
CSM: Operational Analysis

2016-17 Computer Science Tripos
Part II

Computer Systems Modelling:
Operational Analysis

by Ian Leslie

Richard Gibbens, Ian Leslie



Operational Analysis

Based on the idea of observation rather than a probabilistic
description of system behaviour.
It is also concerned with quantities ‘directly related’ to
these observed quantities.
Operational analysis makes very weak assumptions about
the system being modelled...
... unlike simulation which requires detailed system
knowledge, or the techniques from queuing theory which
depend extensively on the probability distributions involved
We begin by examining some fundamental quantities and
operational laws.



Basic Quanitites
We examine a system for some time recording the customer
arrivals and departures, and define the quantities of interest:

ä T, the length of time we observe the system
ä A, the number of arrivals observed
ä C, the number of departures (or completions of

service) observed
ä W , the job-time product: the sum of the durations of

all customers over the observation period

If the system is a single resource, then we can also measure:

ä B, the time for which the resource was busy.



Basic Quantities (2)
From these we can define the following quantities:

ä Arrival rate, λ := A
T

— the mean number of arrivals per unit time
ä Throughput, X := C

T .
— the mean number of departures per unit time

ä Mean number of customers, N := W
T

— the job-time product in terms of N and T
ä Mean residence time, R := W

C
— the job-time product in terms of R and C



Basic Quantities (3)
For a single resource, we can also define:

ä Utilization, U := B
T

— the proportion of the time that the resource is busy
ä Average service requirement, S := B

C
— the mean time that the resource spends for each

departure



The utilization law
Our first “law” is just an algebraic identity

U :=
B
T

=
C
T

B
C

= XS

This is termed the utilization law.
For example, if the throughput (X) is 5 departures/sec and
the service demand (S) is 0.1 sec/departure then the
utilization (U) is 50%.



Little’s law
Similarly, we can derive the familiar Little’s Law

N :=
W
T

=
C
T

W
C

= XR

For example, if the throughput (X) is 5 customers/sec and
the mean residence time is 1 sec then the average number
in the system is 5.



Little’s Law (2)

ä Very weak assumptions about the system
ä Applicable to a wide range of systems
ä Can be applied recursively to subsystems and to

individual resources — but take care that
mutually-consistent values are used for X and R; in
particular, whether they apply to the queue, the server
or the entire system



An example

Observe system for T = 10 sec
4 customers spend 10 s in the system
One customer spends 5 s in the system
Then we have W = 4× 10 + 1× 5 = 45 s.
If also A = C = 5 then
X = C/T = 5/10 = 0.5 customers per second
λ = 5/10 = 0.5 customers per second
N = 45/10 = 4.5 customers
R = 45/5 = 9.0 s per customer



A simple interactive system

Terminals

CPU

Disks

Central

Subsystem

Fixed number, M, of users logged on.
Customer is at the terminal whilst thinking.
The think time, Z, is the average time a user spends
between receiving a prompt and responding.
A customer not thinking is inside the central subsystem.



Simple interactive system (2)

We can use Little’s Law to relate some observable
quantities in the central subsystem:

ä N is the number of customers in the central
subsystem 0 ≤ N ≤ M

ä X is the rate at which customers complete in the
central subsystem

ä R is the average time a customer spends in the central
subsystem (intuitively equivalent to “response time”)



Simple Interactive systeem (3)

If we observe that system throughput is 0.5 interactions per
second and we find on average 7.5 users in the subsystem
then

R =
N
X

=
7.5
0.5

= 15 s

from Little’s Law applied to the central subsystem.



Simple interactive system (4)

We can also apply Little’s law to the entire system.
This is a closed system so the number of customers is fixed
as M.
We can split the time spent during an interaction into the
response time (R) and the think time (Z). The residence
time is R + Z.
We consequently derive the interactive system version of
Little’s Law:

M = X(R + Z)



Simple interactive system (5)

With 10 users logged on, 5 s average think time and an
average response time of 15 s,

X =
M

R + Z
=

10
15 + 5

= 0.5 interactions/sec

Under heavy load (M large or Z small)
U ≈ 1

Using the Utilization Law the throughput X ≈ 1
S and hence

R =
M
X
− Z ≈ MS− Z

Thus the response time grows approximately
linearly with the number of users M.



Visit counts and forced flow
We now extend our notation to allow the modelling of
multiple devices. Use subscripts i = 1, 2, . . . , K to identify
each device, e.g. Xi is the throughput at device i. Assume
that the service required by a customer is an inherent
property of the customer not of the state of the system.
A visit count for a device is the number of completions at
that device for every completion from the system

Vi :=
Ci

C

Where Ci is the number of completions at device i.
(Recall that in a feed-forward queueing network, 0 ≤ Vi ≤ 1 because each customer visits a given device at most once.)



The forced flow law
Since X = C

T , we have that

Xi =
Ci

T
=

Ci

C
C
T

= ViX

the Forced Flow Law.
For example, if the throughput from the entire system is 20
customers per second and each customer visits a given
device 3 times then the throughput of that device must be
60 completions per second.
If devices are load independent, then define the service
demand a customer makes on a device i by

Di := ViSi

— be careful to distinguish the service requirement (Si)
and the service demand (Di)



Queue lengths at a server

Applying the utilization law at each device:
Ui = XiSi = (XVi)Si = X(ViSi) = XDi

Similarly, applying Little’s law at each device:
Ni = XiRi .

Ri is the residence time at device i and can be decomposed
into the time spent queuing and the time spent in service,
approximated by R∗i :

R∗i = NiSi + Si

= R∗i XiSi + Si

= R∗i Ui + Si .



Queue lengths at a server (2)

Hence
R∗i =

Si

1−Ui
.

So that

Ni = XiR∗i =
XiSi

1−Ui
=

Ui

1−Ui
.

Observe that

ä Ni is zero when Ui is zero;
ä Ni grows rapidly without bound as Ui approaches one.



Bottleneck analysis

A bottleneck in a system is a hindrance to progress.
Given the forced flow assumption, at high loads system
performance is determined by the device with the highest
utilization: the bottleneck.
The ratio of the completion rates of any two devices is

Xi

Xj
=

ViX
VjX

=
Vi

Vj
.

Since Ui = XiSi, we have a similar property for utilizations
Ui

Uj
=

XiSi

XjSj
=

ViSi

VjSj
.



Bottleneck analysis (2)

A system is load independent if
ä Vi are intrinsic properties of customers,
ä Si are independent of the queue length at i.

In such cases, the throughput and utilization ratios are the
same for all loads.
This can be used to determine asymptotes for X and R.
In general, Ui ≤ 1 and Xi ≤ 1

Si
.

A device i becomes saturated as Ui→ 1

Thus, as Ui→ 1, we have that Xi→ 1
Si
: device i is

working as fast as it can and consequently serves one
customer every Si units of time.



Bottleneck analysis (3)

We use the subscript b to denote a device capable of
saturating.
Since the utilization ratios are fixed, the device i with the
largest ViSi product will be the first to achieve 100%
utilization as N increases:

VbSb = max{V1S1, ..., VKSK}

so the bottleneck is determined by both the device and
workload (the Vi and Si) properties.



Maximum throughput

1/V S

Load, N

System Throughput, X

bb

By the forced flow law
X =

Xb

Vb
So, as Ub→ 1 and Xb→ 1/Sb

Xmax =
Xb

Vb
→ 1

VbSb



Maximum throughput (2)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

The total per-customer service required is

Rmin =
K

∑
i=1

ViSi ⇒ X ≤ N
Rmin

Rmin denotes the smallest possible value of mean response time,
occurring when N = 1.



Maximum throughput (3)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

If k ≤ K jobs always avoid each other then

X =
k

Rmin
≤ 1

VbSb

k ≤ Rmin

VbSb
=

∑K
i=1 ViSi

VbSb
= N∗, say

So, beyond N∗ queueing is certain.



Maximum throughput (4)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

ä It stays below 1/(VbSb) because, at that point, a
bottleneck will be operating at maximum utilization;

ä It stays below the straight line X = N/Rmin because
the throughput is limited by the number of customers
in service.



Interactive response time

ä X throughput;
ä M terminals;
ä Average think time Z;
ä Recall the interactive system version of Little’s law:

R =
M
X
− Z .

Intuitively the minimal response time, Rmin is achieved
when M = 1.
Similarly, the throughput is bound by the bottleneck device.



Interactive response time (2)

By considering a bottleneck device b:

X ≤ 1
VbSb

⇒ R ≥ MVbSb− Z

⇒ R ≥ MViSi− Z ∀i ∈ {1 . . . K}



Interactive response time (3)

1

R

Terminals, M

Response Time, R

min

M b

MV S - Z
b b

The response time asymptote meets the horizontal axis at

Mb =
Z

VbSb

It intersects the minimum response time Rmin at M∗b (say)
where

M∗b VbSb− Z = Rmin .



Interactive response time (4)

1

R

Terminals, M

Response Time, R

min

M Mb i

MV S - Z
b b

MV S - Z
i i

Thus
M∗b =

Rmin + Z
VbSb

= N∗+ Mb

When there are more than M∗b terminals, queueing is
certain to exist.



Summary

ä The largest of the products ViSi determines the
bottleneck b.

ä The sum of these products determines the smallest
possible response time Rmin.

ä Queueing cannot be avoided when N exceeds

N∗ =
Rmin

VbSb

ä Queueing cannot be avoided in an interactive system
when the number of logged-on terminals exceeds

M∗b = N∗+
Z

VbSb
.



Example: interactive system

Terminals

CPU

Disks

Central

Subsystem

Suppose that Z = 20 s.

No. device Si (s) Vi Di = ViSi
1 CPU 0.05 20 1.00
2 disk 0.08 11 0.88
3 fast disk 0.04 8 0.32

Rmin 2.20

Question: Is a 8 second response time feasible with 30 users logged on?
If not, what changes are required?



Example: interactive system (2)

1 Terminals, M

Response Time, R

MV S - Z

MV S - Z

1 1

2 2
CPU

disc

fast disc

20 22 62.5

MV S - Z3 3

M 3M 2
M1

R
min

 = 2.2s

V1S1 = 1s (bottleneck)
V2S2 = 0.88s
V3S3 = 0.32s

⇒ Rmin =
3

∑
i=1

ViSi = 2.2s



Example: interactive system (3)

For M = 30, the response time asymptote
requires R ≥ 30× 1− 20 = 10 s.
So the answer is no, 8 second response time is not feasible
with 30 users logged on.
We need to speed up the CPU. How much?



Example: interactive system (4)

To make a 8 second response time feasible, we need to
speed up the CPU, so that the new service time obeys the
condition

MV1S′1− Z ≤ 8

or
S′1 ≤

20 + 8
30× 20

= .047 s

which is a 7% speed up in the CPU.
Then V1S′1 = 0.93 is still the largest product so the CPU is
still the bottleneck.



Example: interactive system (5)

Question: Is a 10s response time feasible when 50 users are
logged on? If not, how much CPU speedup is required?
If S1→ 0, the disk will become bottleneck

R ≥ MV2S2− Z

For M = 50, this is

R ≥ 50× 0.88− 20 = 24 s

so a 10s response time is not feasible with M = 50 and no
amount of CPU speedup is capable of achieving it.



Balanced system bounds

Balanced system bounds provide tighter bounds at
mid-range loads than bottleneck analysis
A system is balanced if for any load the utilizations of all
devices are equal.
Balanced systems exhibit the following important property

Ui(N) =
N

N + K− 1
.

So the system throughput is given by

X(N) =
Ui

Di
=

N
N + K− 1

× 1
Di

.



Balanced system bounds (2)

For example,
N = 1 K = 2 U1 = U2 =

1
2

N = 1 K = 100 U1 = . . . = U100 =
1

100
N = 100 K = 2 U1 = U2 =

100
101

N = 2 K = 2 U1 = U2 =
2
3

We observe the system to determine
ä Dmax — maximum demand at any device;
ä Dmin — minimum device demand;
ä Dav — average demand at each device;
ä D = Dtot — total demand across all devices.

So, we have Dav = D/K.



Balanced system bounds (3)
Consider imaginary balanced systems related to our system

pess1: balanced system with K devices each with a demand of
Dmax;

opt1: balanced system with K devices each with a demand of
Dmin.

The throughput of system pess1 is
N

N + K− 1
× 1

Dmax
.

The throughput of system opt1 is
N

N + K− 1
× 1

Dmin
.



Balanced system bounds (4)

So for the system being modelled we have

N
N + K− 1

× 1
Dmax

≤ X(N) ≤ N
N + K− 1

× 1
Dmin

.

Since N = XR we have,

(N + K− 1)Dmax ≥ R(N) ≥ (N + K− 1)Dmin .

This will give tighter bounds on the mid-range performance
than the bottleneck bounds.



Balanced system bounds (5)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N

D+(N-1)DavN/D

We can do even better by considering the best performance that the
system can achieve which occurs when the load is spread out evenly
among all the devices.

opt2: Dav at each of the K devices

X(N) =
N

N + K− 1
× 1

Dav
=

N
D + (N− 1)Dav

.



Balanced system bounds (6)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N

D+(N-1)Dmax

N/D

Now, what is the worst system subject to the constraints that D and
Dmax remain fixed?
Answer: place Dmax at as many devices as possible and 0 at the rest

pess2: Dmax at each of the D
Dmax

devices

X(N) =
N

N + K− 1
× 1

Dmax
=

N
D + (N− 1)Dmax

.



Balanced system bounds (7)

1/R
min

N/D
N

D+(N-1)D av

N

D+(N-1)D max

System Throughput, X(N)

b
1/V S

b

Load, N1

N
D + (N− 1)Dmax

≤ X(N) ≤ N
D + (N− 1)Dav

D + (N− 1)Dmax ≥ R(N) ≥ D + (N− 1)Dav



Balanced system bounds (8)
As N→ ∞,

N
D + (N− 1)Dmax

→ 1
Dmax

Note that at high loads the bottleneck bounds are the limiting high
bound.
The asymptotic bottleneck bound 1

Dmax
and the optimistic balanced

bound intersect at N† where
1

Dmax
=

N†

D + (N†− 1)Dav
.

So that
N† =

D− Dav

Dmax− Dav
.


