1

[( ', ' ), ,
( , , )]
x y z
r g b
2 2 2

2 2 2

[( ', ' ), ,( , , )]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971 
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Flat vs Gouraud shading 

u  note how the interior is smoothly 
shaded but the outline remains 
polygonal 

http://computer.howstuffworks.com/question484.htm 
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Phong shading 

u  similar to Gouraud shading, but calculate the specular component 
in addition to the diffuse component 

u  therefore need to interpolate the normal across the polygon in 
order to be able to calculate the reflection vector 
 
 

u  N.B. Phong’s approximation to 
specular reflection ignores 
(amongst other things) the 
effects of glancing incidence 

[( ', ' ), ,( , , ), ]x y z r g b1 1 1 1 1 1 1N

[( ', ' ), ,
( , , ), ]
x y z
r g b
2 2 2

2 2 2 2N

[( ', ' ), ,( , , ), ]x y z r g b3 3 3 3 3 3 3N
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Introduction to Computer Graphics 

ª Background 

ª Rendering 

ª Graphics pipeline 

ª Graphics hardware and modern OpenGL 
u  GPU & APIs 

u  Example OpenGL code 

u  OpenGL Rendering pipeline 

u  GLSL 

u  Transformations & vertex shaders 

u  Raster buffers 

u  Textures 

ª Technology 

What is a GPU? 

}  Graphics Processing Unit 

}  Like CPU (Central 
Processing Unit)  but for 
processing graphics 

}  Optimized for floating point 

operations on large arrays 
of data 

}  Vertices, normals, pixels, etc. 
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Transistor count 

Intell 8-core Core i7 Haswell-E Nvidia GeForce GTX Titan X 

2,600,000,000 transistors 8,000,000,000 transistors 
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What does a GPU do 

}  Performs all low-level tasks & a lot of high-level tasks 

}  Clipping, rasterisation, hidden surface removal, … 

}  Essentially draws millions of triangles very efficiently 

}  Procedural shading, texturing, animation, simulation, … 

}  Video rendering, de- and encoding, deinterlacing, ... 

}  Physics engines 

}  Full programmability at several pipeline stages 

}  In the recent years GPUs became like CPU 

}  fully programmable 

}  but optimized for massively parallel operations 
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What makes GPU so fast? 

}  3D rendering can be very efficiently parallelized 

}  Millions of pixels 

}  Millions of triangles 

}  Many operations executed at the same time 

}  This is why modern GPUs 

}  Contain between hundreds and thousands of SIMD processors 

}  Single Instruction Multiple Data – operate on large arrays of data 

}  >>400 GB/s memory access 

}  This is much higher bandwidth than CPU 

}  But peak performance can be expected for very specific operations 
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GPU APIs  

(Application Programming Interfaces) 

OpenGL 

}  Multi-platform 

}  Open standard API 

}  Focus on general 3D 
applications 

}  Open GL driver manages 
the resources 

DirectX 

}  Microsoft Windows / Xbox 

}  Proprietary API 

}  Focus on games 

}  Application manages 
resources 

}  Nearly the same functionality 

}  Similar performance 

123 
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One more API 

}  Vulkan – cross platform, open standard  

}  Low-overhead API for high performance 3D graphics 

}  Compared to OpenGL / DirectX 

}  Reduces CPU load 

}  Better support of multi-CPU-core architectures 

}  Finer control of GPU 

}  But 

}  The code for drawing a few primitives can take 1000s line of 
code 

}  Intended for game engines and code that must be very well 
optimized 
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GPU for general computing 

}  OpenGL and DirectX are not meant to be used for 
general purpose computing 

}  Example: physical simulation 

}  CUDA – NVidia’s architecture for parallel computing 

}  C-like programming language 

}  With special API for parallel instructions 

}  Requires NVidia GPU 

}  OpenCL – Similar to CUDA, but open standard 

}  Can run on both GPU and CPU 

}  Supported by AMD, Intel and Nvidia, Qualcomm,  Apple, … 
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GPU and mobile devices 

}  OpenGL ES 1.0-3.2 

}  Stripped version of OpenGL 

}  Removed functionality that is not strictly necessary on mobile 
devices 

}  Devices 

}  iOS: iPad, iPhone, iPod Touch 

}  Android phones 

}  PlayStation 3  

}  Nintendo 3DS 

}  and many more 

 OpenGL ES 2.0 rendering (iOS) 
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WebGL 

}  JavaScript library for 3D rendering in a web browser 

}  WebGL 1.0 - based on OpenGL ES 2.0 

}  Most modern browsers  
support WebGL 

}  Microsoft browsers are lagging behind 

}  Potentially could be used to create  
3D games in a browser 

}  and replace Adobe Flash 

http://zygotebody.com/ 
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OpenGL in Java 

}  Standard Java API does not include OpenGL interface 

}  But several wrapper libraries exist 

}  Java OpenGL – JOGL 

}  Lightweight Java Game Library - LWJGL  

}  We will use LWJGL 3 

}  Seems to be better maintained 

}  Access to other APIs (OpenCL, OpenAL, …) 

}  We also need a linear algebra library 

}  JOML – Java OpenGL Math Library 

}  Operations on 2, 3, 4-dimensional vectors and matrices 
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OpenGL History 

}  Proprietary library IRIS GL by SGI 

}  OpenGL 1.0 (1992) 

}  OpenGL 1.2 (1998) 

}  OpenGL 2.0 (2004)  

}  GLSL 

}  Non-power-of-two (NPOT) 
textures 

}  OpenGL 3.0 (2008) 

}  Major overhaul of the API 

}  Many features from previous 
versions depreciated 

}  OpenGL 3.2 (2009) 
}  Core and Compatibility profiles 

}  Geometry shaders 

}  OpenGL 4.0 (2010) 
}  Catching up with Direct3D 11 

}  OpenGL 4.5 (2014) 

129 
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OpenGL example code - overview 

Let us draw some triangles 

}  Initialize rendering window & OpenGL 
context 

}  Send the geometry (vertices, triangles, 
normals) to the GPU 

}  Load and compile Shaders 

Initialize OpenGL 

Set up inputs 

Draw a frame 

}  Clear the screen buffer 

}  Set the model-view-projection matrix 

}  Render geometry 

}  Flip the screen buffers 

Free resources 
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Geometry objects in OpenGL (OO view) 
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OpenGL as a state-machine 

If OpenGL was OO API: 

 

VertexArray va = new 
VertexArray(); 

 

 

ArrayBuffer vertices = new 
ArrayBuffer( my_data ); 

 

va.add( vertices ); 

 

 

But it is not, and you must do: 

 

int va = glGenVertexArrays();  

glBindVertexArray(va); // va 
becomes “active” VertexArray 

 

int vertices = glGenBuffers(); 

glBindBuffer(GL_ARRAY_BUFFE
R, vertex_handle);  // This adds 
vertices to currently bound 
VertexArray 
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A more complete example 

int vertexArrayObj = glGenVertexArrays();  // Create a name 

glBindVertexArray(vertexArrayObj);            // Bind a VertexArray 

 

float[] vertPositions = new float[] { -1, -1, 0,  0, 1, 0,  1, -1, 0 }; // x, y, z, x, y, z … 

// Java specific code for transforming float[] into an OpenGL-friendly format 

FloatBuffer vertex_buffer = BufferUtils.createFloatBuffer(vertPositions.length); 

vertex_buffer.put(vertPositions); // Put the vertex array into the CPU buffer 

vertex_buffer.flip();                     // "flip" is used to change the buffer from 
read to write mode 

 

int vertex_handle = glGenBuffers();     // Get an OGL name for a buffer object 

glBindBuffer(GL_ARRAY_BUFFER, vertex_handle);  // Bring that buffer object 
into existence on GPU 

glBufferData(GL_ARRAY_BUFFER, vertex_buffer, GL_STATIC_DRAW);  // 
Load the GPU buffer object with data 
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Note on LWJGL 

}  The OpenGL functions and constants can be found in the 
LWJGL packages: 

}  org.lwjgl.opengl.GL11 

}  org.lwjgl.opengl.GL15 

}  org.lwjgl.opengl.GL20 

}  org.lwjgl.opengl.GL30 

}  … 

}  For simplicity, package names are omitted in all examples 
shown in these slides 

135 
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Let us draw some triangles 

}  Initialize rendering window & OpenGL 
context 

}  Send the geometry (vertices, triangles, 
normals) to the GPU 

}  Load and compile Shaders 

Initialize OpenGL 

Set up inputs 

Draw a frame 

}  Clear the screen buffer 

}  Set the model-view-projection matrix 

}  Render geometry 

}  Flip the screen buffers 

Free resources 
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Rendering 1 of 2 

// Step 1: Pass a new model-view-projection matrix to the vertex shader 

Matrix4f mvp_matrix; // Model-view-projection matrix 

mvp_matrix = new 
Matrix4f(camera.getProjectionMatrix()).mul(camera.getViewMatrix()); 

 

int mvp_location = glGetUniformLocation(shaders.getHandle(), "mvp_matrix"); 

FloatBuffer mvp_buffer = BufferUtils.createFloatBuffer(16); 

mvp_matrix.get(mvp_buffer); 

glUniformMatrix4fv(mvp_location, false, mvp_buffer); 

 

// Step 2: Clear the buffer 

glClearColor(1.0f, 1.0f, 1.0f, 1.0f); // Set the background colour to dark grey 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

 
137 

Rendering 2 of 2 

// Step 3: Draw our VertexArray as triangles 

glBindVertexArray(vertexArrayObj); // Bind the existing VertexArray object 

glDrawElements(GL_TRIANGLES, no_of_triangles, GL_UNSIGNED_INT, 0); // 
Draw it as triangles 

glBindVertexArray(0); // Remove the binding 

 

// Step 4: Swap the draw and back buffers to display the rendered image 

glfwSwapBuffers(window); 

glfwPollEvents(); 

138 

OpenGL rendering pipeline 

OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

Processing of vertices, normals, 
uv texture coordinates. 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
setup 

[Optional] Create new 
primitives by tessellating existing 

primitives. 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

[Optional] Operate on 
tessellated geometry. Can create 

new primitives. 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

Organizes vertices into 
primitives and prepares them for 

rendering. 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

Remove or modify vertices so 
that they all lie within the 
viewport (view frustum). 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

Generates fragments (pixels) to 
be drawn for each primitive. 

Interpolates vertex attributes. 

scanlines 
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OpenGL rendering pipeline 

Vertex 
data 

Vertex 
shader 

Tessellation 
control shader 

Tessellation 
evaluation shader 

Geometry 
shader 

Clipping Rasterization 

Fragment 
shader 

Screen 
buffer 

Programmable 
stages 

Fixed stages 

Primitive 
assembly 

Computes colour per each 
fragment (pixel). Can lookup 
colour in the texture. Can 
modify pixels’ depth value. 
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GLSL - fundamentals 

Shaders 

}  Shaders are small programs executed on a GPU 

}  Executed for each vertex, each pixel (fragment), etc. 

}  They are written in GLSL (OpenGL Shading Language) 

}  Similar to C++ and Java 

}  Primitive (int, float) and aggregate data types (ivec3, vec3) 

}  Structures and arrays 

}  Arithmetic operations on scalars, vectors and matrices 

}  Flow control: if, switch, for, while 

}  Functions 
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Example of a vertex shader 
#version 330 

in vec3 position;   // vertex position in local space 

in vec3 normal;   // vertex normal in local space 

out vec3 frag_normal;             // fragment normal in world space 

uniform mat4 mvp_matrix;  // model-view-projection matrix 

 

void main() 

{ 

    // Typicaly normal is transformed by the model matrix 

    // Since the model matrix is identity in our case, we do not modify normals 

    frag_normal = normal; 

 

    // The position is projected to the screen coordinates using mvp_matrix 

    gl_Position = mvp_matrix * vec4(position, 1.0); 

} 

Why is this piece 
of code needed?  
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Data types 

}  Basic types 

}  float, double, int, uint, bool 

}  Aggregate types 

}  float: vec2, vec3, vec4; mat2, mat3, mat4 

}  double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4 

}  int: ivec2, ivec3, ivec4 

}  uint: uvec2, uvec3, uvec4 

}  bool: bvec2, bvec3, bvec4 

vec3 V = vec3( 1.0, 2.0, 3.0 ); 

 

 

mat3 M = mat3( 1.0, 2.0, 3.0, 

                         4.0, 5.0, 6.0, 

                         7.0, 8.0, 9.0 ); 
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Indexing components in aggregate types 

}  Subscripts: rgba, xyzw, stpq (work exactly the same) 

}  float red = color.r; 

}  float v_y = velocity.y; 

but also 

}  float red = color.x; 

}  float v_y = velocity.g; 

}  With 0-base index: 

}  float red = color[0]; 

}  float m22 = M[1][1];  // second row and column of matrix M  
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Swizzling 

You can select the elements of the aggregate type: 

}  vec4 rgba_color( 1.0, 1.0, 0.0, 1.0 ); 

}  vec3 rgb_color = rgba_color.rgb; 

}  vec3 bgr_color = rgba_color.bgr; 

}  vec3 luma = rgba_color.ggg; 
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Arrays 

}  Similar to C 

float lut[5] = float[5]( 1.0, 1.42, 1.73, 2.0, 2.23 ); 

}  Size can be checked with “length()” 

for( int i = 0; i < lut.length(); i++ ) { 

   lut[i] *= 2; 

} 
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Storage qualifiers 

}  const – read-only, fixed at compile time 

}  in – input to the shader 

}  out	– output from the shader 

}  uniform – parameter passed from the application (Java), 
constant for the primitive 

}  buffer – shared with the application 

}  shared – shared with local work group (compute 
shaders only) 

}  Example: const	float	pi=3.14;	
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Shader inputs and outputs 

Vertex 
shader 

Fragment
shader 

out vec3 frag_normal 

in vec3 frag_normal 

Vertex attribute 
interpolation 

in vec3 position 

in vec3 normal 

out vec3 colour 

ArrayBuffer (vertices) 

ArrayBuffer (normals) 
glGetAttribLocation 
glBindBuffer 
glVertexAttribPointer 
glEnableVertexAttribArray 
(see the next slide) 
 

FrameBuffer (pixels) 

[optional] 
glBindFragDataLocation 
or 
layout(location=?) in GLSL 
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How to specify input to a vertex shader? 
//	Get	the	locations	of	the	"position"	vertex	attribute	variable	
in	our	shader	

int	position_loc	=	glGetAttribLocation(shaders_handle,	
"position");	

//	If	the	vertex	attribute	found	

if	(position_loc	!=	-1)	{	

		//	Activate	the	ArrayBuffer	that	should	be	accessed	in	the	
shader	

		glBindBuffer(GL_ARRAY_BUFFER,	vertex_handle);			

		//	Specifies	where	the	data	for	"position"	variable	can	be	
accessed	

		glVertexAttribPointer(position_loc,	3,	GL_FLOAT,	false,	0,	0);	

		//	Enable	that	vertex	attribute	variable	

		glEnableVertexAttribArray(position_loc);	

}	
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Passing uniform(s) to a shader 

}  In shader: 
uniform	mat4	mvp_matrix;	//	model-view-projection	matrix	

}  In Java: 
Matrix4f	mvp_matrix;	//	Matrix	to	be	passed	to	the	shader	

...	

int	mvp_location	=	glGetUniformLocation(shaders.getHandle(),	
																			"mvp_matrix");	

FloatBuffer	mvp_buffer	=	BufferUtils.createFloatBuffer(16);	

mvp_matrix.get(mvp_buffer);	

glUniformMatrix4fv(mvp_location,	false,	mvp_buffer);	

Name of the method depends on the data type. 
For example, glUniform3fv for Vector3f	
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GLSL Operators 

}  Arithmetic:  + - ++ -- 

}  Multiplication:   

}  vec3	*	vec3	– element-wise 

}  mat4	*	vec4	– matrix multiplication (with a column vector) 

}  Bitwise (integer): <<,	>>,	&,	|,	^	

}  Logical (bool): &&,	||,	^^	

}  Assignment:  

float	a=0;	

a	+=	2.0;	//	Equivalent	to	a	=	a	+	2.0	

}  See the quick reference guide at: 
https://www.opengl.org/documentation/glsl/ 

159 



Introduction to Graphics Michaelmas Term 2016 

©1996–2016 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk 

GLSL Math 

}  Trigonometric: 

}  radians(	deg	),	degrees(	rad	),	sin,	cos,	tan,	
asin,	acos,	atan,	sinh,	cosh,	tanh,	asinh,	
acosh,	atanh	

}  Exponential:  

}  pow,	exp,	log,	exp2,	log2,	sqrt,	inversesqrt	

}  Common functions: 

}  abs,	round,	floor,	ceil,	min,	max,	clamp,	…	

}  And many more 

}  See the quick reference guide at: 
https://www.opengl.org/documentation/glsl/ 
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GLSL flow control 
if(	bool	)	{	

		//	true	

}	else	{	

		//	false	

}	

	

switch(	int_value	)	{	

		case	n:	

				//	statements	

				break;	

		case	m:	

				//	statements	

				break;	

		default:	

}		

for(	int	i	=	0;	i<10;	i++	)	{	

			...	

}	

	

while(	n	<	10	)	{	

	...	

}	

	

do	{	

	...	

}	while	(	n	<	10	)	
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Transformations (Vertex shaders) 

Model, View, Projection matrices 

Object coordinates 
 

Object centred at the 
origin 

World coordinates 

Model 
matrix 

To position each 
object in the scene. 

Could be different 
for each object. 
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Model, View, Projection matrices 

World coordinates 

View matrix 

View (camera) 
coordinates 

 
Camera at the origin, 

pointing at -z 
 

To position all 
objects relative to 

the camera 
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Model, View, Projection matrices 

Projection 
matrix 

View (camera) 
coordinates 

Screen coordinates 
 

x and y must be in the range 
-1 and 1 

To project 3D 
coordinates to a 2D 

plane. Note that z 
coordinate is 

retained for depth 
testing. 

165 

The default OpenGL 
coordinate system is 

right-handed 
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All together 
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3D world 
vertex 

coordinates 

Screen 
coordinates 

 
xs/ws and  

ys/ws must be 
between  
-1 and 1 

Projection, view and 
model matrices 
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Raster buffers (colour, depth, stencil)  

Render buffers in OpenGL 

GL_FRONT GL_BACK Colour: 

Depth: 

GL_FRONT_LEFT GL_FRONT_RIGHT 

GL_BACK_LEFT GL_BACK_RIGHT 

DEPTH 

Stencil: STENCIL 

In stereo: 

Four components: 
RGBA 

 
Typically 8 bits per 

component 

To block rendering selected pixels 
Single component, usually 8 bits. 

To resolve occlusions (see Z-buffer algorithm) 
Single component, usually >8 bits 
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Double buffering 

}  To avoid flicker, tearing 

}  Use two buffers (rasters): 

}  Front buffer – what is shown on the screen 

}  Back buffer – not shown, GPU draws into that buffer 

}  When drawing is finished, swap front- and back-buffers 

Front buffer – display 

Back buffer - draw 

1st buffer 

2nd buffer 

time 
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Triple buffering 

}  Do not wait for swapping to start drawing  the next 
frame 

}  Shortcomings 

}  More memory needed 

}  Higher delay between drawing and displaying  
a frame 

Front buffer – display 

Back buffer - draw 

1st buffer 

2nd buffer 

time 

Front buffer – display 

Back buffer  - draw 

time 

3rd buffer 

Double buffering 

Get rid of these gaps 

Triple buffering 
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Vertical Synchronization: V-Sync 

}  Pixels are copied from colour buffer to monitor raw-by-raw 

}  If front & back buffer are swapped during this process: 

}  Upper part of the screen contains previous frame 

}  Lower part of the screen contains current frame 

}  Result: tearing artefact 

}  Solution: When V-Sync is enabled 

}  glwfSwapInterval(1);	

glSwapBuffers() waits until  
the last raw is copied to the display. 
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Z-Buffer - algorithm 

}  Initialize the depth buffer and image buffer for all pixels 

color(x, y) = Background_Color, 

depth(x, y) = z_far      //  position of the far clipping plane  

}  For every triangle in a scene 

}  For every fragment (x, y) representing this triangle 

}  Calculate z for current (x, y) 

}  if		(z	<	depth(x,	y))	

¨  depth	(x,	y)	=	z	

¨  color	(x,	y)	=	Polygon_Color	(x,	y)	
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View frustum 

}  Controlled by camera parameters: near-, far-clipping 
planes and field-of-view 

Far-clipping plane 

FOV 

Near-clipping plane 

Z-buffer must store all 
these values 
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Textures 

(Most important) OpenGL texture types 

1D 

s 0 1 

2D 

s 

t 

0 1 
0 

1 

s 

t 

p 

3D 

Texture can have any size but the 
sizes that are powers of two (POT, 2n) 

may give better performance. 

CUBE_MAP Used for environment 
mapping 

0 

0 

1 
1 

1 

0 

Texel 
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Texture mapping 

}  1. Define your texture 
function (image) T(u,v) 

}  (u,v) are texture 
coordinates 
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Texture mapping 

}  2. Define the correspondence 
between the vertices on the 
3D object and the texture 
coordinates  

177 
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Texture mapping 

}  3. When rendering, for every surface point compute 
texture coordinates. Use the texture function to get 
texture value. Use as color or reflectance. 
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Sampling 

Up-sampling 
More pixels than texels 

Values need to be interpolated 

Down-sampling 
Fewer pixels than texels 

Values need to be averaged 
over an area of the texture  

(usually using a mipmap) 

Texture 
v 

u 
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Nearest neighbor vs.  

bilinear interpolatim 

A B 

C D 
X 

Interpolate first along 
x-axis between AB 

and CD, then along 

y-axis between the 

interpolated points.   
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n
 

Pick the nearest 
texel: D 

Texel 
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Texture mapping examples 

nearest-
neighbour 

bilinear 

u

v
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Up-sampling 

nearest-
neighbour 

blocky 

artefacts 

bilinear 

blurry 

artefacts 

 

u

v

ª if one pixel in the texture map 
covers several pixels in the final 
image, you get visible artefacts 

ª only practical way to prevent this 
is to ensure that texture map is of 
sufficiently high resolution that it 
does not happen 
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Down-sampling 

}  if the pixel covers quite a large area 
of the texture, then it will be 
necessary to average the texture 
across that area, not just take a 
sample in the middle of the area 
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Mipmap 

}  Textures are often stored at 
multiple resolutions as a 
mipmap 

}  Each level of the pyramid is half 
the size of the lower level 

}  It provides pre-filtered texture 

(area-averaged) when screen 
pixels are larger than the full 
resulution texels 

}  Mipmap requires just 1/3 of the 
original texture size to store 
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Down-sampling 

without area averaging with area averaging 
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Texture tiling 

}  Repetitive patterns can be represented as texture tiles. 

}  The texture folds over, so that  

}  T(u=1.1, v=0) = T(u=0.1, v=0) 
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Texture atlas 

}  A single texture is often used for multiple surfaces and 
objects 

Example from: http://awshub.com/blog/blog/
2011/11/01/hi-poly-vs-low-poly/ 
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Bump (normal) mapping 

}  Special kind of texture that 
modifies surface normal 

}  Surface normal is a vector 
that is perpendicular to a 
surface 

}  The surface is still flat but 
shading appears as on an 
uneven surface 

}  Easily done in fragment 

shaders 
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Displacement mapping 

}  Texture that modifies surface 

}  Better results than bump 
mapping since the surface is 
not flat 

}  Requires geometry shaders 

189 
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Environment mapping 

}  To show environment 
reflected by an object 
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Environment mapping 

}  Environment cube 

}  Each face captures 
environment in that 
direction 
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Texture objects in OpenGL 
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Setting up a texture 
//	Create	a	new	texture	object	in	memory	and	bind	it	

int	texId	=	glGenTextures();	

glActiveTexture(textureUnit);	

glBindTexture(GL_TEXTURE_2D,	texId);	

		

//	All	RGB	bytes	are	aligned	to	each	other	and	each	component	is	
1	byte	

glPixelStorei(GL_UNPACK_ALIGNMENT,	1);	

	

//	Upload	the	texture	data	and	generate	mipmaps	

glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB,	tWidth,	tHeight,	0,		

								GL_RGBA,	GL_UNSIGNED_BYTE,	buf);	

glGenerateMipmap(GL_TEXTURE_2D);	
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Texture parameters 
//Setup	filtering,	i.e.	how	OpenGL	will	interpolate	the	pixels	
when	scaling	up	or	down	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	
GL_LINEAR);	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	
GL_LINEAR_MIPMAP_NEAREST);	

	

	

	

//Setup	wrap	mode,	i.e.	how	OpenGL	will	handle	pixels	outside	of	
the	expected	range	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_S,	
GL_CLAMP_TO_EDGE);	

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_T,	
GL_CLAMP_TO_EDGE);	

How to 
interpolate in 

2D 

How to interpolate 
between mipmap 

levels 
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Fragment shader 
#version	330	

uniform	sampler2D	texture_diffuse;	

in	vec2	frag_TextureCoord;	

	

out	vec4	out_Color;	

	

void	main(void)	{	

	out_Color	=	texture(texture_diffuse,	frag_TextureCoord);	

}	
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Rendering 
//	Bind	the	texture	

glActiveTexture(GL_TEXTURE0);	

glBindTexture(GL_TEXTURE_2D,	texId);	

	

glBindVertexArray(vao);	

glDrawElements(GL_TRIANGLES,	indicesCount,	GL_UNSIGNED_INT,	0);	

glBindVertexArray(0);	

	

glBindTexture(GL_TEXTURE_2D,	0);	
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Frame Buffer Objects 

Frame Buffer Objects (FBOs) 

}  Instead of rendering to the screen buffer (usually 
GL_BACK), an image can be rendered to an off-screen 
buffer: a Texture or a RenderBuffer 

Faster to render to than a texture 
but cannot be sampled, pixels can 

be only copied. 198 

Frame Buffer Object applications 

}  Post-processing, tone-mapping, 
blooming, etc. 

}  Reflections (in water), animated 
textures (e.g. TV screen) 

}  When the result of rendering is 

not shown (e.g. saved to disk) 
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FBO: Code example 1/3 

}  Create FBO, attach a Texture (colour) and a RenderBuffer 
(depth) 

int	color_tex	=	glGenTextures();	

glBindTexture(GL_TEXTURE_2D,	color_tex);	

glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGBA8,	256,	256,	0,	GL_BGRA,	
GL_UNSIGNED_BYTE,	NULL);	

	

int	myFBO	=	glGenFramebuffers();	

glBindFramebuffer(GL_FRAMEBUFFER,	myFBO);	

//Attach	2D	texture	to	this	FBO	

glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_COLOR_ATTACHMENT0,	
GL_TEXTURE_2D,	color_tex,	0);	
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FBO: Code example 2/3 
int	depth_rb	=	glGenRenderbuffers();	

glBindRenderbuffer(GL_RENDERBUFFER,	depth_rb);	

glRenderbufferStorage(GL_RENDERBUFFER,	GL_DEPTH_COMPONENT24,	
256,	256);	

//Attach	depth	buffer	to	FBO	

glFramebufferRenderbuffer(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,	
GL_RENDERBUFFER,	depth_rb);	
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FBO: Code example 3/3 

}  Render 
glBindFramebuffer(GL_FRAMEBUFFER,	myFBO);	

glClearColor(0.0,	0.0,	0.0,	0.0);	

glClearDepth(1.0f);	

glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);	

	

//	Render	

	

glBindFramebuffer(GL_FRAMEBUFFER,	0);	
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Introduction to Computer Graphics 

ª Background 

ª Rendering 

ª Graphics pipeline 

ª Graphics hardware and modern OpenGL 

ª Technology 

u  Colour spaces 

u  Brief overview of display and printer technologies 
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Representing colour 

ª we need a mechanism which allows us to represent 
colour in the computer by some set of numbers 

u  preferably a small set of numbers which can be quantised 
to a fairly small number of bits each 

ª we will discuss: 

u  Munsell’s artists’ scheme 

n which classifies colours on a perceptual basis 

u  the mechanism of colour vision 
n  how colour perception works 

u  various colour spaces 
n which quantify colour based on either physical or perceptual 

models of colour 

206 

Munsell’s colour classification system 

ª three axes 
n  hue Ø the dominant colour 

n  value Ø bright colours/dark colours 

n  chroma Ø vivid colours/dull colours 

u  can represent this as a 3D graph 
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Munsell’s colour classification system 

ª any two adjacent colours are a standard “perceptual” 
distance apart 

u  worked out by testing it on people 

u  a highly irregular space 

n  e.g. vivid yellow is much brighter than vivid blue 

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours 
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XYZ colour space 

ª not every wavelength can be represented as a mix of red, 
green, and blue lights 

ª but matching & defining coloured light with a mixture of 
three fixed primaries is desirable 

ª CIE define three standard primaries: X, Y, Z 

FvDFH Sec 13.2.2

Y matches the human eye’s response to light of a 
constant intensity at each wavelength (luminous-
efficiency function of the eye) 
 
X, Y, and Z are not themselves colours, they are 
used for defining colours – you cannot make a light 
that emits one of these primaries 
 
XYZ colour space was defined in 1931 by the Commission 
Internationale de l’ Éclairage (CIE) 
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CIE chromaticity diagram 

ª chromaticity values are defined in terms of x, y, z 
 
 

n  ignores luminance 

n  can be plotted as a 2D function 

u  pure colours (single wavelength) 
lie along the outer curve 

u  all other colours are a mix of 
pure colours and hence lie 
inside the curve 

u  points outside the curve do not 
exist as colours 
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Colour spaces 

u  CIE XYZ, Yxy 

u  Uniform 

n  equal steps in any direction make equal perceptual differences 

n CIE L*u*v*, CIE L*a*b* 

u  Pragmatic 

n  used because they relate directly to the way that the hardware works 

n  RGB, CMY, CMYK 

u  Munsell-like 
n  used in user-interfaces 

n  considered to be easier to use for specifying colour than are the pragmatic 
colour spaces 

n map easily to the pragmatic colour spaces 

n  HSV, HLS 
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RGB space 

ª all display devices which output light mix red, green 
and blue lights to make colour 

u  televisions, CRT monitors, video projectors, LCD screens 

ª nominally, RGB space is a cube 

ª the device puts physical limitations on: 

u  the range of colours which can be displayed 

u  the brightest colour which can be displayed 

u  the darkest colour which can be displayed 
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RGB in XYZ space 

ª CRTs and LCDs mix red, green, and blue to make all 
other colours 

ª the red, green, and blue primaries each map to a point 
in XYZ space 

ª any colour within the resulting 
triangle can be displayed 

n  any colour outside the triangle 
cannot be displayed 

n  for example: CRTs cannot display 
very saturated purple, turquoise, 
or yellow FvDFH Figs 13.26, 13.27
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CMY space 

ª printers make colour by mixing coloured inks 

ª the important difference between inks (CMY) and 
lights (RGB) is that, while lights emit light, inks absorb 
light 

u  cyan absorbs red, reflects blue and green 

u  magenta absorbs green, reflects red and blue 

u  yellow absorbs blue, reflects green and red 

ª CMY is, at its simplest, the inverse of RGB 

ª CMY space is nominally a cube 
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Ideal and actual printing ink reflectivities 

actual 

ideal 
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CMYK space 

ª in real printing we use black 
(key) as well as CMY 

ª why use black? 

u  inks are not perfect absorbers 

u  mixing C + M + Y gives a muddy 
grey, not black 

u  lots of text is printed in black: 
trying to align C, M and Y perfectly 
for black text would be a 
nightmare 
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Using K 

ª if we print using just 
CMY then we can get 
up to 300% ink at any 
point on the paper 

ª removing the 
achromatic portion of 
CMY and replacing 
with K reduces the 
maximum possible ink 
coverage to 200% 
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Image display 

ª a handful of technologies cover over 99% of all 
display devices 

u  active displays 
n  cathode ray tube   standard for late 20th century 

n  liquid crystal display  most common today 

n  plasma displays   briefly popular but power-hungry 

n  digital mirror displays  increasing use in video projectors 

u  printers (passive displays) 

n  laser printers   the traditional office printer 

n  ink jet printers   the traditional home printer 

n  commercial printers  for high volume 
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Liquid crystal displays I 

u  liquid crystals can twist the polarisation of light 

u  basic control is by the voltage that is applied across the 
liquid crystal: either on or off, transparent or opaque 

u  greyscale can be achieved with some types of liquid crystal 
by varying the voltage 

u  colour is achieved with colour filters 
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Liquid crystal displays II 

there are two polarizers at right angles to one another 
on either side of the liquid crystal: under normal 
circumstances these would block all light 

there are liquid crystal directors: micro-grooves which 

align the liquid crystal molecules next to them 

the liquid crystal molecules try to line up with one 

another; the micro-grooves on each side are at right 
angles to one another which forces the crystals’ 
orientations to twist gently through 90° as you go from 
top to bottom, causing the polarization of the light to 
twist through 90°, making the pixel transparent 

liquid crystal molecules are polar: they have a positive and a 
negative end 

applying a voltage across the liquid crystal causes the 
molecules to stand on their ends, ruining the twisting 
phenomenon, so light cannot get through and the 
pixel is opaque 
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Liquid crystal displays III 

u  low power consumption compared to CRTs although the 
back light uses a lot of power 

u  image quality historically not as good as cathode ray tubes, 
but improved dramatically over the last ten years 

u  uses 

n  laptops 

n  video projectors 

n  rapidly replacing CRTs as desk top displays 

n  increasing use as televisions 

a three LCD video projector, with colour made by 
devoting one LCD panel to each of red, green and 

blue, and by splitting the light using dichroic mirrors 
which pass some wavelengths and reflect others 
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Digital micromirror devices I 

u  developed by Texas Instruments 
n  often referred to as Digital Light Processing (DLP) technology 

u  invented in 1987, following ten year’s work on deformable 
mirror devices 

u  manufactured like a silicon chip! 

n  a standard 5 volt, 0.8 micron, CMOS process 

n micromirrors are coated with a highly reflected aluminium alloy 

n  each mirror is 16×16µm2 
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Digital micromirror devices II 

u  used increasingly in video projectors 

u  widely available from late 1990s  

u  colour is achieved using either three DMD chips or one 
chip and a rotating colour filter 

Electrophoretic displays I 

ª electronic paper widely used in e-books 

ª iRex iLiad, Sony Reader, Amazon Kindle 

ª 200 dpi passive display 
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Electrophoretic displays II 

ª transparent capsules ~40µ diameter 

u  filled with dark oil 

u  negatively charged 1µ titanium dioxide particles 

ª electrodes in substrate attract or repel white particles 

ª image persists with no power consumption 
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Electrophoretic displays III 

ª colour filters over 
individual pixels 

 

ª flexible substrate 

using plastic 
semiconductors 
(Plastic Logic) 
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Printers 

ª many types of printer 

u  ink jet 

n  sprays ink onto paper 

u  laser printer 

n  uses a laser to lay down a pattern of charge on a drum; this picks 
up charged toner which is then pressed onto the paper 

u  commercial offset printer 
n  an image of the whole page is put on a roller 

n  this is repeatedly inked and pressed against the paper to print 
thousands of copies of the same thing 

ª all make marks on paper 

u  essentially binary devices: mark/no mark 
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Printer resolution 

ª laser printer 

u  300–1200dpi 

ª ink jet 

u  used to be lower resolution & quality than laser printers 
but now have comparable resolution 

ª phototypesetter for commercial offset printing 

u  1200–2400 dpi 

ª bi-level devices: each pixel is either on or off 

u  black or white (for monochrome printers) 

u  ink or no ink (in general) 
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What about greyscale? 

u  achieved by halftoning 
n  divide image into cells, in each cell draw a spot of 

the appropriate size for the intensity of that cell 

n  on a printer each cell is m×m pixels, allowing m2+1 
different intensity levels 

n  e.g. 300dpi with 4×4 cells ⇒ 75 cells per inch, 17 
intensity levels 

n  phototypesetters can make 256 intensity levels in 
cells so small you can only just see them 

u  an alternative method is dithering 
n  dithering photocopies badly, halftoning photocopies 

well 

will discuss halftoning and dithering in Image Processing section of course 
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Halftoning & dithering examples 

Halftoning Dithering 
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What about colour? 

ª generally use cyan, magenta, yellow, and black inks 
(CMYK) 

ª inks aborb colour 

u  c.f. lights which emit colour 

u  CMY is the inverse of RGB 

ª why is black (K) necessary? 

u  inks are not perfect aborbers 

u  mixing C + M + Y gives a muddy grey, not black 

u  lots of text is printed in black: trying to align C, M and Y 
perfectly for black text would be a nightmare 

see slide 221 CMYK space 
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How do you produce halftoned colour? 

u  print four halftone screens, one in each colour 

u  carefully angle the screens to prevent interference (moiré) patterns 

Standard rulings (in lines per inch)

65 lpi

85 lpi newsprint

100 lpi

120 lpi uncoated offset paper

133 lpi uncoated offset paper

150 lpi matt coated offset paper or art paper 

publication: books, advertising leaflets

200 lpi very smooth, expensive paper 

very high quality publication

150 lpi × 16 dots per cell  

= 2400 dpi phototypesetter  

(16×16 dots per cell = 256 

intensity levels)
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Four colour halftone screens 

ª Standard angles 

u  Cyan   15°  

u  Black   45° 

u  Magenta  75° 

u  Yellow  90° 

ª At bottom is the moiré pattern 

u  this is the best possible (minimal) 
moiré pattern 

u  produced by this optimal set of 
angles 

u  all four colours printed in black to 
highlight the effect 

Magenta, Cyan & Black 
are at 30° relative to 

one another

Yellow (least distinctive 

colour) is at 15° relative 

to Magenta and Cyan
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Range of printable colours 

a: colour photography 
(diapositive) 

b: high-quality offset printing 

c: newspaper printing 

 

why the hexagonal shape? 
 because we can print dots which 
only partially overlap making the 
situation more complex than for 
coloured lights 
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Beyond four colour printing 

u  printers can be built to do printing in more colours 
n  gives a better range of printable colours 

u  six colour printing 

n  for home photograph printing 

n  dark & light cyan, dark & light magenta, yellow, black 

u  eight colour printing 

n  3× cyan, 3× magenta, yellow, black 

n  2× cyan, 2× magenta, yellow, 3× black 

u  twelve colour printing 

n  3× cyan, 3× magenta, yellow, black 
red, green, blue, orange 
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The extra range of colour 

ª this gamut is for 
so-called HiFi 
colour printing 

u  uses cyan, 
magenta, yellow, 
plus red, green and 
blue inks 
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Laser printer 
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Ink jet printers 

continuous ink jet 
(left) 

piezo ink jet 
(right) 

thermal ink jet 
or bubble jet 
(left) 

electrostatic ink jet 
(right) 
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Commercial offset printing 

u  the plate cylinder is where the 
printing plate is held 

u  this is dampened and inked 
anew on every pass 

u  the impression from the plate 
cylinder is passed onto the 
blanket cylinder 

u  it is then transferred it onto the 
paper which passes between the 
blanket and impression cylinders 

u  the blanket cylinder is there so 
that the printing plate does not 
come into direct contact with 
the paper 
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Course review 

ª Background 

ª Rendering 

ª Graphics pipeline 

ª Graphics hardware and modern OpenGL 

ª Technology 
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What next? 

ª Further graphics 

u  Modelling, splines, subdivision surfaces, complex geometry, 
more ray tracing, radiosity, animation 

ª Advanced graphics 

ª Human-computer interaction 

u  Interactive techniques, quantitative and qualitative 
evaluation, application design 

ª Information theory and coding 

u  Fundamental limits, transforms, coding 

ª Computer vision 

u  Inferring structure from images 
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And then? 

ª Graphics 

u  multi-resolution modelling 

u  animation of human behaviour 

u  æsthetically-inspired image processing 

ª HCI 

u  large displays and new techniques for interaction 

u  emotionally intelligent interfaces 

u  applications in education and for special needs 

u  design theory 

ª http://www.cl.cam.ac.uk/research/rainbow/ 


