Programming in C and C++
4. Misc. Library Features, Gotchas, Hints and Tips

Dr. Neel Krishnaswami
University of Cambridge
(based on notes from and with thanks to Anil Madhavapeddy, Alan Mycroft,
Alastair Beresford and Andrew Moore)

Michaelmas Term 2016-2017

Example

o)

od 4

1d «

1dd 4«

reyo

reyo

w

il

wul

Bi g

41

V41 Lhyﬁle

00

62

52 | 00

1c

42 |00

05

00

00

00

4c

00

00

00

38

09X0

0SX0

2YX0

8EX0

7E€X0

0€X0

9ZX0

24

Uses of const and volatile

v

v

v

v

Any

declaration can be prefixed with const or volatile

A const variable can only be assigned a value when it is defined

The

const declaration can also be used for parameters in a function

definition

The

volatile keyword can be used to state that a variable may be

changed by hardware or the kernel.

>

The

v vy VvYy

For example, the volatile keyword may prevent unsafe compiler
optimisations for memory-mapped input/output

use of pointers and the const keyword is quite subtle:
const int *p is a pointer to a const int

int const *p is also a pointer to a const int

int *const p is a const pointer to an int

const int *const p is a const pointer to a const int

24

Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17 }

int main(void) {

int i = 42;
int j = 28;

const int *pc = &i; //Also:
*pc = 41; //Wrong
pc = &j;

int *const cp
*cp = 41;
cp = &j; //VWirong

&i;

const int *const cpc = &i;

*cpc = 41; //Wrong
cpc = &j; //VWrong
return O;

"int const *pc"

4/24

Typedefs

» The typedef operator, creates a synonym for a data type;
for example, typedef unsigned int Radius;

» Once a new data type has been created, it can be used in place of the
usual type name in declarations and casts;
for example, Radius r = 5; ...; r = (Radius) rshort;
> A typedef declaration does not create a new type
> It just creates a synonym for an existing type

» A typedef is particularly useful with structures and unions:

1 typedef struct 1llist *1lptr;
2 typedef struct 1llist {

3 int val;

4 1llptr next;

5 } linklist;

Inline functions

» A function in C can be declared inline; for example:

1 inline int fact(unsigned int n) {
2 return n 7 n*xfact(n-1) : 1;

3}

» The compiler will then try to “inline” the function
> A clever compiler might generate 120 for fact(5)
» A compiler might not always be able to “inline” a function
» An inline function must be defined in the same execution unit as it
is used

» The inline operator does not change function semantics

> the inline function itself still has a unique address
» static variables of an inline function still have a unique address

» Both inline and register are largely unnecessary with modern
compilers and hardware

6 /24

That's it!

» We have now explored most of the C language

» The language is quite subtle in places; in particular watch out for:

> operator precedence
> pointer assignment (particularly function pointers)
» implicit casts between ints of different sizes and chars
» There is also extensive standard library support, including:
shell and file /O (stdio.h)
dynamic memory allocation (stdlib.h)
string manipulation (string.h)
character class tests (ctype.h)

v

(Read, for example, K&R Appendix B for a quick introduction)

vV vy vy VvV VY

(Or type “man function” at a Unix shell for details)

24

Library support: 1/0

I/O is not managed directly by the compiler; support in stdio.h:

» FILE *stdin, *stdout, *stderr;

» int printf(const char *format, ...);

» int sprintf(char *str, const char *format, ...);

» int fprintf (FILE *stream, const char *format, ...);
» int scanf(const char *format, ...); // sscanf,fscanf

» FILE xfopen(const char *path, const char *mode) ;
» int fclose(FILE *fp);

> size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

> size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream);

/24

1 #include<stdio.h>
2 #define BUFSIZE 1024

3

4 int main(void) {

© o N o o

10
11
12
13
14
15
16
17
18
19

FILE *fp;
char buffer [BUFSIZE];

if ((fp=fopen("somefile.txt","rb")) == 0) {
perror("fopen error:");
return 1;

}

while(!feof (fp)) {
int r = fread(buffer,sizeof (char) ,BUFSIZE,fp);
furite(buffer,sizeof (char),r,stdout);

}

fclose(fp);
return 0O;

9/24

Library support: dynamic memory allocation

» Dynamic memory allocation is not managed directly by the C compiler

» Support is available in stdlib.h:

>
>
>
>

> The
p =
> Any

|

v

void #*malloc(size_t size)

void *calloc(size_t nobj, size_t size)
void *realloc(void *p, size_t size)
void free(void *p)

C sizeof unary operator is handy when using malloc:
(char *) malloc(sizeof (char)*1000)

successfully allocated memory must be deallocated manually

Note: free() needs the pointer to the allocated memory

Failure to deallocate will result in a memory leak

10/ 24

Gotchas: operator precedence

1 #include<stdio.h>

2

3 struct test {int i;};

4 typedef struct test test_t;
5

6 int main(void) {

7

8 test_t a,b;

9 test_t *p[] = {&a,&bl};

10 pl0]->i=0;

11 pl1]1->i=0;

12 test_t *q = p[0];

13

14 printf ("%d\n",++q->1); //What does this do?
15

16 return O;

17 }

11/24

Gotchas: i++

1 #include <stdio.h>
2

3 int main(void) {

4

5 int i=2;

6 int j=i++ + ++i;
7 printf("%d %d\n",i,j); //What does this print?
8

9

return O;

10

Expressions like i++ + ++i are known as grey (or gray) expressions in that
their meaning is compiler dependent in C (even if they are defined in Java)

12 /24

Gotchas: local stack

#include <stdio.h>

1

2

3 char *unary(unsigned short s) {

4 char local[s+1];

5 int 1i;

6 for (i=0;i<s;i++) locall[il=’1’;
7 localls]=’\0’;

8 return local;

9

}

11 int main(void) {
12 printf("%s\n",unary(6)); //What does this print?
13 return O;

13 /24

Gotchas: local stack (contd.)
#include <stdio.h>

char global[10];

char locall[s+1];
char *p = s%2 7 global : local;
int 1i;
for (i=0;i<s;i++) plil=’1’;
10 pls]="\0’;
11 return p;
12 }
13
14 int main(void) {
5 printf("%s\n",unary(6)); //What does this print?
16 return O;

17 }

1
2
3
4
5 char *unary(unsigned short s) {
6
7
8
9

-

14 /24

Gotchas: careful with pointers

#include <stdio.h>
struct values { int a; int b; I};
int main(void) {

struct values test2 = {2,3};
struct values testl {0,1};

© o N o o B W N R

int *pi = &(testl.a);

10 pi +=1; //Is this sensible?

11 printf("%d\n",*pi);

12 pi += 2; //What could this point at?
13 printf ("%d\n",*pi);

14

15 return O;

16 F

15/24

Gotchas: XKCD pointers

OKAY, HUMAN.

HUH? 3
BERORE YU
HIT (COMPILE;
Y LISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU MAGINE YOURSELF
WALKING OR
A SOMETHING,

AND SUDDENLY YOU
NISSTER STUMBLE,
AND JOLT AWAKE?
YEAH!
e

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

N
DOUBLE - CHECK. YOUR
DAMN POINTERS, CkAY?

 Sul

16 /24

Tricks: Duff's device

1 boring_send(int *to, int *from, int count) {
do {

*to = *xfrom++;
} while(--count > 0);

send(int *to, int *from, int count) {
int n = (count+7)/8;

switch (count%8) {

10 case 0: do{ *to = *from++;

11 case 7: *to = *xfrom++;

2
3
4
5 }
6
7
8
9

12 case 6: *to = *xfrom++;
13 case b: *to = *xfrom++;
14 case 4: *to = *xfrom++;
15 case 3: *to = xfrom++;
16 case 2: *to = *xfrom++;
17 case 1: *to = *xfrom++;
18 } while(--n>0);
19}

17 /24

Assessed Exercise

See

“Head of Department’'s Announcement”

To be completed by noon on Monday 23 January 2017
Viva examinations 1330-1630 on Thursday 26 January 2016
Viva examinations 1330-1630 on Friday 27 January 2016

Download the starter pack from:
http://www.cl.cam.ac.uk/Teaching/current/CandC++/
This should contain eight files:
server.c client.c 1rfc0791.txt rfc0793.txt
messagel message2 message3 message4

Exercise aims

Demonstrate an ability to:

v

Understand (simple) networking code

v

Use control flow, functions, structures and pointers

v

Use libraries, including reading and writing files

v

Understand a specification

v

Compile and test code

v

Comprehending man pages

Task is split into three parts:
» Comprehension and debugging
» Preliminary analysis

» Completed code and testing

19 /24

Exercise submission

» Assessment is in the form of a ‘tick’
» There will be a short viva; remember to sign up!
» Submission is via email to c-tick@cl.cam.ac.uk

» Your submission should include seven files, packed in to a ZIP file
called crsid.zip and attached to your submission email:

answers.txt clientl.c summary.c messagel.txt
serverl.c extract.c message2.jpg

20 /24

c-tick@cl.cam.ac.uk

Hints: |IP header

1

2

3
01234567890123456789012345678901

+—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—F—F—t—t—F—F—F—F—t—t—Ft—F—F—+—+—+

|Version| IHL

| Type of Servicel|
tot—t—t—t bttt —t—t—t—t—t—t—t bttt =ttt =ttt bttt —t—+—+

Identification |Flags|
s T e o e At S S e A At S

Time to Live

Protocol |

Source Address

Total Length

Fragment Offset

Header Checksum
B s s s s T T e S S L S T T T s Tt S B E S S R A

tot—F—t—+—+—+—+

Destination Address

+—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—F—F—t—F—F—F—F—F—t—F—Ft—t—F—+—+—+

Options

Padding

tot—t—t—t bttt =ttt =ttt =ttt bt =ttt — bt —t—F—t—+—t—+—+

21 /24

Hints: IP header (in C)

1 #include <stdint.h>

© o N o o B~ W N

-
o

11
12
13
14
15

16 #define IP_HLEN(lenver) (lenver & 0xO0f)
17 #define IP_VER(lenver) (lenver >> 4)

struct ip {

};

uint8_t hlenver;
uint8_t tos;
uintl6_t len;
uintl6_t id;
uintl6_t off;
uint8_t ttl;
uint8_t p;
uintl16_t sum;
uint32_t src;
uint32_t dst;

22/24

Hints: network byte order

» The IP network is big-endian; x86 is little-endian; ARM can be either

» Reading multi-byte values requires possible conversion

» The

>

>
>
>

BSD API specifies:

uint16_t ntohs(uint16_t netshort)
uint32_t ntohl(uint32_t netlong)

uint16_t htons(uint16_t hostshort)
uint32_t htonl(uint32_t hostlong)

which encapsulate the notions of host and network and their
interconversion (which may be a no-op)

23 /24

Exercises

1. What is the value of i after executing each of the following:

1.1 i = sizeof(char);

1.2 i = sizeof(int);

1.3 int a; i = sizeof a;

1.4 char b[5]; i = sizeof(b);

1.5 char *c=b; i = sizeof(c);

1.6 struct {int d;char e;} s; i = sizeof s;
1.7 void f(int j[5]) { i = sizeof j;}

1.8 void f(int j[1[10]) { i = sizeof j;}

2. Use struct to define a data structure suitable for representing a
binary tree of integers. Write a function heapify(), which takes a
pointer to an integer array of values and a pointer to the head of an
(empty) tree and builds a binary heap of the integer array values.
(Hint: you should malloc() and a binary tree data structure)

3. What other C data structure can be used to represent a heap? Would
using this structure lead to a more efficient implementation of
heapify()?

24 /24

