$$\begin{array}{l} \text{lecdl} \cdot s \ \mathbb{R}^{\circ n} \ t \quad \text{if } \ \exists \ path \ of \ length \ n \ from \ s \ to \ t \\ & \sim \ \mathbb{R} \ . \\ & \left\{ S \ c \ \text{lel}(\mathbb{A}) \right| \ \exists \ n \ c \ n \ A \ S = \ \mathbb{R}^{\circ n} \ \end{array} \\ \end{array}$$

$$\begin{array}{l} \text{Definition 114} \ \textit{For } \mathbb{R} \in \operatorname{Rel}(\mathbb{A}), \ \textit{let} \\ & \mathbb{R}^{\circ *} = \bigcup \left\{ \mathbb{R}^{\circ n} \in \operatorname{Rel}(\mathbb{A}) \mid n \in \mathbb{N} \right\} = \bigcup_{n \in \mathbb{N}} \mathbb{R}^{\circ n} \ . \end{array}$$

Corollary 115 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ*} t$ iff there exists a path with source s and target t in R. Consider A finite s by of coordinating n: $R^{O*} = IdURUR^{O2}U - UR^{OR}U - = = (REN)$

We are interested in compulsing $M^{*} = I + M + M^{2} + \dots + M^{n}$ faz matrix M.

The $(n \times n)$ -matrix M = mat(R) of a finite directed graph ([n], R) for n a positive integer is called its *adjacency matrix*.

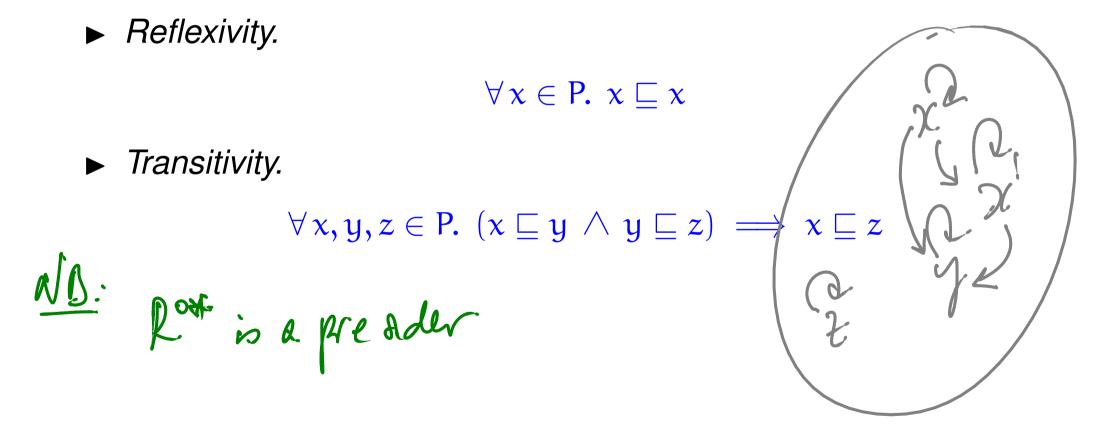
The adjacency matrix $M^* = mat(R^{\circ*})$ can be computed by matrix multiplication and addition as M_n where

$$\begin{cases} M_0 &= I_n \\ M_{k+1} &= I_n + (M \cdot M_k) \end{cases}$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

Preorders

Definition 116 A preorder (P, \sqsubseteq) consists of a set P and a relation \Box on P (i.e. $\Box \in \mathcal{P}(P \times P)$) satisfying the following two axioms.



 $RTP: \forall \chi, \chi R^{0*}\chi$ H Zapath from z to z nhich is frue becaux we always have. The path of length O. KTO: Vr.y, z. r Rox yn yR 7=7 r Rox 3 let x,y,z-eA. Assue 2 Rong () Fapalh for a to j y Rox 2 (=) 2 a path fr. 7 to 2 We have in concatenation of path, a path from X to 2. That is x R²⁺z

Examples:

- ▶ (\mathbb{R}, \leq) and (\mathbb{R}, \geq) .
- ▶ $(\mathcal{P}(A), \subseteq)$ and $(\mathcal{P}(A), \supseteq)$.

parkal

presider L In lisymme try $\chi = y \wedge y \leq \chi$ $\implies \chi = y$

► (ℤ, |).

3 For R C A × A lot relation R. **Theorem 118** For $\mathbf{R} \subset \mathbf{A} \times \mathbf{A}$, let $\mathfrak{F}_{R} = \{ Q \subseteq A \times A \mid R \subseteq Q \land Q \text{ is a preorder } \}$. Then, (i) $\mathbb{R}^{\circ*} \in \mathcal{F}_{\mathbb{R}}$ and (ii) $\mathbb{R}^{\circ*} \subseteq \bigcap \mathcal{F}_{\mathbb{R}}$. Hence, $\mathbb{R}^{\circ*} = \bigcap \mathcal{F}_{\mathbb{R}}$. **PROOF:** rdec: a(AFR) 5 HaRb the least preader that contains R. a(I.Fr)a Va aRbnbRc $\Rightarrow a(\Omega F_R | b \land b(\Omega F_R) c$ c R d =) c (() Fr) d =) a () Fr) d => a (NFR) c

RTD: Uner Ron MEN $\subseteq \bigcap F_R$ Lemma (Viez Xi)ET FiEZ. XiET VNEN. RONCOFR Anew. ZA Qaprendurs. t. R.C.Q. 2 Ron E.Q. $X \subseteq \bigcap_{j \in J} Y_{j}$ $\forall j \in J.$ $X \subseteq Y_{j}$ We provent by induction.

Bax care: YQ preadu s.t. QZR $\begin{array}{c} \mathcal{J} : \\ \mathcal{J}$ √2,y. 2=g =) 2. ly Vx. x Qz true because dis reflexint.

Inductive Step ! Lewins XSX! YST! => XoYS! => XoY C X'oi (It) Assure: Vo prenders st RSQ. Ron SQ RTP: YQ' prender s.t.RCQ'. RONH CQ' let d'be a prender s. t (R.S. Q!. RTP Ronn EQ' Ro Ron C Q' ⇒ RoRoncaloa By(IH): RONCQ'

Lemma d'aprendur => d'od' e d' Then $R \circ R \circ R \circ R \simeq Q \circ Q \simeq Q'$ $R^{\circ n+1}$

So $R^{on+1} \subseteq Q^{!}$.

