
Programming in C and C++
5. C++: Overloading, Namespaces, and Classes

Dr. Neel Krishnaswami
University of Cambridge

(based on notes from and with thanks to Anil Madhavapeddy, Alan Mycroft,

Alastair Beresford and Andrew Moore)

Michaelmas Term 2016-2017



C++

To quote Bjarne Stroustrup:

“C++ is a general-purpose programming language with a bias towards
systems programming that:

I is a better C

I supports data abstraction

I supports object-oriented programming

I supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
operator overloading, exceptions and templates”.
[templates are a generalised form of generics]
Much is familiar from Java, but with many subtle differences.

2 / 21



C++ fundamental types

I C++ has all the fundamental types C has
I character literals (e.g. ’a’) are now of type char

I In addition, C++ defines a new fundamental type, bool

I A bool has two values: true and false

I When cast to an integer, true→1 and false→0

I When casting from an integer, non-zero values become true and
false otherwise

I This is also available in C (since C99) via the <stdbool.h> header

3 / 21



C++ enumeration

I Unlike C, C++ enumerations define a new type; for example
enum flag {is_keyword=1, is_static=2, is_extern=4, ... }

I When allocating storage for an enumeration, you use its name; for
example: flag f = is_keyword

I Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right

I The maximum valid value of an enumeration is the enumeration’s
largest value rounded up to the nearest larger binary power minus one

I The minimum valid value of an enumeration with no negative values
is zero

I The minimum valid value of an enumeration with negative values is
the nearest least negative binary power

4 / 21



References

I C++ supports references, which provide an alternative name for a
variable

I Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

I A reference is declared with the & operator; for example:
int i[] = {1,2}; int &refi = i[0];

I A reference must be initialised when it is defined

I A connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; //increments value referenced

5 / 21



References in function arguments

I When used as a function parameter, a referenced value is not copied;
for example:
void inc(int& i) { i++;} //bad style?

I Declare a reference as const when no modification takes place

I It can be noticeably more efficient to pass a large struct by reference

I Implicit type conversion into a temporary takes place for a const

reference but results in an error otherwise; for example:

1 float fun1(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

5 fun1(v); //Wrong

6 fun2(v);

7 }

I Cf. Fortran call-by-reference

6 / 21



Overloaded functions

I Functions doing different things should have different names

I It is possible (and sometimes sensible!) to define two functions with
the same name

I Functions sharing a name must differ in argument types

I Type conversion is used to find the “best” match

I A best match may not always be possible:

1 void f(double);

2 void f(long);

3 void test() {

4 f(1L); //f(long)

5 f(1.0); //f(double)

6 f(1); //Wrong: f(long(1)) or f(double(1)) ?

7 / 21



Scoping and overloading

I Functions in different scopes are not overloaded; for example:

1 void f(int);

2

3 void example() {

4 void f(double);

5 f(1); //calls f(double);

6 }

I Rarely happens in practise since crossing scopes like this leads to
confusing control flow.

8 / 21



Default function arguments

I A function can have default arguments; for example:
double log(double v, double base=10.0);

I A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

I A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

I Be careful of the lexical interaction between * and =; for example:
void f(char*=0); //Wrong ’*=’ is assignment

9 / 21



Namespaces

Related data can be grouped together in a namespace:

namespace Stack { //header file

void push(char);

char pop();

}

void f() { //usage

...

Stack::push(’c’);

...

}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c) { ... }

char pop() { ... }

}

10 / 21



Using namespaces

I A namespace is a scope and expresses logical program structure

I It provides a way of collecting together related pieces of code

I A namespace without a name limits the scope of variables, functions
and classes within it to the local execution unit

I The same namespace can be declared in several source files

I The global function main() cannot be inside a namespace
I The use of a variable or function name from a different namespace

must be qualified with the appropriate namespace(s)
I The keyword using allows this qualification to be stated once, thereby

shortening names
I Can also be used to generate a hybrid namespace
I typedef can be used: typedef Some::Thing thing;

I A namespace can be defined more than once
I Allows, for example, internal and external library definitions

11 / 21



Example

1 namespace Module1 {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return i*i;}

5 inline int halve(const int& i) {return i/2;}

6 }

7

8 using namespace Module1; //"import" everything

9

10 int main() {

11 using Module2::halve; //"import" the halve function

12 x = halve(x);

13 sqr(x); //Wrong

14 }

12 / 21



Linking C and C++ code

I The directive extern "C" specifies that the following declaration or
definition should be linked as C, not C++ code:
extern "C" int f();

I Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

2 int globalvar; //definition

3 int f();

4 void g(int);

5 }

I Why do we need this? E.g. ‘Name mangling’ for overloaded functions.

13 / 21



User-defined types

I C++ provides a means of defining classes and instantiating objects

I Classes contain both data storage and functions which operate on
storage

I Classes have access control: private, protected and public

I Classes are created with class or struct keywords
I struct members default to public access; class to private

I The constructor syntax is a member function with the same name as
the class

I The destructor syntax is a member function with the same name as
the class, prefixed with a tilde (~)

I A constructor can be overloaded to provide multiple instantiation
methods

I Can create static (i.e. per class) member variables

14 / 21



Example

1 class Complex {

2 double re,im;

3 public:

4 Complex(double r=0.0L, double i=0.0L);

5 };

6

7 Complex::Complex(double r,double i) {

8 re=r,im=i; // deprecated initialisation-by-assignment

9 }

10

11 int main() {

12 Complex c(2.0), d(), e(1,5.0L);

13 return 0;

14 }

15 / 21



Constructors and destructors

I A default constructor is a function with no arguments (or only default
arguments)

I If no constructor is specified, the compiler will generate one

I The programmer can specify one or more constructors

I Only one constructor is called when an object is created
I There can only be one destructor

I This is called when a stack-allocated object goes out of scope or when
a heap-allocated object is deallocated with delete; this also occurs for
stack-allocated objects deallocated during exception handling (more
later).

I Stack-allocated objects with destructors are a useful way to release
resources on scope exit (similar effect as Java try-finally) – “RAII:
Resource Allocation is Initialisation”.

16 / 21



Copy constructor

I A new class instance can defined by assignment; for example;
Complex c(1,2);

Complex d = c;

I In this case, the new class instance is initialised with copies of all the
existing class’ non-static member variables; no constructor is called

I This behaviour may not always be desirable (e.g. consider a class with
a pointer as a member variable)

I In which case, define an alternative copy constructor:
Complex::Complex(const Complex&) { ... }

I If a copy constructor is not wanted, make the copy constructor a
private member function, or in C++11 use delete.

17 / 21



Assignment operator

I By default an object is copied on assignment by overwriting all
non-static member variables; for example:

1 Complex c(), d(1.0,2.3);

2 c = d; //assignment

I This behaviour may also not be desirable

I The assignment operator (operator=) can be defined explicitly:

1 Complex& Complex::operator=(const Complex& c) {

2 ...

3 }

18 / 21



Constant member functions

I Member functions can be declared const

I Prevents object members being modified by the function:

1 double Complex::real() const {

2 return re;

3 }

I Logically gives const Complex *this instead of Complex *this

19 / 21



Arrays and the free store
I An array of class objects can be defined if a class has a default

constructor
I C++ has a new operator to place items on the heap:

Complex* c = new Complex(3.4);

I Items on the heap exist until they are explicitly deleted:
delete c;

I Since C++ (like C) doesn’t distinguish between a pointer to a single
object and a pointer to an the first element of an array of objects,
array deletion needs different syntax:

1 Complex* c = new Complex[5];

2 ...

3 delete[] c; // Cannot use "delete" here, only "delete[]"

I When an object is deleted, the object destructor is invoked. When an
array is deleted, the object destructor is invoked on each element

I The C++ standard library provides std::vector or std::array, so
raw arrays are rarely used

20 / 21



Exercises
1. Write an implementation of a class LinkList which stores zero or

more positive integers internally as a linked list on the heap. The
class should provide appropriate constructors and destructors and a
method pop() to remove items from the head of the list. The method
pop() should return -1 if there are no remaining items. Your
implementation should override the copy constructor and assignment
operator to copy the linked-list structure between class instances. You
might like to test your implementation with the following:

1 int main() {

2 int test[] = {1,2,3,4,5};

3 LinkList l1(test+1,4), l2(test,5);

4 LinkList l3=l2, l4;

5 l4=l1;

6 printf("%d %d %d\n",l1.pop(),l3.pop(),l4.pop());

7 return 0;

8 }

Hint: heap allocation & deallocation should occur exactly once!
21 / 21


