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O((logn)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and a 6= b and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a− x of length i/2; and

2. is there a path x− b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is logn, and the number of bits

of information kept at each stage is 3 logn.
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Savitch’s Theorem

The space efficient algorithm for reachability used on the

configuration graph of a nondeterministic machine shows:

NSPACE(f) ⊆ SPACE(f2)

for f(n) ≥ logn.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ logn, then

NSPACE(f) = co-NSPACE(f)

In particular

NL = co-NL.
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Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a

deterministic Turing machine using O(logn) workspace (with a

read-only input tape and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem A in L then not only P = NP

but also L = NP.
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P-complete Problems

It makes little sense to talk of complete problems for the class P

with respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to

logarithmic space reductions ≤L.

One example is CVP—the circuit value problem.

That is, for every language A in P,

A ≤L CVP

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.
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Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete.

For any language A ∈ NL, we have A ≤L Reachability

L = NL if, and only if, Reachability ∈ L

Note: it is known that the reachability problem for undirected

graphs is in L.
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Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.
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Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M ], x | M accepts x in f(|x|) steps}

where [M ] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)2) and Hf 6∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n+ 1)2).
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