
1/13/17

1

Distributed	systems
Lecture	4:	Clock	synchronization;	logical	clocks

Dr Robert	N.	M.	Watson

1

Last	time
• Started	to	look	at	time	in	distributed	systems
– Coordinating	actions	between	processes

• Physical	clocks	‘tick’	based	on	physical	processes	(e.g.	
oscillations	in	quartz	crystals,	atomic	transitions)
– Imperfect,	so	gain/lose	time	over	time
– (wrt nominal	perfect	‘reference’	clock	(such	as	UTC))

• The	process	of	gaining/losing	time	is	clock	drift
• The	difference	between	two	clocks	is	called	clock	skew
• Clock	synchronization aims	to	minimize	clock	skew	
between	two	(or	a	set	of)	different	clocks

2



1/13/17

2

The	clock	synchronization	problem
• In	distributed	systems,	we’d	like	all	the	different	
nodes	to	have	the	same	notion	of	time,	but
– quartz	oscillators	oscillate	at	slightly	different	
frequencies	(time,	temperature,	manufacture)

• Hence	clocks	tick	at	different	rates:
– create	ever-widening	gap	in	perceived	time
– this	is	called	clock	drift

• The	difference	between	two	clocks	at	a	given	
point	in	time	is	called	clock	skew

• Clock	synchronization	aims	to	minimize	clock	
skew	between	two	(or	a	set	of)	different	clocks

3

From	last	lecture

Dealing	with	drift

• A	clock	can	have	positive	or	negative	drift	with	
respect	to	a	reference	clock	(e.g.	UTC)
– Need	to	[re]synchronize	periodically

• Can’t	just	set	clock	to	‘correct’	time
– Jumps	(particularly	backward!)	can	confuse	apps

• Instead	aim	for	gradual	compensation
– If	clock	fast,	make	it	run	slower	until	correct
– If	clock	slow,	make	it	run	faster	until	correct

4



1/13/17

3

Compensation
• Most	systems	relate	real-time	to	cycle	counters	or	periodic	

interrupt	sources
– E.g.	calibrate	CPU	Time-Stamp	Counter	(TSC)	against	CMOS	

Real-Time	Clock	(RTC) at	boot,	and	compute	scaling	factor	(e.g.	
cycles	per	ms)

– Can	now	convert	TSC	differences	to	real-time
– Similarly	can	determine	how	much	real-time	passes	between	

periodic	interrupts:	call	this	delta
– On	interrupt,	add	delta	to	software	real-time	clock

• Making	small	changes	to	delta	gradually	adjusts	time
– Once	synchronized,	change	delta	back	to	original	value
– (Or	try	to	estimate	drift	&	continually	adjust	delta)
– Minimise	time	discontinuities	from	stepping

5

Obtaining	accurate	time

• Of	course,	need	some	way	to	know	correct	time	
(e.g.	UTC)	in	order	to	adjust	clock!
– could	attach	a	GPS	receiver	(or	GOES	receiver)	to	
computer,	and	get	±1ms	(or	±0.1ms)	accuracy…

– …but	too	expensive/clunky	for	general	use
– (RF	in	server	rooms	and	data	centres non-ideal)

• Instead	can	ask	some	machine	with	a	more	
accurate	clock	over	the	network:	a	time	server
– e.g.	send	RPC	getTime()	to	server
– What’s	the	problem	here?

6



1/13/17

4

Cristian’s	Algorithm	(1989)

• Attempt	to	compensate	for	network	delays
– Remember	local	time	just	before	sending:	T0
– Server	gets	request,	and	puts	Ts into	response
– When	client	receives	reply,	notes	local	time:	T1
– Correct	time	is	then	approximately	(Ts +	(T1- T0)	/	2)
(assumes	symmetric	behaviour...)

7

client

server
time

request

T0

reply

T1

Ts

Cristian’s	Algorithm:	Example

• RTT	=	460ms,	so	one	way	delay	is	[approx]	230ms.
• Estimate	correct	time	as	(08:02:04.325	+	230ms)	=	08:02:04.555
• Client	gradually	adjusts	local	clock	to	gain	2.425	seconds

8

C08:02:01.670

S

C08:02:02.130

08:02:04.325

T0

T1

Ts

Tim
e



1/13/17

5

Berkeley	Algorithm	(1989)
• Don’t	assume	have	an	accurate	time	server
• Try	to	synchronize	a	set	of	clocks	to	the	average
– One	machine,	M,	is	designated	the	master
– M periodically	polls	all	other	machines	for	their	time
– (can	use	Cristian’s	technique	to	account	for	delays)
– Master	computes	average	(including	itself,	but	ignoring	
outliers),	and	sends	an	adjustment	to	each	machine

M

A B C

08
:0
2:
01

08:01:17 M

A B C
-0
0:
00

:3
1

Avg =	(01:17+01:12+02:01)/3
=	(04:30/3)	=	01:30

9

+00:00:13

Network	Time	Protocol	(NTP)
• Previous	schemes	designed	for	LANs;	in	practice	
today’s	systems	use	NTP:
– Global	service	designed	to	enable	clients	to	stay	
within	(hopefully)	a	few	ms	of	UTC

• Hierarchy	of	clocks	arranged	into	strata
– Stratum0	=	atomic	clocks	(or	maybe	GPS,	GEOS)
– Stratum1	=	servers	directly	attached	to	stratum0	clock
– Stratum2	=	servers	that	synchronize	with	stratum1
– …	and	so	on

• Timestamps	made	up	of	seconds	and	‘fraction’
– e.g.	32	bit	seconds-since-epoch;	32	bit	‘picoseconds’

10



1/13/17

6

NTP	algorithm

• UDP/IP	messages	with	slots	for	four	timestamps
– systems	insert	timestamps	at	earliest/latest	opportunity

• Client	computes:
– Offset	O =	((T1-T0)	+	(T2-T3))	/	2
– Delay	D =	(T3-T0)	– (T2-T1)

• Relies	on	symmetric	messaging	delays	to	be	correct	
(but	now	excludes	variable	processing	delay	at	server)

11

client

server
timeT1

request

T0

reply

T3

T2

Measured	difference	in	average	
timestamps:	(T1+T2)/2	– (T0+T3)/2

Estimated	two-way	communication	
delay	minus	processing	time

NTP	example

• First	request/reply	pair:	
– Total	message	delay	is	((6-3)	- (38-37))	=	2	
– Offset	is	((37-3)	+	(38-6))	/	2	=	33

• Second	request/reply	pair:	
– Total	message	delay	is	((13-8)	- (45-42))	=	2	
– Offset	is	((42-8)	+	(45-13))	/	2	=	33

12

client

server
time

request reply

02 03 04 05 06 07 08 09 10 11 12 13

35 36 37 38 39 40 41 42 43 44 45 46



1/13/17

7

NTP:	additional	details	(1)

• NTP	uses	multiple	requests	per	server
– Remember	<offset,	delay>	in	each	case
– Calculate	the	filter	dispersion	of	the	offsets	&	discard	
outliers

– Chooses	remaining	candidate	with	the	smallest	delay
• NTP	can	also	use	multiple	servers
– Servers	report	synchronization	dispersion =	estimate	
of	their	quality	relative	to	the	root	(stratum	0)

– Combined	procedure	to	select	best	samples	from	best	
servers	(see	RFC	5905	for	the	gory	details)

13

NTP:	additional	details	(2)

• Various	operating	modes:	
– Broadcast (“multicast”):	server	advertises	current	
time

– Client-server (“procedure	call”):	as	described	on	
previous

– Symmetric:	between	a	set	of	NTP	servers
• Security	is	supported
– Authenticate	server,	prevent	replays
– Cryptographic	cost	compensated	for

14



1/13/17

8

Physical	clocks:	summary
• Physical	devices	exhibit	clock	drift
– Even	if	initially	correct,	they	tick	too	fast	or	too	slow,	and	
hence	time	ends	up	being	wrong

– Drift	rates	depend	on	the	specific	device,	and	can	vary	
with	time,	temperature,	acceleration,	…

• Instantaneous	difference	between	clocks	is	clock	skew
• Clock	synchronization	algorithms attempt	to	minimize	
the	skew	between	a	set	of	clocks
– Decide	upon	a	target	correct	time	(atomic,	or	average)
– Communicate	to	agree,	compensating	for	delays
– In	reality,	will	still	have	1-10ms	skew	after	sync	;-(

15

Ordering

• One	use	of	time	is	to	provide	ordering
– If	I	withdrew	£100	cash	at	23:59.44…	
– And	the	bank	computes	interest	at	00:00.00…
– Then	interest	calculation	shouldn’t	include	the	£100	

• But	in	distributed	systems	we	can’t	perfectly	
synchronize	time	=>	cannot	use	this	for	ordering
– Clock	skew	can	be	large,	and	may	not	be	trusted
– And	over	large	distances,	relativistic	events	mean	that	
ordering	depends	on	the	observer

– (similar	effect	due	to	finite	‘speed	of	Internet’	;-)

16



1/13/17

9

The	“happens-before”	relation
• Often	don’t	need	to	know	when event	a occurred	
– Just	need	to	know	if	a occurred	before	or	after	b

• Define	the	happens-before relation,	a	® b
– If	events	a and	b are	within	the	same	process,	then	
a® b	if	a occurs	with	an	earlier	local	timestamp

– Messages	between	processes	are	ordered	causally,	
i.e.	the	event	send(m)® the	event	receive(m)

– Transitivity:	i.e.	if	a® b	and	b® c,	then	a® c
• Note	that	this	only	provides	a	partial	order:
– Possible	for	neither	a® b	nor b® a	to	hold	
– We	say	that	a and	b are	concurrent and	write	a ~	b

17

Example

• Three	processes	(each	with	2	events),	and	2	messages
– Due	to	process	order,	we	know	a® b,	c® d	and e® f
– Causal	order	tells	us	b® c	and d® f	
– And	by	transitivity a® c,	a® d,	a® f,	b® d,	b® f,	c® f

• However,	event	e is	concurrent	with	a,	b,	c and	d

18

P1

P2 physical	time

P3

a b

e f

c d

m1

m2

? ?

? ?



1/13/17

10

Implementing	Happens-Before
• One	early	scheme	due	to	Lamport [1978]
– Each	process	Pi has	a	logical	clock	Li

• Li can	simply	be	an	integer,	initialized	to	0
– Li is	incremented	on	every	local	event	e

• We	write	Li(e) or	L(e) as	the	timestamp	of	e
• Distributed	time	is	implemented	by	propagating	
timestamps	via	messages	on	the	network:
– When	Pi sends	a	message,	it	increments	Li and	copies	the	
value	into	the	packet

– When	Pi receives	a	message	from	Pj,	it	extracts	Lj and	sets	
Li	:=	max(Li,Lj),	and	then	increments	Li

• Guarantees	that	if	a® b,	then	L(a)	<	L(b)
• However	if	L(x)	<	L(y),	this	doesn’t	imply	x® y !

19

Lamport Clocks:	Example

• When	P2 receives	m1,	it	extracts	timestamp	2	and	sets	its	
clock	to	max(0,	2)	before	increment

• Possible	for	events	to	have	duplicate	timestamps
– e.g.	event	e has	the	same	timestamp	as	event	a

• If	desired	can	break	ties	by	looking	at	pids,	IP	addresses,	…	
– this	gives	a	total	order,	but	doesn’t	imply	happens-before!

20

P1

P2 physical	time

P3

a b

e f

c d

0→1 1→2

0→3 3→4

0→1 1→5

m1 (v=2)

m2 (v=4)



1/13/17

11

Vector	clocks
• With	Lamport clocks,	given	L(a) and	L(b),	we		
can’t	tell	if	a® b	or	b® a	or a	~	b

• One	solution	is	vector	clocks:
– An	ordered	list	of	logical	clocks,	one	per-process
– Each	process	Pi maintains	Vi[],	initially	all	zeroes
– On	a	local	event	e,	Pi increments	Vi[i]

• If	the	event	is	message	send,	new	Vi[]	copied	into	packet
– If	Pi receives	a	message	from	Pj then,	for	all	k =	0,	1,	…,	
it	sets	Vi[k]	:=	max(Vj[k],	Vi[k]),	and	increments	Vi[i]

• Intuitively	Vi[k] captures	the	number	of	events	at	
process	Pk that	have	been	observed	by	Pi

21

Vector	clocks:	example

• When	P2 receives	m1,	it	merges the	entries	from	P1’s	clock
– choose	the	maximum	value	in	each	position

• Similarly	when	P3 receives	m2,	it	merges	in	P2’s	clock
– this	incorporates	the	changes	from	P1 that	P2 already	saw

• Vector	clocks	explicitly	track	the	transitive	causal	order:	f’s
timestamp	captures	the	history	of	a,	b,	c &	d

22

P1

P2 physical	time

P3

c

e

a

(1,0,0)

b m1

f

d m2

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)



1/13/17

12

Using	vector	clocks	for	ordering
• Can	compare	vector	clocks	piecewise:
– Vi =	Vj iff Vi[k]	=	Vj[k]	for	k =	0,	1,	2,	…
– Vi ≤	Vj iff Vi[k]	≤	Vj[k]	for	k =	0,	1,	2,	…
– Vi <	Vj iff Vi ≤	Vj and	Vi ≠	Vj
– Vi ~	Vj otherwise

• For	any	two	event	timestamps	T(a) and	T(b)
– if	a® b then T(a)	<	T(b)	;	and
– if	T(a)	<	T(b)	then	a® b

• Hence	can	use	timestamps	to	determine	if	there	
is	a	causal	ordering	between	any	two	events
– i.e.	determine	whether	a® b,	b® a,	or a ~ b

23

e.g.	[2,0,0]	versus	[0,0,1]

Does	this	seem	familiar?	Recall	Time-Stamp	Ordering	and	
Optimistic	Concurrency	Control	for	transactions	last	term.

Summary	+	next	time	(ironically)
• The	clock	synchronization	problem
• Cristian’s	Algorithm,	Berkeley	Algorithm,	NTP
• Logical	time	via	the	happens-before	relation
• Vector	clocks

• More	on	vector	clocks
• Consistent	cuts
• Group	communication
• Enforcing	ordering	vs.	asynchrony
• Distributed	mutual	exclusion

24


