Denotational Semantics

10 lectures for Part II CST 2016/17

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1617/DenotSem/

Topic 1

Introduction

What is this course about?

General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *ax-ioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent).
- Compositionality.
- Relationship to computation (e.g. operational semantics).

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* $\mathbb L$

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
 $\mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$

where

where
$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$
 in \mathbb{L} $\mathbb{Z} \in State = (\mathbb{L} \to \mathbb{Z})$ the set of functions $S(L) = V$ while of $L \to S$ from the set of breatism to the set of integers.

Basic example of denotational semantics (II)

Semantic functions

$$\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$$

$$\mathcal{B}: \mathbf{Bexp} \to (State \to \mathbb{B})$$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ true, false \}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (II) If C Wops

Semantic functions from S or gives the new executive. C.

 $\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})$

 $\mathcal{B}: \mathbf{Bexp} \to (State \to \mathbb{B})$

 $\mathcal{C}: \mathbf{Comm} \to (State \to State)$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ true, false \}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

i.e. partial functions functions total

ATAY(S)EZ

Basic example of denotational semantics (III)

Basic example of denotational semantics (IV)

Semantic function ${\cal B}$

$$\mathcal{B}[\![\![\mathcal{B}]\!]\!] \in \mathcal{B}$$

$$\mathcal{B}[\![\![\![\mathsf{true}]\!]\!] = \lambda s \in State. \, true$$

$$\mathcal{B}[\![\![\![\mathsf{false}]\!]\!] = \lambda s \in State. \, false$$

$$\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State. eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$$

where
$$eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$$

E[C] E(State -) State State transfirmers.

Basic example of denotational semantics (V)

Semantic function C

The identity

function

 $\llbracket \mathbf{skip} \rrbracket = \lambda s \in State.s$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $[\![C]\!], [\![C']\!]: State \longrightarrow State$ and a function $[\![B]\!]: State \longrightarrow \{true, false\}$, we can define

$$[\![\mathbf{if}\ B\ \mathbf{then}\ C\ \mathbf{else}\ C']\!] = \\ \lambda s \in State.\ if([\![B]\!](s), [\![C]\!](s), [\![C']\!](s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A \rrbracket \ = \ \lambda s \in State. \ \lambda \ell \in \mathbb{L}. \ if \left(\ell = L, \llbracket A \rrbracket(s), s(\ell)\right)$$
 State \downarrow State \downarrow

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states $[C], [C'] : State \longrightarrow State$ which are the denotations of the

rdea State TCV State LC's State

commands.

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}$$

Result

$$\mathcal{L}(S,S,S') : C_1 S \downarrow S' \iff \Gamma_1 C \mathcal{L}(S) = S'$$

[while $B \operatorname{do} C$]: Shu \rightarrow State

I[BY: State -> B I[C7]: State -> State [[while B do C](s) = --- [BY(s) --- [CY(s) ---= 4 (TBNs, TCT) (-- Tuhle B dr CN .--)