
The Roots of Lisp

paul graham

Draft, January 18, 2002.

In 1960, John McCarthy published a remarkable paper in which he did for pro-

gramming something like what Euclid did for geometry.

1

He showed how, given

a handful of simple operators and a notation for functions, you can build a

whole programming language. He called this language Lisp, for \List Process-

ing," because one of his key ideas was to use a simple data structure called a

list for both code and data.

It's worth understanding what McCarthy discovered, not just as a landmark

in the history of computers, but as a model for what programming is tending to

become in our own time. It seems to me that there have been two really clean,

consistent models of programming so far: the C model and the Lisp model.

These two seem points of high ground, with swampy lowlands between them.

As computers have grown more powerful, the new languages being developed

have been moving steadily toward the Lisp model. A popular recipe for new

programming languages in the past 20 years has been to take the C model

of computing and add to it, piecemeal, parts taken from the Lisp model, like

runtime typing and garbage collection.

In this article I'm going to try to explain in the simplest possible terms

what McCarthy discovered. The point is not just to learn about an interest-

ing theoretical result someone �gured out forty years ago, but to show where

languages are heading. The unusual thing about Lisp|in fact, the de�ning

quality of Lisp|is that it can be written in itself. To understand what Mc-

Carthy meant by this, we're going to retrace his steps, with his mathematical

notation translated into running Common Lisp code.

1 Seven Primitive Operators

To start with, we de�ne an expression. An expression is either an atom, which

is a sequence of letters (e.g. foo), or a list of zero or more expressions, separated

by whitespace and enclosed by parentheses. Here are some expressions:

foo

()

(foo)

(foo bar)

(a b (c) d)

The last expression is a list of four elements, the third of which is itself a list of

one element.

1

\Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part

I." Communications of the ACM 3:4, April 1960, pp. 184{195.

1



In arithmetic the expression 1 + 1 has the value 2. Valid Lisp expressions

also have values. If an expression e yields a value v we say that e returns v. Our

next step is to de�ne what kinds of expressions there can be, and what value

each kind returns.

If an expression is a list, we call the �rst element the operator and the

remaining elements the arguments. We are going to de�ne seven primitive (in

the sense of axioms) operators: quote, atom, eq, car, cdr, cons, and cond.

1. (quote x) returns x. For readability we will abbreviate (quote x) as 'x.

> (quote a)

a

> 'a

a

> (quote (a b c))

(a b c)

2. (atom x) returns the atom t if the value of x is an atom or the empty

list. Otherwise it returns (). In Lisp we conventionally use the atom t to

represent truth, and the empty list to represent falsity.

> (atom 'a)

t

> (atom '(a b c))

()

> (atom '())

t

Now that we have an operator whose argument is evaluated we can show

what quote is for. By quoting a list we protect it from evaluation. An

unquoted list given as an argument to an operator like atom is treated as

code:

> (atom (atom 'a))

t

whereas a quoted list is treated as mere list, in this case a list of two

elements:

> (atom '(atom 'a))

()

This corresponds to the way we use quotes in English. Cambridge is a

town in Massachusetts that contains about 90,000 people. \Cambridge"

is a word that contains nine letters.

2



Quote may seem a bit of a foreign concept, because few other languages

have anything like it. It's closely tied to one of the most distinctive features

of Lisp: code and data are made out of the same data structures, and the

quote operator is the way we distinguish between them.

3. (eq x y) returns t if the values of x and y are the same atom or both the

empty list, and () otherwise.

> (eq 'a 'a)

t

> (eq 'a 'b)

()

> (eq '() '())

t

4. (car x) expects the value of x to be a list, and returns its �rst element.

> (car '(a b c))

a

5. (cdr x) expects the value of x to be a list, and returns everything after

the �rst element.

> (cdr '(a b c))

(b c)

6. (cons x y) expects the value of y to be a list, and returns a list containing

the value of x followed by the elements of the value of y.

> (cons 'a '(b c))

(a b c)

> (cons 'a (cons 'b (cons 'c '())))

(a b c)

> (car (cons 'a '(b c)))

a

> (cdr (cons 'a '(b c)))

(b c)

7. (cond (p

1

e

1

) : : : (p

n

e

n

)) is evaluated as follows. The p expressions are

evaluated in order until one returns t. When one is found, the value of

the corresponding e expression is returned as the value of the whole cond

expression.

> (cond ((eq 'a 'b) 'first)

((atom 'a) 'second))

second

3



In �ve of our seven primitive operators, the arguments are always evaluated

when an expression beginning with that operator is evaluated.

2

We will call an

operator of that type a function.

2 Denoting Functions

Next we de�ne a notation for describing functions. A function is expressed as

(lambda (p

1

: : : p

n

) e), where p

1

: : : p

n

are atoms (called parameters) and e is

an expression. An expression whose �rst element is such an expression

((lambda (p

1

: : : p

n

) e) a

1

: : : a

n

)

is called a function call and its value is computed as follows. Each expression

a

i

is evaluated. Then e is evaluated. During the evaluation of e, the value of

any occurrence of one of the p

i

is the value of the corresponding a

i

in the most

recent function call.

> ((lambda (x) (cons x '(b))) 'a)

(a b)

> ((lambda (x y) (cons x (cdr y)))

'z

'(a b c))

(z b c)

If an expression has as its �rst element an atom f that is not one of the primitive

operators

(f a

1

: : : a

n

)

and the value of f is a function (lambda (p

1

: : : p

n

) e) then the value of the

expression is the value of

((lambda (p

1

: : : p

n

) e) a

1

: : : a

n

)

In other words, parameters can be used as operators in expressions as well as

arguments:

> ((lambda (f) (f '(b c)))

'(lambda (x) (cons 'a x)))

(a b c)

There is another notation for functions that enables the function to refer to

itself, thereby giving us a convenient way to de�ne recursive functions.

3

The

2

Expressions beginning with the other two operators, quote and cond, are evaluated dif-

ferently. When a quote expression is evaluated, its argument is not evaluated, but is simply

returned as the value of the whole quote expression. And in a valid cond expression, only an

L-shaped path of subexpressions will be evaluated.

3

Logically we don't need to de�ne a new notation for this. We could de�ne recursive

functions in our existing notation using a function on functions called the Y combinator. It

may be that McCarthy did not know about the Y combinator when he wrote his paper; in

any case, label notation is more readable.

4



notation

(label f (lambda (p

1

: : : p

n

) e))

denotes a function that behaves like (lambda (p

1

: : : p

n

) e), with the additional

property that an occurrence of f within e will evaluate to the label expression,

as if f were a parameter of the function.

Suppose we want to de�ne a function (subst x y z), which takes an ex-

pression x, an atom y, and a list z, and returns a list like z but with each

instance of y (at any depth of nesting) in z replaced by x.

> (subst 'm 'b '(a b (a b c) d))

(a m (a m c) d)

We can denote this function as

(label subst (lambda (x y z)

(cond ((atom z)

(cond ((eq z y) x)

('t z)))

('t (cons (subst x y (car z))

(subst x y (cdr z)))))))

We will abbreviate f = (label f (lambda (p

1

: : : p

n

) e)) as

(defun f (p

1

: : : p

n

) e)

so

(defun subst (x y z)

(cond ((atom z)

(cond ((eq z y) x)

('t z)))

('t (cons (subst x y (car z))

(subst x y (cdr z)))))))

Incidentally, we see here how to get a default clause in a cond expression. A

clause whose �rst element is 't will always succeed. So

(cond (x y) ('t z))

is equivalent to what we might write in a language with syntax as

if x then y else z

3 Some Functions

Now that we have a way of expressing functions, we de�ne some new ones in

terms of our seven primitive operators. First it will be convenient to introduce

5



some abbreviations for common patterns. We will use cxr, where x is a sequence

of as or ds, as an abbreviation for the corresponding composition of car and

cdr. So for example (cadr e) is an abbreviation for (car (cdr e)), which

returns the second element of e.

> (cadr '((a b) (c d) e))

(c d)

> (caddr '((a b) (c d) e))

e

> (cdar '((a b) (c d) e))

(b)

Also, we will use (list e

1

: : : e

n

) for (cons e

1

: : : (cons e

n

'()) : : : ).

> (cons 'a (cons 'b (cons 'c '())))

(a b c)

> (list 'a 'b 'c)

(a b c)

Now we de�ne some new functions. I've changed the names of these functions

by adding periods at the end. This distinguishes primitive functions from those

de�ned in terms of them, and also avoids clashes with existing Common Lisp

functions.

1. (null. x) tests whether its argument is the empty list.

(defun null. (x)

(eq x '()))

> (null. 'a)

()

> (null. '())

t

2. (and. x y) returns t if both its arguments do and () otherwise.

(defun and. (x y)

(cond (x (cond (y 't) ('t '())))

('t '())))

> (and. (atom 'a) (eq 'a 'a))

t

> (and. (atom 'a) (eq 'a 'b))

()

3. (not. x) returns t if its argument returns (), and () if its argument

returns t.

6



(defun not. (x)

(cond (x '())

('t 't)))

> (not (eq 'a 'a))

()

> (not (eq 'a 'b))

t

4. (append. x y) takes two lists and returns their concatenation.

(defun append. (x y)

(cond ((null. x) y)

('t (cons (car x) (append. (cdr x) y)))))

> (append. '(a b) '(c d))

(a b c d)

> (append. '() '(c d))

(c d)

5. (pair. x y) takes two lists of the same length and returns a list of two-

element lists containing successive pairs of an element from each.

(defun pair. (x y)

(cond ((and. (null. x) (null. y)) '())

((and. (not. (atom x)) (not. (atom y)))

(cons (list (car x) (car y))

(pair. (cdr x) (cdr y))))))

> (pair. '(x y z) '(a b c))

((x a) (y b) (z c))

6. (assoc. x y) takes an atom x and a list y of the form created by pair.,

and returns the second element of the �rst list in y whose �rst element is

x.

(defun assoc. (x y)

(cond ((eq (caar y) x) (cadar y))

('t (assoc. x (cdr y)))))

> (assoc. 'x '((x a) (y b)))

a

> (assoc. 'x '((x new) (x a) (y b)))

new

7



4 The Surprise

So we can de�ne functions that concatenate lists, substitute one expression for

another, etc. An elegant notation, perhaps, but so what? Now comes the

surprise. We can also, it turns out, write a function that acts as an interpreter

for our language: a function that takes as an argument any Lisp expression, and

returns its value. Here it is:

(defun eval. (e a)

(cond

((atom e) (assoc. e a))

((atom (car e))

(cond

((eq (car e) 'quote) (cadr e))

((eq (car e) 'atom) (atom (eval. (cadr e) a)))

((eq (car e) 'eq) (eq (eval. (cadr e) a)

(eval. (caddr e) a)))

((eq (car e) 'car) (car (eval. (cadr e) a)))

((eq (car e) 'cdr) (cdr (eval. (cadr e) a)))

((eq (car e) 'cons) (cons (eval. (cadr e) a)

(eval. (caddr e) a)))

((eq (car e) 'cond) (evcon. (cdr e) a))

('t (eval. (cons (assoc. (car e) a)

(cdr e))

a))))

((eq (caar e) 'label)

(eval. (cons (caddar e) (cdr e))

(cons (list (cadar e) (car e)) a)))

((eq (caar e) 'lambda)

(eval. (caddar e)

(append. (pair. (cadar e) (evlis. (cdr e) a))

a)))))

(defun evcon. (c a)

(cond ((eval. (caar c) a)

(eval. (cadar c) a))

('t (evcon. (cdr c) a))))

(defun evlis. (m a)

(cond ((null. m) '())

('t (cons (eval. (car m) a)

(evlis. (cdr m) a)))))

The de�nition of eval. is longer than any of the others we've seen before. Let's

consider how each part works.

The function takes two arguments: e, the expression to be evaluated, and

a, a list representing the values that atoms have been given by appearing as

8



parameters in function calls. This list is called the environment, and it is of the

form created by pair.. It was in order to build and search these lists that we

wrote pair. and assoc..

The spine of eval. is a cond expression with four clauses. How we evaluate

an expression depends on what kind it is. The �rst clause handles atoms. If e

is an atom, we look up its value in the environment:

> (eval. 'x '((x a) (y b)))

a

The second clause of eval. is another cond for handling expressions of the

form (a : : :), where a is an atom. These include all the uses of the primitive

operators, and there is a clause for each one.

> (eval. '(eq 'a 'a) '())

t

> (eval. '(cons x '(b c))

'((x a) (y b)))

(a b c)

All of these (except quote) call eval. to �nd the value of the arguments.

The last two clauses are more complicated. To evaluate a cond expression

we call a subsidiary function called evcon., which works its way through the

clauses recursively, looking for one in which the �rst element returns t. When

it �nds such a clause it returns the value of the second element.

> (eval. '(cond ((atom x) 'atom)

('t 'list))

'((x '(a b))))

list

The �nal part of the second clause of eval. handles calls to functions that

have been passed as parameters. It works by replacing the atom with its value

(which ought to be a lambda or label expression) and evaluating the resulting

expression. So

(eval. '(f '(b c))

'((f (lambda (x) (cons 'a x)))))

turns into

(eval. '((lambda (x) (cons 'a x)) '(b c))

'((f (lambda (x) (cons 'a x)))))

which returns (a b c).

The last two clauses in eval. handle function calls in which the �rst ele-

ment is an actual lambda or label expression. A label expression is evaluated

by pushing a list of the function name and the function itself onto the environ-

ment, and then calling eval. on an expression with the inner lambda expression

substituted for the label expression. That is,

9



(eval. '((label firstatom (lambda (x)

(cond ((atom x) x)

('t (firstatom (car x))))))

y)

'((y ((a b) (c d)))))

becomes

(eval. '((lambda (x)

(cond ((atom x) x)

('t (firstatom (car x)))))

y)

'((firstatom

(label firstatom (lambda (x)

(cond ((atom x) x)

('t (firstatom (car x)))))))

(y ((a b) (c d)))))

which eventually returns a.

Finally, an expression of the form ((lambda (p

1

: : : p

n

) e) a

1

: : : a

n

) is eval-

uated by �rst calling evlis. to get a list of values (v

1

: : : v

n

) of the arguments

a

1

: : : a

n

, and then evaluating e with (p

1

v

1

) : : : (p

n

v

n

) appended to the front

of the environment. So

(eval. '((lambda (x y) (cons x (cdr y)))

'a

'(b c d))

'())

becomes

(eval. '(cons x (cdr y))

'((x a) (y (b c d))))

which eventually returns (a c d).

5 Aftermath

Now that we understand how eval works, let's step back and consider what

it means. What we have here is a remarkably elegant model of computation.

Using just quote, atom, eq, car, cdr, cons, and cond, we can de�ne a function,

eval., that actually implements our language, and then using that we can de�ne

any additional function we want.

There were already models of computation, of course|most notably the

Turing Machine. But Turing Machine programs are not very edifying to read.

If you want a language for describing algorithms, you might want something

more abstract, and that was one of McCarthy's aims in de�ning Lisp.

10



The language he de�ned in 1960 was missing a lot. It has no side-e�ects, no

sequential execution (which is useful only with side e�ects anyway), no practical

numbers,

4

and dynamic scope. But these limitations can be remedied with

surprisingly little additional code. Steele and Sussman show how to do it in a

famous paper called "The Art of the Interpreter."

5

If you understand McCarthy's eval, you understand more than just a stage

in the history of languages. These ideas are still the semantic core of Lisp today.

So studying McCarthy's original paper shows us, in a sense, what Lisp really is.

It's not something that McCarthy designed so much as something he discovered.

It's not intrinsically a language for AI or for rapid prototyping, or any other

task at that level. It's what you get (or one thing you get) when you try to

axiomatize computation.

Over time, the median language, meaning the language used by the median

programmer, has grown consistently closer to Lisp. So by understanding eval

you're understanding what will probably be the main model of computation

well into the future.

4

It is possible to do arithmetic in McCarthy's 1960 Lisp by using e.g. a list of n atoms to

represent the number n.

5

Guy Lewis Steele, Jr. and Gerald Jay Sussman, "The Art of the Interpreter, or the

Modularity Complex (Parts Zero, One, and Two)," MIT AI Lab Memo 453, May 1978.

11



Notes

In translating McCarthy's notation into running code I tried to change as little

as possible. I was tempted to make the code easier to read, but I wanted to

keep the 
avor of the original.

In McCarthy's paper, falsity is represented by f, not the empty list. I used

() to represent falsity so that the examples would work in Common Lisp. The

code nowhere depends on falsity happening also to be the empty list; nothing

is ever consed onto the result returned by a predicate.

I skipped building lists out of dotted pairs, because you don't need them to

understand eval. I also skipped mentioning apply, though it was apply (a very

early form of it, whose main purpose was to quote arguments) that McCarthy

called the universal function in 1960; eval was then just a subroutine that apply

called to do all the work.

I de�ned list and the cxrs as abbreviations because that's how McCarthy

did it. In fact the cxrs could all have been de�ned as ordinary functions. So

could list if we modi�ed eval, as we easily could, to let functions take any

number of arguments.

McCarthy's paper only had �ve primitive operators. He used cond and

quote but may have thought of them as part of his metalanguage. He likewise

didn't de�ne the logical operators and and not, but this is less of a problem

because adequate versions can be de�ned as functions.

In the de�nition of eval. we called other functions like pair. and assoc.,

but any call to one of the functions we de�ned in terms of the primitive operators

could be replaced by a call to eval.. That is,

(assoc. (car e) a)

could have been written as

(eval. '((label assoc.

(lambda (x y)

(cond ((eq (caar y) x) (cadar y))

('t (assoc. x (cdr y))))))

(car e)

a)

(cons (list 'e e) (cons (list 'a a) a)))

There was a small bug in McCarthy's eval. Line 16 was (equivalent to)

(evlis. (cdr e) a) instead of just (cdr e), which caused the arguments in

a call to a named function to be evaluated twice. This suggests that this de-

scription of eval had not yet been implemented in IBM 704 machine language

when the paper was submitted. It also shows how hard it is to be sure of the

correctness of any length of program without trying to run it.

I encountered one other problem in McCarthy's code. After giving the def-

inition of eval he goes on to give some examples of higher-order functions|

functions that take other functions as arguments. He de�nes maplist:

12



(label maplist

(lambda (x f)

(cond ((null x) '())

('t (cons (f x) (maplist (cdr x) f))))))

then uses it to write a simple function diff for symbolic di�erentiation. But

diff passes maplist a function that uses x as a parameter, and the reference

to it is captured by the parameter x within maplist.

6

It's an eloquent testimony to the dangers of dynamic scope that even the

very �rst example of higher-order Lisp functions was broken because of it. It

may be that McCarthy was not fully aware of the implications of dynamic scope

in 1960. Dynamic scope remained in Lisp implementations for a surprisingly

long time|until Sussman and Steele developed Scheme in 1975. Lexical scope

does not complicate the de�nition of eval very much, but it may make compilers

harder to write.

6

Present day Lisp programmers would use mapcar instead of maplist here. This example

does clear up one mystery: why maplist is in Common Lisp at all. It was the original mapping

function, and mapcar a later addition.

13


