Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ . If both $P(\ell) \land P(\ell + 1) \land \cdots \land P(n-1) \land P(n)$ $P(\ell)$ and $P(\ell) \land P(\ell + 1) \land \cdots \land P(n-1) \land P(n)$ $P(\ell)$ and $P(\ell) \land P(\ell + 1) \land \cdots \land P(n-1) \land P(n)$ $P(\ell) \land P(\ell + 1) \land P(n)$ $P(\ell) \land P(\ell + 1) \land P(n-1) \land P(n-1) \land P(n-1)$ $P(\ell) \land P(\ell + 1) \land P(n-1) \land P(n-1) \land P(n-1)$ $P(\ell) \land P(\ell + 1) \land P(n-1) \land P(n-1$

Fundamental Theorem of Arithmetic

Proposition 76 Every positive integer greater than or equal 2 is a prime or a product of primes.

PROOF: $\forall n, 2, P(n)$ P(n)=defnisa prime or nis a product of prines. BASE CASE : R-7P: 2 is a prime on 2 is a product of prime. Which holds because 2 is prime. INDUCTIVE STEP Let n7,2.

Assume P(i) fr all 25isn (th) RTP: P(nn); That is, (nH) is prime. or (nn) is a product of prime. Care (1): (nr) is prime. and where done. Case (2): (nor) in not prime Hence (n+1) = p.g. for pond g wt 1. So we have 25p, 75n

Thus, by (14), pis prihit or a product of primes and g is prime a a product of Wines. Therefore, p.g. is a product of primes. and me are done

Theorem 77 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $(p_1 \leq \cdots \leq p_\ell)$ with $\ell \in \mathbb{N}$ such that

-261 ----

PROOF:

$$n = \prod(p_1, \dots, p_\ell) .$$

$$\|d_{\ell}f$$

$$p_{\ell} \cdot p_{2} \cdot \dots \cdot p_{\ell} \cdot p_{\ell}$$
By convention:
$$TI(\ell) = 1$$

Phoof-
$$Tdes:$$

 $TT(p_1, \dots, p_l) = TT(q_1, \dots, q_k) \qquad l = k.$
 $p_0 \text{ are ordered prives} \implies p_1 = q_1$
 $q_0 \text{ dre ordered prive} \implies p_l = q_l$
 $Suppose$
 $TT(p_1 \dots p_l) = TT(q_1 \dots q_k).$
 $\implies p_1 \text{ equals some } q_p \implies q_1 \leq p_1 = q_1$
 $\implies q_1 \text{ equals some } q_p \implies q_1 \leq p_1 = q_1$
 $\implies q_1 \text{ equals some } p_i \implies p_1 \leq q_1 = p_1 = q_1$

Andogousty ne have $TI(P3, \dots Pe) = TI(93 \dots 9k)$ wlog wlog ne have $TI(PpH, \dots, Pe) = TI() = 1$ =) (pr+1, --, pr) = () =) l=k and pi=gi informal argument by iteration has a formal counter_ part by induction.

Euclid's infinitude of primes

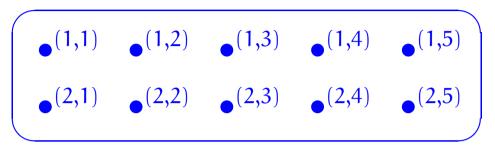
Theorem 80 The set of primes is infinite. PROOF: By contradiction, 2 some the set of prime is finiti; say p1, P2,, PN Consider $p=(p_1, p_2, \dots, p_N)+1$ The p>piti, so pis not prime. Hence There is pe such that pp/p. But The since pr (pi--- pr. --- pn) he have PR p-(pi-pn). That is, pn 2: a wated don

Objectives

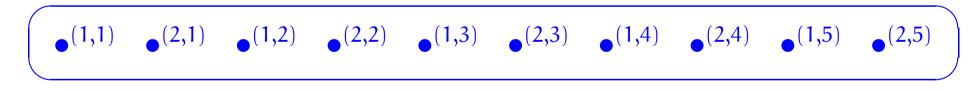
To introduce the basics of the theory of sets and some of its uses.

Abstract sets

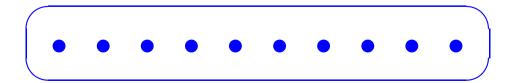
It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,



may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as



or even simply as



for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

<u>— 281</u> —

[?] When are two sets equal?

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall \text{ sets } A, B. A = B \iff (\forall x. x \in A \iff x \in B).$$

$$\begin{cases} P/q \mid P : q \in \mathbb{Z} \land q \neq \emptyset \\ f : q \in \mathbb{Z} \land q \neq \emptyset \\ g \in \mathbb{Z} \land \emptyset$$

$$\{0\} \neq \{0,1\} = \{1,0\} \neq \{2\} = \{2,2\}$$