

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

 \mathbb{Z}_m : 0, 1, ..., m-1.

with arithmetic operations of addition $+_{\mathfrak{m}}$ and multiplication $\cdot_{\mathfrak{m}}$ defined as follows

$$k +_{m} l = [k + l]_{m} = \operatorname{rem}(k + l, m) ,$$

$$k \cdot_{m} l = [k \cdot l]_{m} = \operatorname{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.

Example 49 The addition and multiplication tables for \mathbb{Z}_4 are:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Note that the addition table has a cyclic pattern, while there is no obvious pattern in the multiplication table.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	
1	3	1	1
2	2	2	_
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 50 The addition and multiplication tables for \mathbb{Z}_5 are:

$+_{5}$	0	1	2	3	4	•5	0	1	2	3	4
0						0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2						2	0	2	4	1	3
3							0				
4	4	0	1	2	3	4	0	4	3	2	1

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> <i>inverse</i>
0	0	0	
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 51 For all natural numbers m > 1, the modular-arithmetic structure

 $(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a <u>set</u> as a (well-defined, unordered) collection of mathematical objects, called the <u>elements</u> (or <u>members</u>) of the set.

Set membership

The symbol ' \in ' known as the *set membership* predicate is central to the theory of sets, and its purpose is to build statements of the form

$x \in A$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining setsof even primes $\{2\}$ The setof booleansis[-2..3] $\{-2, -1, 0, 1, 2, 3\}$

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$\{x \in A \mid P(x)\}, \quad \{x \in A : P(x)\}$$

 $a \in \{x \in A \mid P(x)\} \in (a \in A \land P(a))$

Greatest common divisor

Given a natural number n, the set of its *divisors* is defined by set comprehension as follows

$$D(n) = \{ d \in \mathbb{N} : d \mid n \}$$
 for set of divites of divites of the set of divites of the set of t

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the *common divisors* of pairs of natural numbers? That is, the set

```
\mathrm{CD}(\mathfrak{m},\mathfrak{n}) = \left\{ d \in \mathbb{N} : d \mid \mathfrak{m} \land d \mid \mathfrak{n} \right\}
```

for $m, n \in \mathbb{N}$.

Example 54

 $CD(1224, 660) = \{1, 2, 3, 4, 6, 12\}$

Since CD(n, n) = D(n), the computation of common divisors is as hard as that of divisors. But, what about the computation of the *greatest common divisor*?

Lemma 56 (Key Lemma) Let m and m' be natural numbers and let n be a positive integer such that $m \equiv m' \pmod{n}$. Then,

$$CD(m,n) = CD(m',n).$$
PROOF: m,m',h not number n is periodic.

$$Assume \ Om \equiv m' (nurd. n)$$

$$RTP: d \in CD(m,n) \Leftrightarrow d \in CD(m',n) \quad \forall d$$

$$(\Longrightarrow) Assume d \in CD(m,n) \Leftrightarrow d | m \ n \ d | n$$

$$(\Longrightarrow) Assume d \in CD(m,n) \Leftrightarrow d | m' \ n \ d | n$$

$$RTP: d \in ed(m',n) \Leftrightarrow d | m' \ n \ d | n$$

$$RTP: d | m' \\ farsome k$$

$$\Rightarrow m' = m - kn$$

$$RTP: d | m' \\ + (2) + \\ Helds by (3).$$

Lemma

$$d|a \wedge d|b \Rightarrow d|p.a+q.b \neq p.q.$$

 $integer linear$
 $combination.$
 $CD(m,n) = CD(\underline{rem(m,n)}, n) \underbrace{rem(m,n)}_{=m(m,n)} = m(m,n)$
 $= CD(m-n, n) \underbrace{m-n}_{=m(m,n)} = m(m,n)$
 $CD(Rn,n) = D(n)$

Lemma 58 For all positive integers m and n,

$$greater CD(m,n) = \begin{cases} greater \\ D(n) = n \\ greater \\ CD(n,rem(m,n)) \\ otherwise \end{cases}$$

<u>— 185</u> —

Lemma 58 For all positive integers m and n,

$$CD(m,n) = \begin{cases} D(n) & , \text{ if } n \mid m \\ CD(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

Since a positive integer n is the greatest divisor in D(n), the lemma suggests a recursive procedure:

$$gcd(m,n) = \begin{cases} n & , \text{ if } n \mid m \\ gcd(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

for computing the *greatest common divisor*, of two positive integers m and n. This is

Euclid's Algorithm

```
fun gcd( m , n )
= let
    val ( q , r ) = divalg( m , n )
    in
    if r = 0 then n
    else gcd( n , r )
    end
```

gcd

<u>— 186 —</u>

Example 59 (gcd(13, 34) = 1**)**

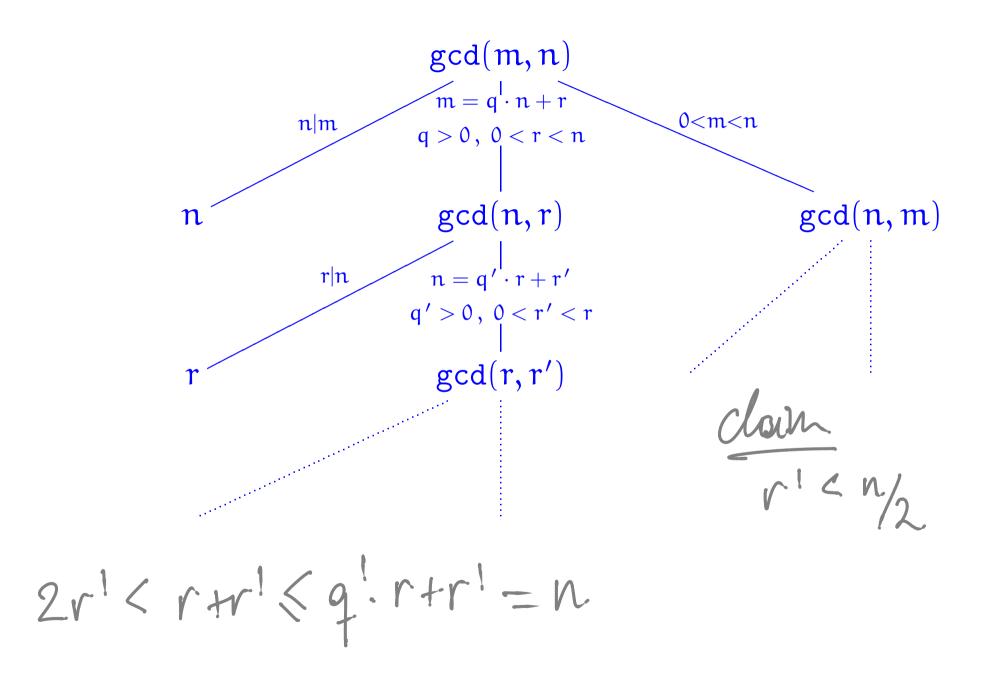
- gcd(13, 34) = gcd(34, 13)
 - $= \gcd(13, 8)$
 - $= \gcd(8,5)$
 - $= \gcd(5,3)$
 - $= \gcd(3,2)$
 - $= \gcd(2, 1)$
 - = 1

Theorem 60 Euclid's Algorithm gcd terminates on all pairs of positive integers and, for such m and n, gcd(m, n) is the greatest common divisor of m and n in the sense that the following two properties hold:

(i) both
$$gcd(m, n) | m$$
 and $gcd(m, n) | n$, and

(ii) for all positive integers d such that d | m and d | n it necessarily
 follows that d | gcd(m, n).

PROOF



Ider: Running Time and Fibsnacci:

Colculate gcd (Fn+1, Fn) and look at its running the.

Fractions in lowest terms

```
fun lowterms( m , n )
= let
    val gcdval = gcd( m , n )
    in
    ( m div gcdval , n div gcdval )
    end
```