Modular arithmetic

For every positive integer m, the integers modulo m are:

Loy = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k+nl = [k+1l,, = remk+1lm),
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.

165



Example 49 The addition and multiplication tables for 7., are:

+410 1 2 3 410 1T 2 3
0|01 2 3 0/0 0 0 O
T 11T 2 3 0 110 1 2 3
212 3 0 1 210 2 0 2
313 0 1 2 310 3 2 1

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

| 3 | |

2 2 2 —

3 1 3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 50 The addition and multiplication tables for Zs are:

+5(0 1 2 3 4 510 1 2 3 4
001 2 3 4 00 00 0O
11T 2 3 40 1101 2 3 4
212 3 4 0 1 210 2 41 3
313401 2 310 3 1 4 2
414 0 1 2 3 410 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 51 For all natural numbers m > 1, the
modular-arithmetic structure

(an O) _I_m) 1 ) 'm)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘e’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]
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{2}

{true, false}

{_2>_1>O>1>2>3}




Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{(xeAIPKX)} , {x€A:PKx))
ges e P)] (::7(@, &A A PL@))
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:dIn} . {4 yx)f'q4ﬁ.
LV doviran 31_ I

Example 53
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136, 153,204, 306,408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.

Example 54
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 56 (Key Lemma) Let m and m' be natural numbers and
let n be a positive integer such that m = m’ (mod n). Then,

CD(m,n) =CD(m’,n) .

PROOF: Wt,m',h n am bt N7 f/m,}ﬂ/ﬁ
[ MM@ME " (Ww) |
(- dcCD(mn) & AECIW )

o C:-_-:)’) Al 4.6 CDC"*("‘) & Alm A~ A [
PP | eed(w ) & Alm! A d]n

M-—-m':-im = e dlw! - RTP ol
’FNW%V\-RV\, +Q@ + Held, %j@
=S \/-—//:7 lowwe

AN L AN
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)
la A Alb = Al
r-gﬂ/b Veq
e Coar
Lewla natiel.. .

) - o-
D(mm) = Cb (f’“‘“?”*f“) ") o)
| , - ::vn(malw)

= Ch(m-n
CD — —
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Lemma 58 For all positive integers m and n,

’%)(n) — I ifn|m

?(a%CD(m,n) =
SIE %D | n, rem(m, n)) , otherwise
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Lemma 58 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = 4

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
1n
if r = 0 then n
else gcd(n , r )

end
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Example 59 (gcd(13,34) = 1)

— N N N N
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Theorem 60 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m andn, gcd(m,n) Is the greatest
common divisor of m and n in the sense that the following two
properties hold:

" (i) both gcd(m,n) | m and gcd(m,n) | n, and

\“ (i1) for all positive integers d such thatd | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF:

Y hel W!wtmm Becow se WV
CD(mn)= D( 5% (w,@)

bb MS vi mai%a@wv\.
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gcd m,

q n—+r
q>0 0<r<n O<m<n

d (m, 1) gcd(n, m)

q T‘—I—T‘
q’ >0, O<r <T

drr

!
?_w‘( {‘W!\<q7~r+r":l/\/
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Fractions in lowest terms

fun lowterms( m , n )
= let
val gcdval = gcd( m , n )
in
( m div gcdval , n div gcdval )

end

197



