We can what all subsits of a given set, say U, into a new set which is called the powerset and denoted P(U).

Powerset axiom

For any set, there is a set consisting of all its subsets.

 $\mathcal{P}(\mathbf{U})$

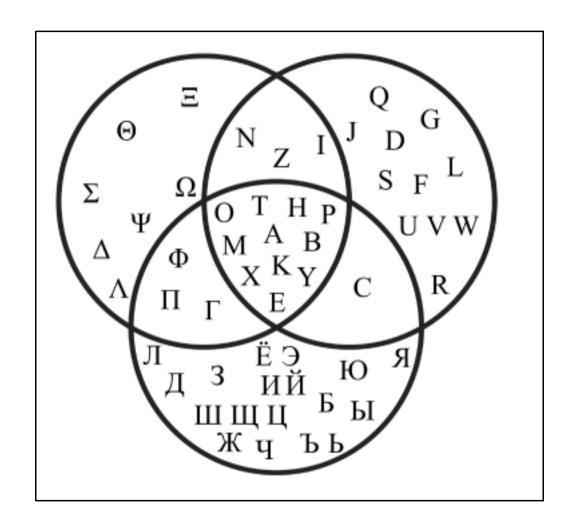
Recall
$$\forall X. \ X \in \mathcal{P}(U) \iff X \subseteq U$$
.
 $A \subseteq B \iff (\forall x. \ x \in A \Rightarrow) \times x \in B$) $\iff \forall x \in A. \ x \in B$

The proveset anstruction in cream cardinality $\#\emptyset = 0$ # $\mathcal{P}(\emptyset) = 2^{\circ} = 1$ # PPØ=2'=2 #- PP---- P(Ø) =- 2h.

n+1 hims

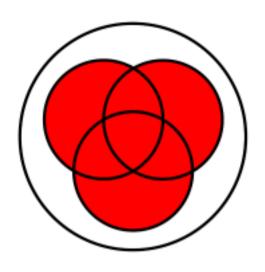
Recall #A=a => #-PA=2

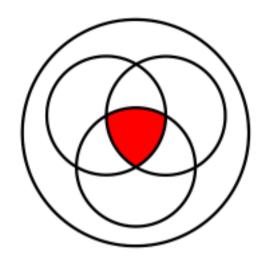
Venn diagramsa

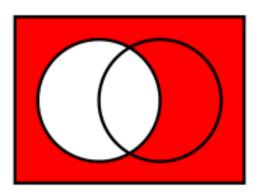


^aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory).

Union







Complement

The powerset Boolean algebra

$$(\mathcal{P}(\mathsf{U}), \emptyset, \mathsf{U}, \cup, \cap, (\cdot)^{\mathrm{c}})$$

For all $A, B \in \mathcal{P}(U)$,

$$A \cup B = \{x \in U \mid x \in A \lor x \in B\} \in \mathcal{P}(U)$$

$$A \cap B = \{x \in U \mid x \in A \land x \in B\} \in \mathcal{P}(U)$$

$$A^{c} = \{x \in U \mid \neg(x \in A)\} \in \mathcal{P}(U)$$

$$L \quad \text{no bettim} : \chi \not\in A$$

Sets and logic

$\mathcal{P}(\mathbf{U})$	$\{{ m false},{ m true}\}$
Ø	false
u	true
U	
\cap	\wedge
$(\cdot)^{\mathrm{c}}$	$\neg(\cdot)$

Proposition 85 Let U be a set and let $A, B \in \mathcal{P}(U)$.

Exercial 1. $\forall X \in \mathcal{P}(U)$. $A \cup B \subseteq X \iff (A \subseteq X \land B \subseteq X)$. 2. $\forall X \in \mathcal{P}(U)$. $X \subseteq A \cap B \iff (X \subseteq A \land X \subseteq B)$. PROOF: Let XEP(U); thist is, XCU.

(=>) Assure A-UBSX Lemma: \(\frac{1}{4}\). ASAUB Bush poully one Misus BSX. (E) Assive ASX and BSX.

Rea AUBEX

that is, $\forall x. (x \in A) \lor (x \in B) \Rightarrow x \in X$ Assure $x \in \mathcal{U}$ s.t. $(x \in A) \lor (x \in B)$ $R \in \mathcal{R}$ $x \in \mathcal{X}$

Con(1) x EA and 80, shall ASX, x EX.

Con(2) x EB the x EX become B EX

Corollary 86 Let U be a set and let A, B, $C \in \mathcal{P}(U)$.

1.
$$C = A \cup B$$
 Proof principles for showing a $A \subseteq C \wedge B \subseteq C$ whise a union of $A \subseteq C \wedge B \subseteq C$ an intersection,
$$[\forall X \in \mathcal{P}(U). \ (A \subseteq X \wedge B \subseteq X) \implies C \subseteq X]$$
2. $C = A \cap B$ iff
$$[C \subseteq A \wedge C \subseteq B] \wedge [\forall X \in \mathcal{P}(U). \ (X \subseteq A \wedge X \subseteq B) \implies X \subseteq C]$$

The Laws of Boolean Algebras.

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $A \cup B = B \cup A$, $A \cup A = A$

$$(A \cap B) \cap C = A \cap (B \cap C)$$
, $A \cap B = B \cap A$, $A \cap A = A$

► The union operation ∪ and the intersection operation ∩ are associative, commutative, and idempotent.

$$(A \cup B) \cup C = A \cup (B \cup C)$$
, $A \cup B = B \cup A$, $A \cup A = A$
 $(A \cap B) \cap C = A \cap (B \cap C)$, $A \cap B = B \cap A$, $A \cap A = A$

► The *empty set* \emptyset is a neutral element for \cup and the *universal* set \cup is a neutral element for \cap .

$$\emptyset \cup A = A = U \cap A$$

► The empty set \emptyset is an annihilator for \cap and the universal set U is an annihilator for \cup .

$$\emptyset \cap A = \emptyset$$

$$U \cup A = U$$

▶ With respect to each other, the union operation \cup and the intersection operation \cap are distributive and absorptive.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cup (A \cap B) = A = A \cap (A \cup B)$$

▶ The complement operation $(\cdot)^c$ satisfies complementation laws.

Exercise Rose the DeMorgan Cons:

$$(A-UB)^{c} = A^{c} \cap B^{c}$$

$$(A-MS)^{c} = A^{c} \cup B^{c}$$

Unordered. V Pairing axiom

[a,b]=[b,a]

For every α and b, there is a set with α and b as its only elements.

$$\{a,b\} \qquad \text{X.e.} \{b,a\}$$

$$\forall x. x \in \{a,b\} \iff (x=a \lor x=b)$$

NB The set $\{\alpha, \alpha\}$ is abbreviated as $\{\alpha\}$, and referred to as a *singleton*.

L
$$x \in \{a, a\} \Leftrightarrow (x=a \lor x=a) \Leftrightarrow (x=a)$$

Examples:

▶
$$\#\{\{\emptyset\}\}=1$$

▶
$$\#\{\emptyset, \{\emptyset\}\} = 2$$

Exercix
$$\langle a,b\rangle = \langle x,y\rangle \Leftrightarrow a=x \land b=y$$

 $Cor: \langle a,b\rangle = \langle b,a\rangle \Leftrightarrow a=b$
Ordered pairing

For every pair a and b, the set

$$\{ \{a\}, \{a,b\} \}$$

is abbreviated as

 $\langle a, b \rangle$

and referred to as an ordered pair.

not necessarily.
The same.