Biolnformatics algorithms
Pietro Lio’, pl219@cam.ac.uk

Multidisciplinarity (Biology and Machine Learning)
Computer scientists could help biologists

Biology could inspire computer science

No biology in the exam questions

You need to know only the biology in the slides to understand the

reason for the algorithms

Partly based on book: Compeau and Pevzner Bioinformatics
algorithms (chapters 3,5,7-10); also Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids Richard Durbin,
Sean R. Eddy, Anders Krogh, Graeme Mitchison

Color slides from the course website




DNA: 4-letter alphabet, A (adenosine), T (thymine), C (cytosine) and G (guanine). In the double

helix A pairs with T, C with G

Gene: hereditary information located on the chromosomes and consisting of DNA.
RNA: same as DNA but T -> U (uracil)

3 letters (triplet — a codon) code for one amino acid in a protein.

Proteins: units are the 20 amino acids A, C, D,E, F, G, H, |, K, L, M, NP, Q, R, S, T, VW, Y.
Genome: an organism'’s genetic material
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How Do We Compare Biological Sequences
Outline

From Sequence Comparison to Biological Insights

The Alignment Game and the Longest Common Subsequence
The Manhattan Tourist Problem

The Change Problem

Dynamic Programming and Backtracking Pointers

From Manhattan to the Alignment Graph

From Global to Local Alighment

Penalizing Insertions and Deletions in Sequence Alighment
Space-Efficient Sequence Alignment

Multiple Sequence Alignment

Nussinov folding algorithm



The Alignment Game

ATGTTATA
ATCGTCZC
Alignment Game (maximizing the number of points):

 Remove the 1st symbol from each sequence

* 1 point if the symbols match, 0 points if they don’t match
 Remove the 1st symbol from one of the sequences

* 0 points



The Alignment Game

AT-GTTATA
ATCGT-C-2C
+1+1 +1+1 =4



What Is the Sequence Alighment?

matches insertions deletions mismatches

AT-GTTATA
ATCGT-C-2C
+1+1  +1+41 =4

Alignment of two sequences is a two-row matrix:

o n

15t row: symbols of the 15t sequence (in order) interspersed by “-

o n

29 row: symbols of the 2"9 sequence (in order) interspersed by “-



Longest Common Subsequence

AT-GTTATA
ATCGT-C-2C

Matches in alignment of two sequences (ATGT) form their
Common Subsequence

Longest Common Subsequence Problem: Find a longest
common subsequence of two strings.
* Input: Two strings.
 Output: A longestcommon subsequence of these
strings.



From Manhattan to a Grid Graph
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Manhattan Tourist Problem

Manhattan Tourist Problem: Find a longest path in a
rectangular city grid.

eInput: A weighted rectangular grid.

eQutput: A longest path from the source to the sinkin
the grid.
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Search for Longest Paths in a Directed Graph

Longest Path in a Directed Graph Problem: Find a
longest path between two nodes in an edge-weighted
directed graph.
 Input: An edge-weighted directed graph with
source and sink nodes.
 Output: A longest path from source to sinkin
the directed graph.



Do You See a Connection between
the Manhattan Tourist and the Alignment Game?

AT-GTTATA
ATCGT-C-2ZC
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How to built a
Manhattan for the
Alignment Game

and the
Longest Common
Subsequence
Problem?

Diagonal red edges
correspondto
matching symbols
and have scores 1
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South or East?

SouthOrEast(n,m)
if n=0 and m=0
return O
if n>0 and m>0
x < SouthOrEast(n-1,m)+weight of edge “,”into (n,m)
y € SouthOrEast(n,m-1)+weight of edge “=”into (n,m)
return max{x,y}

return -infinity
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Dynamic Programming Recurrence

s; - the length of a longest path from (0,0) to (i)

si.1 ; + weight of edge “\,”into (i)
s; ;= max {

s; .1 +weight of edge “->"into (i)



How does
the
recurrence
change for
this graph?




Sg= MaXy predecessors b of node a{5b+ WEight of edge from b to G}

4 choices:
5+2
3+7/
5+4
4+ 2




Sg= MaXy predecessors b of node a{5b+ WEight of edge from b to G}

4 choices:
5+2
3+7/
5+4
4+ 2




Dynamic Programming Recurrence for the

Alignment Graph

s; j- the length of a longest path from (0,0) to (i)

si.1; + weight of edge “J,” into (i)

s; = max { s; .1 + weight of edge “>" into (i)
si.1 .1t weight of edge “N” into (i)
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red edges W —weight 1
other edges — weight O



Dynamic Programming Recurrence for the
Longest Common Subsequence Problem

s; j- the length of a longest path from (0,0) to (i)

Si.1;+0
S,-,j=maX {S i1 +0
511j1+1 fVI:Wj

A T C G T C C
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red edges N —weight 1
other edges — weight O



backtracking pointers
for the Longest
Common Subsequence

red edges N —weight 1
other edges —weight O
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Computing Backtracking Pointers

S;i-110
< max{s;; +0
Si—l,j-1+1/ if VI':W/'
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Using Backtracking Pointers to Compute LCS

OutputLCS (backtrack, v, i, j)
ifi=0orj=0
return
if backtrack;; = “>"
OutputLCS (backtrack, v, i, j-1)
else if backtrack;; = “J”
OutputLCS (backtrack, v, i-1, j)
else
OutputLCS (backtrack, v, i-1, j-1)
output v;



Computing Scores of ALL Predecessors

Sg= MaXaL predecessors b of node a{5b+ WEight of Edge from b to G}









A Vicious Cycle




In What Order Should We Explore Nodes of the Graph?

Sg= MAXALL predecessors b of node a{5b+ WEight of edge from b to (J}

[

e Bythetimeanodeisanalyzed, the scoresof all its
predecessors should already be computed.

e |fthe graph has a directed cycle, this conditionis
impossibleto satisfy.

e Directed Acyclic Graph (DAG): a graph without directed
cycles.



Topological Ordering

e Topological Ordering: Ordering of nodes of a DAG on a line
such that all edges go from left to right.

e Theorem: Every DAG has a topological ordering.



LongestPath

LongestPath(Graph, source, sink)
for each node a in Graph
s, < -infinity
SSOUI'CE é O
topologically order Graph
for each node a (from source to sink in topological order)
Sq < maxy predecessors b of node a{sb+ Weight of edge from b to G}

returns,,,
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Mismatches and Indel Penalties

#matches — u - #mismatches — o - #indels

AT-GTTATA
ATCGT-C-C
+1+1-2+1+1-2-3-2-3=-7

A C G T - A C G T -
+tl1 -p -p -p -0
-u +1 —-p —-p -o
-u —p +1 —-pu -o
B —p —p +1 -o
-0 -0 -0 -0

I 340 p
I
1o
+
=
I
W
I
N
I
W

-4 -2 -2 -1

Scoring matrix Even more general scoring matrix



Scoring Matrices for Amino Acid Sequences

Y (Tyr) often mutates into F (score +7)
but rarely mutates into P (score -5)
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Dynamic Programming Recurrence for the
Alignment Graph

5., ; + weight of edge “J.” into (i)
Si,j= max {Si,j-l + Weight of edge “>”into (i,j)
si.1 .1t weight of edge “N” into (i)

AT CG T C C
APNINENINININ
TININININININ
GININININININI
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APNINININININ
TININININININD
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Dynamic Programming Recurrence for the
Alignment Graph

Si-l,j -0
{SI,_/'J = O-
S; ;= Max .
2. Si-l,j-l + 1, |f Vi:Wj

Si-1,j-1 ~ M, If ViZW,




Dynamic Programming Recurrence for the
Alignment Graph

Sipj score(v,-)
Si.1 j-1+ score(v,w;)

AT CG T C C
APNINENINININ
TININININININ
GINININININININ
TININININININD
TININININININI
ANINININININI
TININININININI
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Global Alignment

Global Alignment Problem: Find the highest-scoring
alignment between two strings by using a scoring matrix.

* Input: Strings v and w as well as a matrix score.
 Output: An alignment of vand w whose alighnhment

score (as defined by the scoring matrix score) is
maximal among all possible alighments of v and w.



Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

e Alignment 2:score= 17 (matches) - 30 (indels)=-13.

-=-=-G-=---C————- C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-=-—--- A-—-———- T-——--



Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

e Alignment 2:score= 17 (matches) - 30 (indels)=-13.

CAGTTATGTCAG
CAGTTATGTCAG
local alighment
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Local Alighnment

-
-
-
-
-

Global alignment




Local Alignment= Global Alignment in a Subrectangle

--------

""""""

| R S N T

—— Compute a Global
Alignment within
each rectangleto
get a Local
Alignment




Local Alighment Problem

Local Alignment Problem: Find the highest-scoringlocal
alignment between two strings.

* Input: Strings v and w as well as a matrix score.
 Output: Substrings of v and w whose global alighment

(as defined by the matrix score), is maximal among all
global alignments of all substrings of vand w.



Free Taxi Rides!
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GCC-C—-AGT-TATGT-CAGGGGGCACG——A-GCATGCACA- -——G———-C————- C-—CAGTTATGTCAGGGGGCACGAGCATGCACA
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG-T-CAGAT GCCGCCGTCGTTTTCAGCAGTTATGTCAG————— A-—————— T ————
Global alignment Local alignment



What Do Free Taxi Rides Mean in the Terms of the Alignment Graph?
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Building Manhattan for the Local Alignment Problem

T T T T =
_—-_" —_—

How many edges have we added?



Dynamic Programming for the Local Alignment

weight of edge from (0,0) to (i)
si.1; + weight of edge “\,” into (i)
$; /= max {Si,j-l + weight of edge “=” into (i,))
Si.1 .4+ weight of edge “N" into (i)
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Dynamic Programming for the Local Alignment

0
5., ; + weight of edge “J.” into (i)
Si,j= max {Si,j-l + Weight of edge “>”into (i,j)
si.1 .1t weight of edge “N” into (i)
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Scoring Gaps

* We previously assigned a fixed penalty o to
each indel.

 However, this fixed penalty may be too severe
for a series of 100 consecutive indels.

* Aseries of kindels often represents a single
evolutionary event (gap) rather than k events:

two gaps GATCCAG GATCCAG a single gap
(lower score) GA-C-AG GA--CAG (higher score)



More Adequate Gap Penalties

Affine gap penalty for a gap of length k: o+e&-(k-1)

o - the gap opening penalty
¢ - the gap extension penalty

o > g, since starting a gap should be penalized
more than extendingit.



Modelling Affine Gap Penalties by Long Edges
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Building Manhattan with Affine Gap Penalties

o+e 2

LSl
Facseme

We have just added O(n?) edges to the graph...




Building Manhattan on 3 levels
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Middle Column of the Alignment
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middle column
(middle=ttcolumns/2)



Middle Node of the Alighment
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middle node
(a node where an optimal alighment path crosses the middle column)



Divide and Conquer Approach to Sequence Alignment
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AlignmentPath(source, sink)
find MiddleNode A
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Divide and Conquer Approach to Sequence Alignment
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AlignmentPath(source, sink)
find MiddleNode A
AlignmentPath(source, MiddleNode)
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Divide and Conquer Approach to Sequence Alignment

>
(@]
()]
()]

AlignmentPath(source, sink)

A A
find MiddleNode A N \ \
AlignmentPath(source, MiddleNode) | g
AlignmentPath(MiddleNode, sink) T >> \_>\ >

T NN
c NAVAN
A NAYAN
SERTNE §) SR

The only problem left is how to find this middle node in linear space!



Computing Alignment Score in Linear Space

Finding the longest path in the alignment graph
requires storing all backtracking pointers— O(nm)
memory.

Finding the length of the longest path in the
alignmentgraph does not require storing any
backtracking pointers — O(n) memory.



Recycling the Columns in the Alignment Graph
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Can We Find the Middle Node without
Constructing the Longest Path?

A C G A A
A NV,
T NN
NN AR
NN I | e
A \ \ | >¢\ \J In the middle column
A \ \ \\\\\J\w\\‘i

i-path — a longest path among paths that visit the i-th node in the middle column



Can We Find The Lengths of All i-paths?

A G A A
A ININIININ DN
! \v >>v\ \ length(i):
T »\v \v\ L\ . length of an i-path:
C \ ‘ l\'\ \ length(0)=2
A \ | \\J \‘w \J length(4)=4
AL \J\w\\m




Can We Find The Lengths of All i-paths?




Can We Find The Lengths of i-paths?

A C G A A
SWANENA 1) NANAN
T v\v\ \v\t\v
c \ \ AN \ \ length(i):
H— length of an i-path
AL _}é_y\w\i
RN 1| NANAN

length(i)=fromSource(i)+toSink(i)



Computing FromSource and toSink

toSink(i)

fromSource(i)



How Much Time Did It Take to Find the Middle Node ?

)

i{’ (”1/”i/ 717

fromSource(i) toSink(i)



Laughable Progress: O(nm) Time to Find ONE Node!
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How much time would it take to conquer 2 subproblems?
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Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

Each subproblem
can be conquered
in time
proportional to
its area:

area/8+area/8+
area/8+area/8=
area/4

How much time would it take to conquer 4 subproblems?



O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!

JRUNTEANANANAN
ISINININININININT e
T \\\ \ﬂ\l\u\ | +area/4
NI N
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S

How much time would it take to conquer ALL subproblems?



Total Time: area+area/2+area/4+area/8+area/16+...

1+ +%+... <2



The Middle Edge

G A A T

N\
N\
N
N\

l l Middle Edge:
'~ an edge in an
| optimal

—  alignment path

\ \i starting at the

middle node

R

R —

VVaVavavavavava
A S L
AL
LV WL L b

V274787874
4% 44"2%2%

N
[
N

pa P & &
N / 4 N
é&— _ &—
~

R




The Middle Edge Problem

Middle Edge in Linear Space Problem. Find a middle edge
in the alignment graph in linear space.

* Input: Two strings and matrix score.

 Output: A middle edge in the alignment graph of
these strings (as defined by the matrix score).









Recursive LinearSpaceAlighment

LinearSpaceAlignment(top,bottom,left,right)

if left =right

return alignment formed by bottom-top edges “d,”
middle < |(left+right)/2]
midNode < MiddleNode(top,bottom,left,right)
midEdge < MiddleEdge(top,bottom,left,right)
LinearSpaceAlignment(top,midNode,left,middle)
output midEdge
if midEdge = “= “ or midEdge = “\”

middle < middle+1
if midEdge = “\ “ or midEdge = “N"

midNode < midNode+1
LinearSpaceAlignment(midNode,bottom,middle,right)



Generalizing Pairwise to Multiple Alignment

* Alignmentof 2 sequencesis a 2-row matrix.
e Alignmentof 3 sequencesis a 3-row matrix

A - GCG -
A-CGT-2A
A CAC-A

* Our scoring function should score alignments with
conserved columns higher.



Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

#symbols up to a given position

o
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Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

(0,0,0)—(1,1,0)—=(1,2,1) —=(2,3,2) —(3,3,3) —=(4,4,4)

|
_______TIIL_

o

= N H w ! N
w
@) I @) ~ @) BEN

| Bl [ B

_Jr___._.



2-D Alignment Cell versus 3-D Alignment Cell

(i-1,j-1,k-1) (i-1,j,k-1)

2-D
(ilj-ll k-l)




Multiple Alignment: Dynamic Programming

Sic1j-1k-1 T 5("1' W, Uy )
i1, j-1k T (S(vi W, 9_)
Si—l,j,k—l + 5(Via_>uk )

A

Si—l,j,k + (S(Via_a_)
Si,j—l,k + 6(_?Wj 9_)

Si,j,k—l + 5(_9_9uk )

-

* O&x, ), z)isan entryin the 3-D scoring matrix.



Multiple Alignment: Running Time

* For 3 sequences of length n, the run time is
proportional to 7n?

* For a k-way alignment, build a k-dimensional
Manhattan graph with

— n* nodes
— most nodes have 2 — 1 incoming edges.
— Runtime: O(2%nk)



Multiple Alignment Induces Pairwise Alignments

Every multiple alignmentinduces pairwise alignments:
AC-GCGG-C
AC-GC-GAG
GCCGC-GAG

!

ACGCGG-C AC-GCGG-C AC-GCGAG
ACGC-GAC GCCGC-GAG GCCGCGAG



ldea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can
we construct a multiple alighment that induces
them?

AAAATTTT---- -—---AAAATTTT TTTTGGGG—-—--
-=-=-=-TTTTGGGG GGGGAAAA---- -—---GGGGAAAA



Aligning Profile Against Profile

* Inthe past we were aligning a sequence
against a sequence.

— Can we align a sequence against a profile?
— Can we align a profile against a profile?

- A G G C T A T C A C C T G
T A G - C T A CC A - - - G
c A G- CTACOCA - - - G
c A G - CT AT CATC - G G
c A G - CTATTCGTZC - G G
A o 1 o0 0o 0 01 o 0.8 0 O0 o0 O
C .6 0 0 0 1 0 0 .4 1 0.6 .2 0 O
G o 0 1.2 0 0 0 O O.2 O O0.4 1
T .2 0 0 0 01 0.6 0 O O 0.2 O
- .2 0 0.8 0 0 0 0 0 O .4 .8.4 O



Multiple Alignment: Greedy Approach

* Choose the most similar sequences and
combine them into a profile, thereby reducing
alignment of k sequences to an alignment of
of k —2 sequences and 1 profile.

* [terate



Greedy Approach: Example
* Sequences: GATTCA, GTCTGA, GATATT, GTCAGC.

* 6 pairwise alignments (premium for match +1,
penalties for indels and mismatches -1)

sZ
s4

sl1
sZ

s1
s3

GTCTGA
GTCAGC

GAT-TCA
G-TCTGA

GAT-TCA
GATAT-T

(score

(score

(score

2)

Iy

Iy

s1
s4

sZ
s3

s3
s4

GATTCA--

G-T-CAGC (score

G-TCTGA
GATAT-T

GAT-ATT
G-TCAGC

(score

(score

0)

-1)

-1)



Greedy Approach: Example

* Since s, and s, are closest, we consolidate them
into a profile:

sZ2 GTCTGA

s4 GTCAGC] S, 4 = GTCt/aGa/cA

* New set of 3 sequences to align:

s; GATTCA
s;3  GATATT

S, 4 GTCt/aGa/c



RNA structure: great variety!

; - = %‘: = :
eanllen, Hepatitis C = “Fges3i08.2
internal &
§ ribosome
% - entry site

‘ﬂ
L3

o
:
%ﬁxzmmm
3

8.

.

| "_‘}m

!

B. subtilis SRP RNA

&
<G
41-'52 5
" m&“ﬁmm&amu-wuuaéc IIAOGLI-'G{ [ RN R I R e -uuus rip:a lcﬁ
= gt.l w-amlmana% ‘ct,u.neslu.u m&g@u@x;w ARRCOCA OMOE 3
15 p=5

m<l

W

)

i
UL
0
-l

i
K.

u
A.U
C.G
G.C
E coli55 rRNA i
C.G
GG
A -
A C
5 h,‘ll< 4 G C
CCCCAUGC UAGEC
..... AOE S aveie e U
Gecouaus, GUAGCCG A
uds G-
G-C
A4.C
G-C
C.C 2
C-Z
¢-J
=
AT TG,
A C
Az.cC
U=24
aG-C
AG.C 1
AU *~
Go%
Ac cc
& +
G C
CCGUA



RNA Secondary Structure

Secondary Structure :

— Set of paired positions on interval [i,/]

— This tells which bases are paired in the subsequence from x; to x;
Every optimal structure can be built by extending optimal substructures.
Suppose we know all optimal substructures of length less than j-i+1.

The optimal substructure for [;,/] must be formed in one of four ways:
1. ijpaired
2. iunpaired
3. junpaired
4. combining two substructures

Note that each of these consists of extending or joining substructures of
length less than j-i+1.

AN AN\ o N\ A N
\ \ \ A A\

(o] (0}

5 5 b L b

i+1 j -1 i+1 t‘j i le-l b b
j | 6-0—e—0-0

~7
i,j pair i unpaired j unpaired bifurcation

105



The Nussinov Folding Algorithm
Example: GGGAAAUCC

v(i,j) is the maximum number A
of base pairs in segment [i,j]

Initialisation y(1,1-1) =0& y(1,1) =0

Starting with all subsequences of
length 2, tolength L:

)

m\m_m_> -~

j ——

(ia ) =
' Jf GG G AAA UCC

y(i+1,7)

. 0
Y(laj_l)

max: 0

ya+1,j-1)+0(,))

max, [y (LK) + 7 (K +1,)]

Where 6(i,j) = 1 if x; and x;

are a complementary base pair,

ONVVVODODO

44—

and o(i,j) = 0, otherwise.




Nussinov Folding Algorithm:
After scores for subsequences of length 2

r(,]) =

>

y(i+1,j)
. (i, j-1) GG G AAA UCC
y(i+1,j-1)+46(,)) 0 0
max_, [yG.R+yk+L)] Q)
Olo |0
® 0
™ > x
A A > o |0 |o
\ / > 0
A=Y
. 5
§=C ©
G




Nussinov Folding Algorithm:
After scores for subsequences of length 3

1G.i) - o
1i+1,j)
i - GGG AAAUCC
T ri+Lnesad [0 |0 [0
max; [y (k) +y(k+1, )] o |0 0 0O |0
') o |o |0 |o
— > o |o (0o |o
A I> o |0 |1 |o
cf'ﬂ: lc 0 |0 |0 |oO
§-d o o |o |o
- 0o |o




Nussinov Folding Algorithm
After scores for subsequences of length 4

y(,])) =
y(i+1,j) GGG AAAUCC
max : Y(.I,J-l) . G) ° ° ° °
y(i+1,j-1)+6(,]j) ®|o |0 |o |0 |o
[MXi 1Y (1) +y (R + 1, )] ® O (0 [0 |O |O
> 0 [o o Jo |@D
0 |0 (@)@ )1
— >
! > o |o |1 |1 |1
‘\Orl; lc o (0 |0 |0
(?_Cl o 0o (0 |0
1 0 |0

G Two optimal substructures for same subsequence



Nussinov Folding Algorithm
After scores for subsequences of length 5

y(i, j) =
y(i+1,5) GG G AAA UCC
ma y(i+1y,§1:i>l+)6(i,j> o ) I I R S
max, .. [y (i.K) +y (k +1, )] @|0 [0 |0 |0 jo |0
\ ® o [o [o [o [o [4
> o (o |o |0 |1 |1
[ > o |0 |0 |1 |1 [1
A A
AN > o (0 |1 [1 |1
A=Y lc o o [o |o
D '®) 0 [0 |o
Fe 0 |0




Nussinov Folding Algorithm
After scores for subsequences of length 6

y(1,]) =
( y(i+1,]) cc6 AAAUCEC
max : Y(.i’j_l) .. G) ° ° ° i i i
yi+1,j-1)+6(,)) ®olo [0 [0 |0 0 |0 1
max, [y (1) + 7 (k+ 1, )] 0 0 [0 [0 |0 |0 |1 |2
> o (0 |0 (O [1 [1 |1
™ > 0 _jo Jo jt |1 |1
A A !
! > o |0 |1 |1 |1
A= - 0O |0 |0 |O
G—C
i~ O 0 0 0
F'_C 0 0
G



Nussinov Folding Algorithm
After scores for subsequences of length 7

y(,J) = j —

y(i+1,j))
o GGG AAAUCC
B i+ 1,j-1)+6G, j) olo [0 [0 |0 |0 o |1
\maXi<k<j [y (19 k) + y (k + 19 J)] m O O O 0 O O 1 2
() o (o (0 [0 |0 |1 |2 |2
> o o |o |o [1 |1 |1
[
A A i o |0 |0 |1 [1 |1
\‘°r l; > o o [1 [1 |1
?_cl C o [0 |o |o
/G-c @) 0o |0 |0
G 0 |0




Nussinov Folding Algorithm
After scores for subsequences of length 8

y(,]) =

y(i+1,))
v(ii-1) GG G A AA UCC
max: . . ..
y(i+1,j-1)+06(,)) o |0 |o [0 |o |0 |1 |2
InaXi<k<j [V (19 k) + Y(k + 19 J)] G)
“ ®lo (o o |o |0 |0 |1 |2 |3
() o |o [0 [0 [0 |1 |2 |2
— > o (o (o |0 [1 |1 [1
A A i:(> o (0o |o |1 [1 |1
\ / > o (0o |1 [1 |1
A=Y 1 - 0o o |o o
(?:cc' o o |o |o
b 0 |0




Nussinov Folding Algorithm
After scores for subsequences of length 9

(@, )) =

1+1,]
o GGG AAA UCGC
T reLinssi) olo o JoJo Jo Jo 1 T2 |3
| max [y (1,k) +y (k+1, )] olo 1o [0 1o (o Jo 1 |2 |3
() o (0 |0 |0 [0 |1 |2 |2
[ > o o o [o [1 [1 [1
ALA > o o o [1 [1 [
A-y > o (0 [1 [1 |1
G~ l C o |0 [0 |o
G o 0 |o |o
G 0 |0




Nussinov Folding Algorithm
Traceback

] ——

GG G AAA UCC

N
N N[N~~~ [—]|O|O
111g1100
O |Oloo|j|O|O|O
O |OoOlo|O | O
O |OoO|lO| O
o |O|O
o | O

GGGAAAUC

—




Nus Si nov a | g0 rlth m Algorithm: Nussinov RNA folding, fill stage
Initialisation:

(a different examp|E): y(,i—1) = 0 o) = 22Ny L

f|||_stage y(@,i) = 0 fori ='1"to L
Recursion: starting with all subsequences of length 2, to length 1.:
AU

A5 O
AU e Vi T
max; << [y (.k)+y(k+1, j)].

y(i,j) = max

G|1 olol1]2]2]213l4|4] Scoringsystem:
Gl2 olol1l1]1 51313 9(ij) =1 for all RNA Watson-Crick base-
cl3 ololololilzl>2]2| pairsincluding G-U else o(i,j) = 0.
C|4 olofof1f{1|2]2 — _
Blue: addition of unpaired base 3 or 7
Al5 olojo|1]2]2
ul7 olojo|o
ud K 01919 Pink: joining of substructures 1..4 and 5..8
C(9 0|0




Algorithm: Nussinov RNA folding, traceback stage

. . Initialisation: Push (1, L) onto stack.
Nussinov a |g0r|thm: Recursion: Repeat until stack is empty:
trace-back - pop (i, /).

- if i >= j continue;
else if y(i +1,j) = v, J) push (i +1,7);
else if y(i,j—1)= y(i,j)push (i, — D);
glolcleclalaglululc elseify(i—l—l,'j.—1)+8,~:j=y(i,j):
- record i, j base pair.
-push G +1,j—1).
Slacfork =it lbtol; — it afty. @ kR (s =AU I
- push (k+ 1, j).

- push (i,k).
gl1] lolo|1 MM 21213122 -
G|2 olofMi|1]|2]2]3]3
cl3 olololol1l 114> current record stack
1,9

cla ollojol1]1]2/2 1,9 1,8
Al5 ololol 1/ 2 1,8 1,4 5,8 e
T T B 1,4 1,4 2,3 5,8 GeCc GoU

2,3 2,3 3,2 5,8 GeC AeU
ulz olo|o|o 3,2 5,8 ./ C
uls o|lo|o 23 2,8 6,7

, 6,7 7,6
clo 0|0 7,6




Phylogeny
Outline

Transforming Distance Matrices into Evolutionary Trees

Toward an Algorithm for Distance-Based Phylogeny Construction
Additive Phylogeny

Using Least-Squares to Construct Distance-Based Phylogenies
Ultrametric Evolutionary Trees

The Neighbor-Joining Algorithm

Character-Based Tree Reconstruction

The Small Parsimony Problem

The Large Parsimony Problem

Back to the alignment: progressive alignment



Constructing a Distance Matrix

D; ;= number of differing symbols between i-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D; ;= number of differing symbols between i-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D; ;= number of differing symbols between i-th and
Jj-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?




bacteria / \
EUKARYOTES
archaebacteria / \
protoctists / \
PLANTS
. ANIMALS
/ \ green algae f ngi / \
/ \ mosses / \

/ \ ferm$s  cnidarian / | \
flowering  non-flowerin g flatworms
seed plants ed plant:

/ \Iphph t/ \tf
VERTEBRATES ARTHROPODS
/ \ echlnoderrry\ / \
/\ tlg us gm tdmll k/\hl rates
TETRAPODS
/ \ yf sh crust aaaaaaaaaaa
AMNIOTES o
/ \amphibians
/ \mammals
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& ||zard & b rds

Tree: Connected
graph containing
no cycles.

Leaves (degree = 1):

present-day species

Internal nodes
(degree > 1):
ancestral species




Trees
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TIME
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Present Day

Rooted tree: one node is designated as the

(most recent common ancestor)




Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an

evolutionary tree from a distance matrix.

* Input: A distance matrix.

* Output: The unrooted tree “fitting” this distance
matrix.




Fitting a Tree to a Matrix

Chimp

Chimp 0
Human 3

Seal 6
Whale 4

Human

3

0
/
5

Seal

6

/
0
2

Whale

4

S N U



Return to Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.

* Input: A distance matrix.

* Output: The unrooted tree fitting this distance

matrix.

Now is this problem well-defined?




Return to Distance-Based Phylogeny

Exercise Break: Try fitting a tree to the following
matrix.

~
w ~r W O =~
U1 SAN - O =,
b O R A R
S N U1 W =~




No Tree Fits a Matrix

Exercise Break: Try fitting a tree to the following
matrix.

i j ok
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
I 3 5 2 0

Additive matrix: distance matrix such that there
exists an unrooted tree fitting it.




More Than One Tree Fits a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp . 1 Seal

~NL
o S~



More Than One Tree Fits a Matrix

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0

Human ‘



Which Tree is “Better”?
Chimp ‘ ‘ Seal

\ KN /
e TNgwne

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix.




Reformulating Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct an

evolutionary tree from a distance matrix.

* Input: A distance matrix.

* Output: The simple tree fitting this distance
matrix (if this matrix is additive).




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 / 0 2
Whale 4 5 2 0
Chimp Seal
o, )
\ 3 /
P SN

Human ‘



An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they share
the same ).

Theorem: Every simple tree with at least two nodes
has at least one pair of neighboring leaves.

Chimp ‘ Seal

~N_ .,
o

Human



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Seal
How do we compute ?/
the unknown Q
distances? \




Toward a Recursive Algorithm

dk/m — [<di,m T dk,m) T (dj,m T dk,m) - (di,m T dj,m)] /2



Toward a Recursive Algorithm

Ay = U, + di ) +(d, py + dy ) = (d + d) )1 2
Ay = (i + dj—d;) /2
Aim=(Djy+ Dj—D; )/ 2
. = Dyj— Dy + Dy = D
;= Dy + Dyj— D)/ 2

:



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 4 0 2
Whale 4 5 2 0
Seal

d,’/m — (Di,/( + Di,j_ Dj,/() / 2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 4 0 2
Whale 4 5 2 0
Seal

d,’/m — (Di,/( + Di,j_ Dj,/() / 2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7/ 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ d ' Seal

\

| ‘ Whale

_—
_—
-y
-
_—
-
-
-y

dSeal,m — (DSeal,Chimp + DSeal,WhaIe — DWhale,Chimp> /2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7/ 5
Seal 6 7 0 2
Whale 4 5 2 0

-y
_—
-y
-
_—
-
-
-y

dSeal,m =2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7/ 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ ~ < 4 Seal

\\
\\
—y



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale m

Chimp 0 3 6 4 4

Human 3 0 7 5 5

Seal 6 7 0 2 2

Whale = 5 2 0 0

m - 5 2 0 0
Chimp ‘ ~ \4 2/ Seal



An Idea for Distance-Based Phylogeny

Chimp Human

Chimp 0 3 4
Human 3 0 5
m 4 5 0



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0

o ‘\? 2/ e

Human .



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0

Chimp ‘ 5 Seal
\ . <
Human / 0 Whale

dChlmp a— <DCh|mp m T DChlmp Human ™ DHuman m) /2



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0

o ‘\1 2/ e

Human .

dChimp,a =1



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0

o ‘\1 2/ e

Human .



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 5
m 4 5 0

Chimp ‘\ Seal
/ X Whale

Human



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
o ‘\ 2/ e
m
/ k

Human Whale



An Idea for Distance-Based Phylogeny

Exercise Break: Apply this recursive approach to the
distance matrix below.

i j kI
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
| 22 13 13 0



What Was Wrong With Our Algorithm?

i j kI
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
[ 22 13 13 0



What Was Wrong With Our Algorithm?

i j kI
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
[ 22 13 13 0

0& | /e
0/ Xcp




What Was Wrong With Our Algorithm?

i j kI

i 0 13 21 22

j 13 0 12 13 minimum

kK 21 12 0 13 element is D;

I 22 13 13 O

0& | /e
o/ Xcp




What Was Wrong With Our Algorithm?

i j ko

i 0O 13 21 22

j 13 0 12 13 minimum

K 21 12 0 13 element is D;

I 22 13 13 O

K
& 4 / J and kare |
0/ Xo not neighbors!



From Neighbors to Limbs

Rather than trying to find neighbors, let’s instead try
to compute the length of limbs, the edges attached
to leaves.

N,
o/ \o




From Neighbors to Limbs

Ay = U, + di ) +(d, py + dy ) = (d + d) )1 2
Ay = (i + dj—d;) /2
Aim=(Djy+ Dj—D; )/ 2
. = Dyj— Dy + Dy = D
;= Dy + Dyj— D)/ 2

:



From Neighbors to Limbs

OI/</m — [<di,m + dk,m) + (dj,m + dk,m) - (di,m + dj,m)] /2
Ay = (i + dj—d;) /2
dk/m — (Di,/( + Dj,/(_ D,'//') / 2

iy =D =D+ D —D; ) /2 | Assumes that i and
d,’/m — (Di,/( + Di,j_ Dj,k) / 2 / are neigthl‘S...




Computing Limb Lengths

Limb Length Theorem: LimblLength(i) is equal to the

minimum value of (D, + D;;— D; ,)/2 over all leaves
j and k.

Limb Length Problem: Compute the length of a limb

in the simple tree fitting an additive distance matrix.

 Input: An additive distance matrix D and an
Integer .

* Output: The length of the limb connecting leaf |
to its parent, LimbLength()).

Solve the Limb Length Problem.



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (Dgpimp k + Dchimp,j—
D chimp, k)2 over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0

(Dchimp, human T Dchimp, seal — Dhuman, sea|> /2 =3+6-7)/2=1



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (Dgpimp k + Dchimp,j—
D chimp, k)2 over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human T Dchimp, seal — Dhuman, sea|> /2 =3+6-7)/2=1

(Dchimp, human T Dchimp, whale — Dhuman, whale) /2 =3+4-5)/2=1



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (Dgpimp k + Dchimp,j—
D chimp, k)2 over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human T Dchimp, seal — Dhuman, sea|> /2 =3+6-7)/2=1

(Dchimp, human T Dchimp, whale — Dhuman, whale) /2 =3 +4-5)/2=1
(Dchimp, whale T Dchimp, seal — thale, seal) /2 — (6 + 4 — 2) /2 =4



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (Dgpimp k + Dchimp,j—
D chimp, k)2 over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dhuman, chimp T Dchimp, seal — Dhuman, sea|> /2 =3+6-7)/2=1

(Dhuman, chimp T Dchimp, whale — Dhuman, whale) /2 =3 +4-5)/2=1
(thale, chimp + Dchimp, seal — thale, seal) /2 =6 +4-2) /2 =4



Computing Limb Lengths

Limb Length Theorem: LimblLength(chimp) is equal
to the minimum value of (Dgpimp k + Dchimp,j—
D chimp, k)2 over all leaves j and k.

Chimp Human Seal Whale
Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘

N
o

Human




D

AdditivePhylogeny In Action

i k|

i 0 13 21 22 0. (k)

6
j 13 0 12 13 \ 4 /
k 21 12 0 13 0/ XQ

I 22 13 13 O




AdditivePhylogeny In Action

i kI
i 0 13 21 22
j 13 0 12 13
D

k 21 12 0 13

I 22 13 13 O

1. Pick an arbitrary leaf .




AdditivePhylogeny In Action

i kI
i 0 13 21 22
j 13 0 12 13

D

k 21 12 0 13

I 22 13 13 O

Limblength(j) = 2

2. Compute its limb length, LimbLength()).




AdditivePhylogeny In Action

TREE(DPald)

i 0 11 21 22

Dbaldi 11 0 10 11 \ /

kK 21 10 0 13 \
a/)"
|

22 11 13 0

3. Subtract LimbLength(j) from each row and column
to produce D34 in which j is a bald limb (length 0).




AdditivePhylogeny In Action

i k 1
i 0 21 22
Dtrim
k 21 O 13
| 22 13 0

4. Remove the j-th row and column of the matrix to
formthe (n = 1) x (n = 1) matrix Drm,




AdditivePhylogeny In Action

i k 1
i 0 21 22
Dtrim
k 21 O 13
| 22 13 0

5. Construct Tree(Dtrim).




AdditivePhylogeny In Action

TREE(DPald)
I o 11 21 22

pbald 4 110 10 1 \ /
k 21 10 0 13 \
I i

22 11 13 0 o

6. Identify the point in Tree(D"'™) where leaf j should
be attached.




AdditivePhylogeny In Action

i k|

i 0 13 21 22 0

11 6
Hodo13 0 123 \ 4 /
kK 21 12 0 13 0/ Xo

I 22 13 13 O

Limblength(j) = 2

7. Attach j by an edge of length LimbLength()) in
order to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

U1

Pick an arbitrary leaf .

Compute its limb length, LimblLength()).

Subtract Limblength(j) from each row and column to
produce D34 in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dt"m,

Construct Tree(Dtm),

Identify the point in Tree(D"™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

U1

Pick an arbitrary leaf .

Compute its limb length, LimblLength()).

Subtract LimblLength(j) from each row and column to
produce D34 in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dt"m,

Construct Tree(Dtm),

Identify the point in Tree(D™™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




Attaching a Limb

i j k1 .
, TREE(D™M)
I O 11 21 22

. O
11 0 10 11 15 /
Pbald J o
k 21 10 0 13 X
I 22 11

13 0 o

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald, . 4 Dbald, | —
pbald, )/2 over all leaves i and k.




Attaching a Limb

i j k1 .
, TREE(D™M)
I O 11 22

. O
11 0 10 11 15 /
pbald o
k 21 10 0 13 X
[ 22 11

13 0 o

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald, . 4 Dbald, | —
pbald; )72 over all leaves i and k.

<Dbaldi,j 4+ Dbaldj,k_ )2 =0



Dbaldi 11
kK 21

Attaching a Limb

j k1 |
TREE(DY'™)

11 22 6 0

0 10 11 15 /

W

10 0 13 X

11 13 0 g

(Dbaldi/j_|_ Dbaldj/k_ V2 = 0

bald bald,  —
Dai//'_l_Da/'/k_



Attaching a Limb

i j k1
TREE(DPald)
i 0 11 22
' o 6
Dbald j 11 0 10 11 N
k 21 10 0 13 /0 X
I 22 11 13 0

The attachment point for j is found on the path
between leaves i and k at distance D", from i.

bald bald  _
Dai//‘-I_Da/'/k—




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

Pick an arbitrary leaf .

Compute its limb length, LimblLength()).

Subtract LimblLength(j) from each row and column to
produce D34 in which jis a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n = 1) x (n = 1) matrix Dtm,

Construct Tree(DU"m).

Identify the point in Tree(D"™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).

Implement AdditivePhylogeny.




Sum of Squared Errors

Discrepancy(T, D) = Z,.;_i <, (d;(T) = D; )?

=12+ 12 =2
0 1.5 1 e
T \ 1.5 /
i j ok i j k
i 3 4 3 I 3 4
‘ 4
D J 4 5 d J
k 2 k
/ /

N B o



Sum of Squared Errors

Exercise Break: Assign lengths to edges in T in order
to minimize Discrepancy(I, D).

a? ?e
T\?/
0/ ?\o
i j ok i ok
I 3 4 3 I [ A 4
e 2
Dl 45 dl
k 2 k 4
/ /




Least-Squares Phylogeny

Least-Squares Distance-Based Phylogeny Problem:

Given a distance matrix, find the tree that minimizes

the sum of squared errors.

 Input: An n x n distance matrix D.

* Output: A weighted tree T with n leaves
minimizing Discrepancy(T, D) over all weighted
trees with n leaves.

Unfortunately, this problem is NP-Complete...




Ultrametric Trees

Rooted binary tree: an edge weights: correspond
to difference in ages on the

unrooted binary tree with
a root (of degree 2) on 33 nodes the edge connects.
1% trametric tree: distance

one of its edges.
€ from root to any leaf is the
10 ™ sage (i.e., age of root).
33 AN
23 {
/ 1/ )
2
6
2 2
Q/ \Q O

Squirrel Baboon  Orangutan Gorilla  Chimpanzee Bonobo Human
Monkey




Ultrametric Trees

Ultrametric tree: distance
33 from root to any leaf is the
1& 55| SaMe (i.e., age of root).
10\ 13
33 6\
23 {
/ 1/ 6
2
6
/2 N\
O O O O O O O
Squirrel Baboon  Orangutan  Gorilla Chimpanzee  Bonobo Human

Monkey




UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

—
w ~r W O =-
U1 K~ O W .
b O B R~ R
- No U1 o —~—

O o O o G0 @O o




UPGMA: A Clustering Heuristic

2. Find the two closest clusters C; and C, according
to the average distance

Dawe(Cr, G =25incr,jinc2 Dij /|G| |G
where |C| denotes the number of elements in C.

—
o AN 8) - -~
U1 SAN - 0 ‘=,
N O »~ K~ R
- N U1 o —~—

O o O 0o G o @O o




UPGMA: A Clustering Heuristic

3. Merge C; and G, into a single cluster C.

{k, 1}

—
w ~r W O =-
U1 h~r O W .
N O »~ K~ R
- N U1 o —~—

O o O o G0 @O o




UPGMA: A Clustering Heuristic

4. Form a new node for C and connectto C; and G,
by an edge. Setage of C as D,,(C;, C,)/2.

N O©O B~ NOR=
O N Ul W

—
O AN o - ~
U1 K~ O W .




UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

i k)
i 0 3 35

1
j 3 0 45 1/\
{k,1} 35 45 0
O o @ o

OO0 0O o

{k, 1}




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

U, J'}

i 0 3 3.5 1
1 1
{k,I} 35 45 0 / \

O o O o OG0 @ o




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

)}
i {k 1} 15

i, O 4 .

O o O o OG0 @ o




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.




UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.




UPGMA: A Clustering Heuristic

UPGMA(D):

1.

o

Form a cluster for each present-day species, each
containing a single leaf.
Find the two closest clusters C; and C, according to the
average distance

Dave(Cq, C) =2inc1,jinc2 Dij /|Gl ¢ |Gl
where |C| denotes the number of elements in C
Merge C; and C, into a single cluster C.
Form a new node for C and connect to C; and C, by an
edge. Set age of C as D,,,(C;, C,)/2.
Update the distance matrix by computing the average
distance between each pair of clusters.
Iterate steps 2-5 until a single cluster contains all species.




UPGMA Doesn’t “Fit” a Tree to a Matrix

2
i j k1 05
i 0 3 4 3
j 3 0 4 5 1
k 4 4 0 2 /\ 1
/I 3 5 2 0

0 @0 00



UPGMA Doesn’t “Fit” a Tree to a Matrix

2
i j k 05
i 0 3 4 3
j 3 0 4 5 1
k 4 4 0 2 /\ 1
/I 3 5 2 0

0 @0 00



In Summary...

» AdditivePhylogeny:
— good: produces the tree fitting an additive matrix
— bad: fails completely on a non-additive matrix

 UPGMA:

— good: produces a tree for any matrix
— bad: tree doesn’t necessarily fit an additive matrix
o 22222

— good: produces the tree fitting an additive matrix
— good: provides heuristic for a non-additive matrix



Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

D% =

where TotalDistancep(i) is the sum of distances from i
to all other leaves.

= (n - 2)*D, ;— TotalDistancep(i) — TotalDistance ()

i j k | TotalDistancep, i j k |

i 0 13 21 22 56 I 0 -68 -60 -60

N j 13 0 12 13 38 e j - 0 -60 -60
kK 21 12 0 13 46 08

48 k - -60 O -68
22 13 13 0 60

/I - -60 -68 O



Neighbor-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D).

i j k | TotalDistancep, i j k |

i 0 13 21 22 56 I 0 -68 -60 -60

H j 13 0 12 13 38 e j - 0 -60 -60
kK 21 12 0 13 46 08

48 k - -60 O -68
22 13 13 0 60

/I - -60 -68 O



Neighbor-Joining in Action

ik / TotalDistancep,
i 0 -68 -60 -60 56
D+ Jj - 0 60 -60 38
08 46
k 6—0 -60 O 68 48
I - 60 -68 O
60

1. Construct neighbor-joining matrix D* from D.




Neighbor-Joining in Action

ik / TotalDistancep,
i 0 -68 -60 -60 56
D+ Jj - 0 60 -60 38
68 46
k 6—0 -60 O 68 48
I - -60 -68 O
60

2. Find a minimum element D¥; ; of D*.




Neighbor-Joining in Action

i J k
i 0 -68 -60
p* J - 0 -60
68
k - -60 O
60
I - -60 -68
60

/

-60
-60

-68

TotalDistance|,
56
38
46
48

2. Find a minimum element D¥; ; of D*.




Neighbor-Joining in Action

p* J - 0 -60
68

60

60

/

-60
-60

-68

0

TotalDistance|,

56

46
48

AI,/

(56 —38)/(4 - 2)
9

3. Compute 4, ; = (TotalDistance (i) —

TotalDistancep(j)) / (n — 2).




Neighbor-Joining in Action

ik / TotalDistance,
i 0 13 21 22 56
D j 13 0 12 13 38 = (56 -38)/(4-2)
k 21 12 0 13 46 =9
I 22 13 13 0 48

Limblength(i) = Y2(13 + 9) =
Limblength(i) = '2(13 —9) =

4. Set LimblLength(i) equal to 1/2(D/ + 4;)) and
LimbLength(j) equal to 2(D;; - 4, ).




Neighbor-Joining in Action

m k / TotalDistancep,
m O 10 11 21
D’ k 10 0 13 23
I 11 13 0 24

5. Form a matrix D" by removing i-th and j-th

row/column from D and adding an m-th row/column
such that for any k, Dy ,, = (D + D; = D; ;) / 2.




Flashback: Computation of d, ,

dk/m = | ./ (d/ m T dk m) (di,m + d/'/m)] /2
dk/m (d,-/k + d// d ) /2
dk/m — (DI k + D// D///) / 2



Neighbor-Joining in Action

m kI ’ Tree(D) 6 Lk
m 0 10 11 4 /
, @—
D k 10 0 13 \
I 11 13 0 7

6. Apply Neighbor]oining to D’ to obtain Tree(D").




Neighbor-Joining in Action

m k I 0 11 TI’G@(D)
m 0 10 11 \ 4
D’ k 10 0 13

I 11
D

Limblength(i) = 2(13 + 9) = 11
Limblength(i) = 2(13 —9) = 2

o
S

7. Reattach limbs of i and j to obtain Tree(D).




Neighbor-Joining in Action

m k I 0 11 TI’G@(D)
m 0 10 11 \ 4
D’ k 10 0 13

I 11
D

o
S

7. Reattach limbs of i and j to obtain Tree(D).




Neighbor-Joining

Neighbor]oining(D):

1.
2.
3.

4.

Construct neighbor-joining matrix D* from D.

Find a minimum element D*;; of D*.

Compute 4;; = (TotalDistancep(i) — TotalDistancepyj)) / (n
—2).

Set LimbLength(i) equal to 2(D;; + 4;) and Limblength())
equal to "2(D; ;- 4; ).

Form a matrix D’ by removing i-th and j-th row/column
from D and adding an m-th row/column such that for any
k, Dk,m = (Dk,i + Dk,j — D,'/j) /2.

Apply Neighborjoining to D’ to obtain Tree(D’).
Reattach limbs of i and j to obtain Tree(D).

Implement NeighborJoining.




Neighbor-Joining

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive
matrix. How does the result compare with the tree

produced by UPGMA?

2
ik o UPGMA
i 0 3 4 3 7 1 tree
j 3 0 4 5
D 1.5 1.5 !
k 4 4 0 2 1 1
I 3 5 2 0



Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree

reconstruction say nothing about ancestral states at
internal nodes.

We lost information when we converted a multiple
alignment to a distance matrix...

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

S N U

3 0 7
Seal TCGAGAGCAC 6 7 0
Whale TCGAAAGCAT 4 5 2




An Alignment As a Character Table

SPECIES ALIGNMENT
Chimp ACGTAGGCCT -
Human ATGTAAGACT :
> N species
Seal TCGAGAGCAC
Whale TCGAAAGCAT “
H_J

m characters



Toward a Computational Problem

Chimp ACGTAGGCCT o
Human ATGTAAGACT :
> N speciles
Seal TCGAGAGCAC
Whale TCGAAAGCAT “
H_J

m characters



Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

VNN NEENN

2222222222 2222222227
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

ACGAAAGCCT

ACGTAAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

Parsimony score: sum of Hamming distances along

each edge.
CGAAAGCCT
/ \
ACG AAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale




Toward a Computational Problem

Parsimony score: sum of Hamming distances along

each edge.
Parsimony Score: 8
CGAAAGCCT
/ \
ACG AAGCCT CGAAAGCAT
/ y / N
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale




Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted tree.

* Input: A rooted binary tree with each leaf labeled
by a string of length m.

* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s

parsimony score.




Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted tree.

* Input: A rooted binary tree with each leaf labeled
by a string of length m.

* Output: A labeling of all other nodes of the tree
by strings of length m that minimizes the tree’s
parsimony score.

s there any way we can simplify this problem
statement¢




Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted tree.

 Input: A rooted binary tree with each leaf labeled
by a single symbol.

* Output: A labeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.




Toward a Computational Problem



A Dynamic Programming Algorithm

Let 7, denote the subtree of T / \

whose root is v. / \ ’/V\rv
JANAY

Define s,(v) as the minimum

parsimony score of /, over | ®
all labelings of 7, assuming /\
® O

that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of s, (root) over all symbols k.




A Dynamic Programming Algorithm

N

F bols i and j, defi
Sl IANEIAN

* 0;; = 1 otherwise. ./\ ‘/\‘ ./\.
/\

Exercise Break: Prove the following recurrence
relation:

Sk(v) — rnir]aII symbols i {Si(Daughter<V)) + 5i,/<} + rnir]aII symbols i {SI(SOI’)(V)) + 6j,k}




A Dynamic Programming Algorithm

/\
7N\ 7N\
AVANANNNYAN

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

co () oo oo c© () oo oo ) o0 oo oo o () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

5k<V) — minall symbols i {Si(DaUghter(V)) + 5i,k} + minall symbols i {Si(50n<v)) + 5j,k}



A Dynamic Programming Algorithm

/ \
N N

2022/\ 1122/\ 2202/\ 2121/\
A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
co () oo oo c© () oo oo ) o0 oo oo o () oo oo co oo () oo oo oo () oo co oo oo () oo () oo oo

5k<V) — minall symbols i {Si(DaUghter(V)) + 5i,k} + minall symbols i {Si(50n<v)) + 5j,k}



A Dynamic Programming Algorithm

A c e / \ o
2 1 3 3 / 3 2 2 2
/Ak A CGT A\

2 2 0 2 2 1 2 1

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
o () oo oo c© () oo oo ) o0 oo oo oo () oo oo co oo () oo co oo () oo co oo oo () oo () oo oo

5k<V) — minall symbols i {Si(DaUghter(V)) + 6i,k} + minall symbols i {Si(50n<v)) + 5j,k}



A Dynamic Programming Algorithm

G T

5
C
. e n / \ -
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT A\

2 2 0 2 2 1 2 1

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
o () oo oo co () oo oo ) o0 oo oo o () oo oo co oo () oo co oo () oo co oo oo () o () oo oo

5k<V) — minall symbols i {Si(DaUghter(V)) + 6i,k} + minall symbols i {Si(50n<v)) + 5j,k}



A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
. e n / \ -
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT A\

2 2 0 2 2 1 2 1

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
o () oo oo co () oo oo ) o0 oo oo o () oo oo co oo () oo co oo () oo co oo oo () o () oo oo

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.




A Dynamic Programming Algorithm

A CGT
5 3 4 4

A c oo / \ o T
/ «
A CGT /A> A CGT A\

/\ /\ ““/\ 2”‘/\
A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT
o () oo oo co () oo oo ) o0 oo oo o () oo oo co oo () oo co oo () oo co oo oo () o () oo oo

Solve the Small Parsimony
Problem.



Cow

Pig

Horse

Mouse

——  Palm Civet

——— Human

Turkey

Dog

Cat

Exercise Break: Apply SmallParsimony to this tree to
reconstruct ancestral coronavirus sequences.




Small Parsimony for Unrooted Trees

Small Parsimony in an Unrooted Tree Problem: Find

the most parsimonious labeling of the internal nodes

of an unrooted tree.

* Input: An unrooted binary tree with each leaf
labeled by a string of length m.

* Output: A position of the root and a labeling of
all other nodes of the tree by strings of length m
that minimizes the tree’s parsimony score.

Solve this problem.




Finding the Most Parsimonious Tree

ACGAAAGCCT
/ \
ACG AAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale

Parsimony Score: 8



Finding the Most Parsimonious Tree

ACGTAAGCAT
/ N
ACGTAAGCAT ACGTAAGCAT
ACGTAGGCCT TCGAGAGCAC ATGTAAGACT TCGAAAGCAT
Chimp Seal Human Whale

Parsimony Score: 11



Finding the Most Parsimonious Tree

ACGTAAGCCT
/ X
ACGTAAGCCT ACGTAAGCCT
ACGTAGGCCT TCGAAAGCAT ATGTAAGACT TCGAGAGCAC
Chimp Whale Human Seal

Parsimony Score: 14



Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

* Input: A collection of strings of equal length.

* Output: A rooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.




Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,

find a tree (with leaves labeled by all these strings)

having minimum parsimony score.

* Input: A collection of strings of equal length.

* Output: A rooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Unfortunately, this problem is NP-Complete...




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Rearranging these subtrees is called a nearest
neighbor interchange.

T T ol
N/
4% W\ _b/y Y
D



A Greedy Heuristic for Large Parsimony

Nearest Neighbors of a Tree Problem: Given an
edge in a binary tree, generate the two neighbors of

this tree.
 Input: An internal edge in a binary tree.
* Output: The two nearest neighbors of this tree

(for the given internal edge).

Solve this problem.



A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted
tree structure.
2. Go through all internal edges and perform all
possible nearest neighbor interchanges.

. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over
optimal tree, set it equal to the current tree.

Otherwise, return current tree.

o

Implement the nearest-neighbor
interchange heuristic.



Back to alignment: progressive alignment

Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise ali%c;nments. Perhaps the most widely used

algorithm of this type is CLUSTALW
Pairwise Alignment Guide Tree lterative Multiple Alignment
1+2 —
1+3 -
1+4 =2 3
2+3 _3 P 4|,..
2+4

3+4 — 4



Progressive Alignment

Clustalw:

1. Given N sequences, align each sequence against
each other.

2. Use the score of the pairwise alighments to
compute a distance matrix.

3. Build a guide tree (tree shows the best order of

orogressive alignment).

4. Progressive Alignment guided by the tree.




Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment (compare the
alignments on the left and right)

TAGT TGG—-
/// T-GT ~-GGAT O
¥ 4
i TAGT TG _ 4 T66—
TA-T ——-AT
» o
\\\ T-GT GGAT 4




Progressive Alignment

The progressive alignment builds a final alignment by
merging sub-alignments (bottom to top) with a guide tree

AC--A
ACG-A
CC--A
A-GTA
A-G-A
Merging of
Subaltgnments
AC-A AGTA
ACGA AG-A
CC-A /:equem‘e ::\
Sequence Alignment
Sequence to
Subalignment AGTA AGA
ACA ACGA

CCaA

Seguence to
Sequence Altgnment

ACA CCA



Progressive Alignment

AAA
AAA Small section (3 columns) of the

AAT | alignment of 4 sequences
ATC

Let’'s start from an alignment of four sequences (above the first three columns);
Compute the frequencies for the occurrence of each letter in each column of multiple
alignment pA = 1, pT=pG=pC=0 (1st column);

pA =0.75, pT = 0.25, pG=pC=0 (2nd column);

pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column);

Compute entropy of each column: £ = —> "y, ¢ 5 7 Pxlog (Px)

The entropy for a multiple alignment is the sum of entropies of each column of the
alignment,

Implementation: http://www.ebi.ac.uk/Tools/msa/




Approximate Search

It is common to observe strong sequence similarity between a
gene (or a protein) and its counterpart in another species.

The Basic Local Alignment Search Tool (BLAST) is a computer
program for finding regions of local similarity between two
DNA or protein sequences. It is designed for comparing a
query sequence against a target database. It is a heuristic that
finds short matches between query and database sequences
and then attempts to start alignments from these seed hits.
BLAST is arguably the most widely used program in
bioinformatics. By sacrificing sensitivity for speed, it makes
sequence comparison practical on huge sequence databases
currently available.




Approximate Search

On the right there is an

| |
1 800 1600 2400

example of BLAST output

for the following task: a

query (an unknown gene

sequence) is compared

with other sequences with
known functions in a
database. Perfect hits are
red colored. Regions that
were weaker in match are
pink, green, or blue

0

|



Approximate Search

BLAST is an alignment algorithm which runs in O(n) time.

The key to BLAST is that we only actually care about
alignments that are very close to perfect. A match of 70% is
worthless; we want something that matches 95% or 99% or
more. What this means is that correct (near perfect) alignments
will have long substrings of nucleotides that match perfectly.
Most popular Blast-wise algorithms use a seed-and-extend
approach that operates in two steps: 1. Find a set of small
exact matches (called seeds) 2. Try to extend each seed match
to obtain a long inexact match.




Approximate Search

The main steps of the algorithm are the follows:
@ Split query into overlapping words of length W (W-mers).

© Find a neighborhood of similar words for each word in the query (see the figure
next slide).

© Lookup each word in the neighborhood in a hash table to find where in the
database each word occurs. Call these the seeds.

© Extend all seed collections until the score of the alignment drops off below a
threshold.

© Report matches with overall highest scores.



BLAST provides a trade off between speed and sensitivity, by setting
a "threshold” parameterT. A higher value of T yields greater speed,
but also an increased probability of missing weak similarities (the
figure shows an example with protein query; it shows perfect
matches and nearly perfect matches, + ).

keyword

Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKIFLENVIRD

GVK 18

GAK 16 .
GIK 16 Neighborhood

. GGK 14 words
neighborhood GLK 13

score threshold GNK 12

(T=13) GRK 11
GEK 11
| GDK 11
extension
- T >
Query: 22 VLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK 60
+44DN +G + IR L  G+K I+ L+ E+ RG+4K
Sbjct: 226 IIKDNGRGFSGKQIRNLNYGIGLKVIADLV-EKHRGIIK 263

High-scoring Pair (HSP)




Approximate Search

To speed up the homology search process, BLAST employs a
filtration strategy: it first scans the database for length-w word
matches of alignment score at least T between the query and
target sequences and then extends each match in both ends to
generate local alignments (in the sequences) with score larger
than a threshold x.

The matches are called high-scoring segment pairs (HSPs).
BLAST outputs a list of HSPs together with E-values that
measure how frequent such HSPs would occur by chance.

A HSP has the property that it cannot be extended further to
the left or right without the score dropping significantly below
the best score achieved on part of the HSP.

Try http://blast.ncbi.nlm.nih.gov/Blast.cgi




Approximate Search

Assume that the length m and n of the query and database
respectively are sufficiently large; a segment-pair (s, t) consists of
two segments, one in m and one in n, of the same length. We think
of s and t as being aligned without gaps and score this alignment;
the alignment score for (s, t) is denoted by ofs, t).

Given a cutoff score x, a segment pair (s, t) is called a high-scoring
segment pair (HSP), if it is locally maximal and ofs, t) > x and the
goal of BLAST is to compute all HSPs.

The BLAST algorithm has three parameters: the word size W, the
word similarity threshold T and the minimum match score x (cutoff
score).

BLAST outputs a list of HSPs together with E-values that measure
how frequent such HSPs would occur by chance.The E-value is
calculated with respect of a database with similar size and random
data. E-value close to zero means that the sequence is almost
identical to the query.




Approximate Search

The list of all words of length W that have similarity > T to
some word in the query sequence m is generated. The
database sequence n is scanned for all hits t of words s in the
list. Each such seed (s, t) is extended until its score o(s, t) falls a
certain distance below the best score found for shorter
extensions and then all best extensions are reported that have
score = X.

The list of all words of length W that have similarity > T to
some word in the query sequence m can be produced in time
proportional to the number of words in the list. These are
placed in a keyword tree and then, for each word in the tree,
all exact locations of the word in the database n are detected
in time linear to the length of n. The original version of BLAST
did not allow indels, making hit extension very fast.




Approximate Search

The use of seeds of length W and the termination of
extensions with fading scores are both steps that speed up the
algorithm, but also imply that BLAST is not guaranteed to find
all HSPs.

Blast uses a two-bit encoding for DNA. This saves space and
also search time, as four bases are encoded per byte. In
practice, W is usually 12 for DNA and 4 for proteins.

HSP scores are characterized by two parameters, W and A. The
expected number of HSPs with score at least Z is given by the
E-value, whichis: E (Z) = Wmne™<.

Essentially, W and A are scaling-factors for the search space
and for the scoring scheme, respectively.

As the E-value depends on the choice of the parameters W
and A, one cannot compare E-values from different BLAST
searches.




Genome Sequencing
Outline

What Is Genome Sequencing?

Exploding Newspapers

The String Reconstruction Problem

String Reconstruction as a Hamiltonian Path Problem
String Reconstruction as an Eulerian Path Problem
Similar Problems with Different Fates

De Bruijn Graphs

Euler’s Theorem

Assembling Read-Pairs




Next Generation Sequencing Technologies

e Late 2000s: The market for new
sequencing machines takes off.

— [lluminareduces the cost of sequencing ||um|na
a human genome from S3 billion to

$10,000.
— Complete Genomics builds a genomic
factory in Silicon Valley that sequences Comlzgl%%%sdﬂ\

hundreds of genomes per month.

— Beijing Genome Institute orders hundreds
f s b TSt X ER
of sequencing machines, becoming the
world’s largest sequencing center. I3



Why Do We Sequence Personal Genomes?

e 2010: Nicholas Volker became the first human
being to be saved by genome sequencing.

— Doctors could not diaghose his condition; he went
through dozens of surgeries.

— Sequencing revealed a rare mutationin a XIAP gene
linked to a defect in his immune system.

— This led doctors to use immunotherapy, which saved the
child.
* Different people have slightly different genomes:
on average, roughly 1 mutation in 1000
nucleotides.



The Newspaper
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The Newspaper Problem as
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The Newspaper Problem as an
Overlapping Puzzle
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Multiple Copies of a Genome (Millions of them)
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CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGAT CAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGAT CAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGAT CAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGAT CAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

~

@M»
CTGAT GGA L*CI’ACI’GC‘*GCI’GTATI’A*ATCAGCI’ACL*ATCGTAGCTA*ATGCA‘I‘I’AGC*GCTATCG*FCAGCI’AC*CAT GTAGC
CTGA TGGA GCI'ACTA AGCTGTAT*CGATCAG CCACATCGTRECTACGATGC AGCAAGG*TCGGATCA*TACCACAT TAGC
CTGAT GGACTACG ACTACTGCTAYEZ TGTATTACYE TCAGCT AL ACATCGTAG CGATGCATI'*CAAGCTAf*GATCAG CACATCGTAGC

CTGATGATG ACGCTAGECTGCTAG ATTACGATQEGCTACCACANCGTAGCTAC GCATI'AGCA* CTATCG GCTACCA CGTAGC



Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC
CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning” Some Reads

( \‘\
) \> 7
(o emrm L T
el .
CTGATGA TACTGCTAG CTGTATTACG TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA ATCAGCTACC ACATCGTAGCT GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A CATCGTAGC

CTGATGATGGACT ACGCTACTACT TACGATCAGC TACCACATCGT AGCTACGATGCA ATCGGATCA GCTACCACATC GTAGC



No Idea What Position Every Read Comes From
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From Experimental to Computational Challenges

Multiple (unsequenced) genome copies

<
h
—

l l Read generation

__ll l H Genome assembly

Assembled genome

...GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC...



What Makes Genome Sequencing Difficult?

* Modern sequencing machines cannot read an
entire genome one nucleotide at a time from
beginning to end (like we read a book)

* They can only shred the genome and generate
short reads.

* The genome assembly is not the same as a jigsaw

puzzle: we must use overlapping reads to
reconstruct the genome, a giant overlap puzzle!

Genome Sequencing Problem. Reconstruct a genome from reads.
Input. A collection of strings Reads.
Output. A string Genome reconstructed from Reads.




What Is k-mer Composition?

Composition; (TAATGCCATGGGATGTT) =
TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT



k-mer Composition

Composition; (TAATGCCATGGGATGTT) =
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographicorder (like in a dictionary)



Reconstructing a String from its Composition

String Reconstruction Problem. Reconstruct a string from
its k-mer composition.

* Input. A collection of k-mers.

* Qutput. A Genome such that Composition,(Genome)is
equal to the collection of k-mers.



A Naive String Reconstruction Approach

ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT
TAA
AAT
ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG
TAA
AAT
ATG
TGT

GTT




Representing a Genome as a Path

Compositions; (TAATGCCATGGGATGTT) =

O G A e S Ca CA A CaCATACAD

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only
from its composition?

Yes. We simply need to connect k-mer; with k-mer, if suffix(k-mer;)=prefix(k-mer,).
E.g. TAA & AAT



A Path Turns into a Graph

TAATGCCATGGGATGTT

® @ B E-0-6

Yes. We simply need to connect k-mer; with k-mer, if suffix(k-mer;)=prefix(k-mer,).
E.g. TAA & AAT




A Path Turns into a Graph

TAATGCCATGGGATGTT

® @ B E-0-6

Can we still find the genome path in this graph?



Where Is the Genomic Path?

A Hamiltonian path: a path that visits each node in a graph
exactly once.

TAATGCCATGGGATGTT

~_ 7

What are we trying to find in this graph?




Does This Graph Have a Hamiltonian Path?

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
Input. A graph.

Output. A path visiting every node in the graph exactly once.
14

William
Hamilton

17 @
Undirected graph

lcosian game (1857)



TAATGGGATGCCATGTT

HBEOOOAQTATOOBP P

7

TAATGCCATGGGATGTT

~_




A Slightly Different Path

TAATGCCATGGGATGTT

A R O S AU A CAS R CACACACAD)

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT _ATG _TGT GTT

O~O-0-0~O~O~0-0~0-O~0~0~0~0~0-0

3-mers as edges

How do we label the starting and ending nodes of an edge?

TAA

prefix of TAA suffix of TAA



Labeling Nodes in the New Path

TAATGCCATGGGATGTT

A R O S AU A CAS R CACACACAD)

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT _ATG _TGT GTT

OB O-C-@-O-0-B-C0-6-0-B-B-0-@

3-mers as edges and 2-mers as nodes



Labeling Nodes in the New Path

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT _ATG _TGT GTT

B-0-B-C-E-0-0-0-B-E-6-0-F-B--@

3-mers as edges and 2-mers as nodes



Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG _GGA GAT ATG _TGT GTT

BB C-E-0-0-F-C-O-6—-0-®-E-0-0




Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT




Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT




Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT




Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT




De Bruijn Graph of TAATGCCATGGGATGTT

CCA GC
C GC
16C]|
CAT
ATG
@f\@f@m@ ©——@ Where is the Genome
ANTG T6T ~ GTT

(km-e;v hiding in this graph?

GAT

TGG|
Coms
GGA GGG




It Was Always There!

TAATGCCATGGGATGTT
CCA GC
C GC
AT T6C|
ATG An Eulerian path in a
TAA AAT ,m\ h h h
@-»@—»@ T — \IGHAO graph is a path that
ATG visits each edge exactly
GAT

TGG, once.
T
GGA GGG



Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

* |nput. A graph.




Eulerian Versus Hamiltonian Paths

Eulerian Path Problem. Find an Eulerian path in a graph.
* |nput. A graph.

 Output. A path visiting every edge in the graph exactly once.

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
* |nput. A graph.

 QOutput. A path visiting every node in the graph exactly once.

Find a difference!




What Problem Would You Prefer to Solve?

CCA GC

C G
e
[ SH—x7" Y ~7 % TAA _AAT | PTG
RGO QETRIHOBPPY G Iwe—0
S T —2 TGT GTT
R — ” ATG
\ — 7 GAT

TGG}
G G
GGG

GGA
Hamiltonian Path Problem Eulerian Path Problem

)

\V/&

While Euler solved the Eulerian Path Problem
(even for a city with a million bridges), nobody
has developed a fast algorithm for the
Hamiltonian Path Problem yet.




NP-Complete Problems

* The Hamiltonian Path Problem belongs to a
collection containing thousands of

computational problems for which no fast
algorithms are known.

That would be an excellent argument, but the
guestion of whether or not NP-Complete

problems can be solved efficiently is one of
seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an
efficient solution to one, and you have an
efficient solution to them all.



Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

* |nput. A graph.

 Output. A path visiting every edge in the graph exactly once.

We constructedthe de Bruijn
graph from Genome, but in
reality, Genome is unknown!




What We Have Done: From Genome to de Bruijn Graph

TAATGCCATGGGATGTT




What We Want: From Reads (k-mers) to Genome

TAATGCCATGGGATGTT
A

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT



What We will Show: From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT



Constructing de Bruijn Graph when Genome Is Known

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT _GTT

B~~~ @) 9—e—E—A- -



Constructing de Bruijn when Genome Is Unknown

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)



Representing Composition as a Graph Consisting of Isolated Edges

Composition;(TAATGCCATGGGATGTT)



Constructing de Bruijn Graph from k-mer Composition

& % & ¥ &% 6% &%
& @0 %6 B &0 B 66

Composition;(TAATGCCATGGGATGTT)



Gluing Identically Labeled Nodes

@0 @ 0 ¢ @0 ¢ "B O
V% e % & &0 B %



TAQ m AAT . ATG l TG C‘(:i_C> CC A CA T TG %GG%G GQ @ GAT. A
TGT @



We Are Not Done with Gluing Yet

G_c> cc A CAT TG GG GG A GAA



Gluing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG _GGA GAT ATG _TGT GTT

BB C-E-0-0-F-C-O-6—-0-®-E-0-0




Gluing Identically Labeled Nodes

TAATGCCATGGGATGTT




TAATGCCATGGGATGTT




Gluing Identically Labeled Nodes

({@%EDTAATGCCATGGGATGTI'
CAT

TAA AAT
(\/ o
WUJ @@

GA




The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)

ccA/ &

TGC
CAT

TAA AAT
(\/ =
WUJ @O

GA




Constructing de Bruijn Graph

De Bruijn graph of a collection of k-mers:

— Represent every k-mer as an edge between its prefix
and suffix

— Glue ALL nodes with identical labels.

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers
connect its prefix node with its suffix node by an edge



From Hamilton to Euler

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 010 O11 100 101 110 111



From Hamilton

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 100 101 110 111
@0 @0 0O 0 O OO O-® GO




From Hamilton to Euler

M 3

to de Bruijn

)

@5




De Bruijn Graph for 4-Universal String

0011

0110

1100

Does it have an Eulerian cycle? If yes, how can we find it?



Eulerian CYCLE Problem

Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.
* |nput. A graph.

 OQutput. A cycle visiting every edge in the graph exactly once.




A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?



A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

1in, 2 out

o/.\ — !

A graph is balanced if indegree = outdegree for each node



Fuler’s Theorem

* Every Eulerian graph is balanced

* Every balanced™* graph is Eulerian
0011

1001 0110

1100

(*) and strongly connected, of course!



Recruiting an Ant to Prove Euler’s Theorem

Let an ant randomly walk through the graph.
The ant cannot use the same edge twice!

)




If Ant Was a Genius...




A Less Intelligent Ant Would Randomly Choose a
Node and Start Walking...

Can it get stuck? In what node?

)

‘_

>




The Ant Has Completed a Cycle BUT has not
Proven Euler’s theorem yet...

The constructed cycle is not Eulerian. Can we enlarge it?
— 0/
y




Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges.
/ ./v
“Why should | start at a different node?
Backtracking? I’'m not evolved to walk > @
backwards! And what difference does it 4
make???”




An Ant Traversing Previously Constructed Cycle

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

=
“Why do | have to walk along the
same cycle again??? Can | see 3 v
something new?” 1

4




| Returned Back BUT... | Can Continue Walking!

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

After completing the cycle, start random exploration of still
untraversed edges in the graph.




Stuck Again!

No Eulerian cycle yet... can we enlarge the green-blue cycle?

The ant should walk along the constructed cycle starting at
yet another node. Which one?




| Returned Back BUT... | Can Continue Walking!

“Hmm, maybe these
instructions were not
that stupid...”




| Proved Euler’s Theorem!

EulerianCycle(BalancedGraph)
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards
Cycle & Cycle’
return Cycle

0011

0010 1011

1001 0110

0101
1010

0100 1101

1100



From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT



Multiple Eulerian Paths

TAATGCCATGGGATGTT TAATGGGATGCCATGTT
C G¢ C GC
T6C| TGC|
CAT CAT
ATG ATG
TAA AAT | - TAA AAT |}
@—’@—’@T TG ATTG
Y DS gV @@QMTGT o
ATG ATG
GAT G
TGG

AT

| TGG)

G G G GG
GGA GGG GGA GGG



Breaking Genome into Contigs

TAATGCCATGGGATGTT
ATG
TAA AAT ,,
T
1§TGTC GTT C
TAAT ATG TGTT

TGG} TGG
GGGAT @—%
GGA GGG

GGG




DNA Sequencing with Read-pairs

Multiple identical copies of genome

Randomly cut genomes into large equally
sized fragments of size InsertLength

Generate read-pairs:
two reads from the
ends of each fragment

— = (separated by a fixed
200 bp 200bp - qistance)

InsertT_ength



From k-mers to Paired k-mers

Read 1 Read 2
ﬁ q

Genome ATCAGATTACGTTCCGAG ..
“----- Distanced=11 ------ >

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.
E.g. TCAand TCC are at distance d=11 apart.

Disclaimers:

1. In reality, Readl and Read2 are typically sampled from different strands:
(— ... < rather than — ....... —)

2. In reality, the distance d between reads is measured with errors.



What is PairedComposition(TAATGCCATGGGATGTT)?

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

Representing a paired 3-mer TAA GCC as a 2-line expression:

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG
GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT

GGA
GTT

TAA
GCC



TAA
GCC

AAT
cCa

AAT
CCA

ATG
CAT

ATG
CAT

ATG
GAT

PairedComposition(TAATGCCATGGGATGTT)

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TGC GCC CCA CAT ATG TGG GGG
ATG TGG GGG GGA GAT ATG TGT

CAT CCA GCC GGA GGG TAA TGC
GGA GGG TGG GTT TGT GCC ATG

Representing PairedComposition in lexicographic order

GGA
GTT

TGG
ATG



String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct
a string from its paired k-mers.

* Input. A collection of paired k-mers.
 Output. A string Text such that PairedComposition(Text) is
equal to the collection of paired k-mers.

How Would de Bruijn Assemble Paired k-mers?



Representing Genome TAATGCCATGGGATGTT as a Path

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA AAT ATG TGC %CC CCA CAT ATG {GG GGG GGA

:GCC : CCA : CAT : ATG: GG :GGG :GGA :GAT: TG: TGT : GTT :

CCA
GGG

paired prefix of - Sgé — p@‘s@of 88%



Labeling Nodes by Paired Prefixes and Suffixes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC __CCA__CAT _ATGTGG GGG _GGA__GAT _ATG  TGT GTT

B-B-O-G--0-0-B~-®—-E—-6—-@

CCA
GGG

paired prefix of - &R~ p@‘s@of SGh



Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA _CAT ATG__TGG_ GGG GGA GAT__ATG_ TGT _ GTT

@-@-C-@-G-C-0-0--G-6-6

GCC CCA CAT
TGG__ GGG _ GGA

TGC ‘
GCC CA AT GAT
/ ENE)

TGG GGG GGA
ATG TGT GTT




Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA _CAT ATG__TGG_ GGG GGA GAT__ATG_ TGT _ GTT

@-@-C-@-G-C-0-0--G-6-6

GCC CCA CAT
TGG__ GGG _ GGA

TAA AAT ATG
GCC _CCA __CAT

ATG TGT GTT

Paired de Bruijn Graph from the Genome



Constructing Paired de Bruijn Graph

ATG TGG GGA

Fo & do o de T

TGC ATG GGG

0‘@@%

CCA
GGG

paired prefix of - &R~ p@‘s@of SGh



Constructing Paired de Bruijn Graph

o o o b d

TGC ATG GGG

O‘f@@%

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Constructing Paired de Bruijn Graph

®-® -0 G-® -G

TGC ATG GGG

CCA ‘ ‘_@ ﬁGG ‘ .GAT ' @I;G? @

We Are Not Done with Gluing Yet

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT_ ATG__TGG GGG GGA GAT__ATG__ TGT __ GTT

B-B-0-@--60-0-0-0-®--@



Constructing Paired de Bruijn Graph

GCC CCA CAT
TGG_ GGG _ GGA

Tec ;
I GCCCCA AT @ @ ATG

TGG ~ GGG ~ GGA
ATG TGT GTT

Paired de Bruijn Graph from read-pairs

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Which Graph Represents a Better Assembly?

Unique genome reconstruction Multiple genome reconstructions
TAATGCCATGGGATGTT TAATGCCATGGGATGTT
TAATGGGATGCCATGTT

GCC CCA CAT
TGG__ GGG _ GGA

EREEOEN

TAA AAT ATG
GCC _CCA __CAT

GGG
ATG TGT GTT

Paired de Bruijn Graph

TAA AAT
B i —@——)
A:I-TG TGT GTT

GGA GGG

De Bruijn Graph



Some Ridiculously Unrealistic Assumptions

Perfect coverage of genome by reads (every k-mer
from the genome is represented by a read)

Reads are error-free.
Multiplicities of k-mers are known

Distances between reads within read-pairs are exact.



Some Ridiculously Unrealistic Assumptions

Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

Reads are error-prone.
Multiplicities of k-mers are unknown.

Distances between reads within read-pairs are
inexact.

Etc., etc., etc.



15t Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

250-nucleotide reads generated by Illumina
technology capture only a small fraction of 250-
mers from the genome, thus violating the key
assumption of the de Bruijn graphs.



Breaking Reads into Shorter k-mers

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac

cgact



2"d Unrealistic Assumption: Error-free Reads

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact
cgtaCggaca

Erroneous read
(change of t into C)

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact
cgtaC
gtaCg
taCgg
aCgga
Cggac



De Bruijn Graph of ATGGCGTGCAATG...
Constructed from Error-Free Reads

ATGCC TGCCG GCCGT  CCGTA CGTAT GTATG TATGG  ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the
De Bruijn Graph

ATGCC TGCCG GCCGT __ CCGTA CGTAT GTATG TATGG _ ATGGA TGGAC GGACA

GCCGC ”Bubbe! CATG

CCGCA CGCAT GCATG



Bubble Explosion..Where Are the Correct Edges
of the de Bruijn Graph?




De Bruin Graph of N. meningitidis Genome
AFTER Removing Bubbles

;

Red edges represent repeats



Clustering Algorithms
Outline

Clustering as an optimization problem

The Lloyd algorithm for k-means clustering
-rom Hard to Soft Clustering

-rom Coin Flipping to k-means Clustering

-xpectation Maximization
Soft k-means Clustering
Hierarchical Clustering
Markov Clustering Algorithm



Measuring 3 Genes at 7 Checkpoints

Measure expression of various yeast genes at 7 checkpoints:

| | | | | | N
6h  -4h  -2h 0  +2h  +4h
+6h

AdAianvie chift

ypr.oi2zw 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPROS5w 1.1 1.1 1.1 (1.1) 1.1 1.1 1.1

e; = expression level of
gene i at checkpoint

l

—_
l

—_

—

oo
—NU1I=NU1 O
L1 1 1 |
o900
—NU1I=NUTIO
L1 1 1 |
o900
—NU1I=NU1O
L1 1 1 1 |



Switching to Logarithms of Expression Levels

1

0.8 0.9 0.4 0.3

1
1

1.

YPLO12W
YPRO55W

1

1.

| | | | |

N OO

| | | | |

N OO

| | | | |

T OO

taking logarithms (base-2)

|

9 2.0 2.
-3.0 -3.1

1.
-0.2 -1.2 -1.6

0.4

1
0.1 -0.3

0.

YLR258W

YPLO12W
YPRO55W

1

1

.1

1

.2

2

0

0.2




Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLO28W
YKLO26C
YPROS55W

0.14
0.12
-0.10
-0.43
0.11

0.03
-0.23
-0.14
-0.73

0.43

-0.06 0.07
-0.24 -1.16
-0.03 -0.06
-0.06 -0.11
0.45 1.89

-0.01
-1.40
-0.07
-0.16

2.00

-0.06 -0.01
-2.67 -3.00
-0.14 -0.04
3.47 2.64
3.32  2.56

0.09

-0.28

-0.15 -1.18

-1.59

-2.96 -3.08

-0.16
-0.28
-0.19

0.15

-0.04
-0.23
-0.15

0.15

-0.07 -1.26
-0.19 -0.19
0.03 0.27
0.17 0.09

-1.20
-0.32
0.54
0.07

-2.82 -3.13
-0.18 -0.18
3.64 2.74
0.09 0.07

gene expression
vector




Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLO28W
YKLO26C
YPROS55W

0.14
0.12

-0.10
-0.43

0.11
0.09

-0.16
-0.28
-0.19

0.15

0.03
-0.23
-0.14
-0.73

0.43
-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45

-0.15
-0.07
-0.19

0.03
0.17

0.07 -0.01 -0.06
-1.16 -1.40 -2.67
-0.06 -0.07 -0.14
-0.11 -0.16 3.47
1.89 2.00 3.32
-1.18 -1.59 -2.96
-1.26 -1.20 -2.82
-0.19 -0.32 -0.18
0.27 0.54 3.64
0.09 0.07 0.09

-0.01
-3.00
-0.04

2.64
2.56

-3.08
-3.13
-0.18

2.74
0.07

1997: Joseph deRisi
measured expression
of 6,400 yeast genes
at 7 checkpoints
before and after the
diauxic shift.

6,400 x 7 gene
expression matrix

Goal: partition all yeast genes into clusters so that:
* genes in the same cluster have similar behavior
» genes in different clusters have different behavior




Genes as Points in Multidimensional Space

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLO28W
YKLO26C
YPROS55W

0.14
0.12
-0.10
-0.43
0.11
0.09
-0.16
-0.28
-0.19
0.15

0.03
-0.23
-0.14
-0.73

0.43
-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45
-0.15
-0.07
-0.19

0.03

0.17

0.07
-1.16
-0.06
-0.11

1.89
-1.18
-1.26
-0.19

0.27

0.09

-0.01
-1.40
-0.07
-0.16

2.00
-1.59
-1.20
-0.32

0.54

0.07

-0.06
-2.67
-0.14
3.47
3.32
-2.96
-2.82
-0.18
3.64
0.09

-0.01
-3.00
-0.04
2.64
2.56
-3.08
-3.13
-0.18
2.74
0.07

nxm
gene expression
matrix

\ 4
n points in
m-dimensional
space



Gene Expression and Cancer Diagnostics

MammaPrint: a test that evaluates the likelihood of
breast cancer recurrence based on the expression
of just 70 genes.

But how did scientists discover these 70 human genes?




Toward a Computational Problem

Good Clustering Principle: Elements within the
same cluster are closer to each other than
elements in different clusters.




Toward a Computational Problem

e distance between elements in the same cluster < A
e distance between elements in different clusters > A
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Clustering Problem

Clustering Problem: Partition a set of expression

vectors into clusters.

* Input: A collection of n vectors and an integer k.

* Output: Partition of n vectors into k disjoint
clusters satisfying the Good Clustering Principle.

Any partition into
I two clusters does not
S satisfy the Good
oo Clustering Principle!




‘What is the “best” partition into three clusters? \

! 1
! 1




Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data.

.
.
.
‘e




Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data
and will minimize some notion of distance from

Centers to Data .

What is the “distance” from Centers to [Data?

o« o




Distance from a Single DataPointto Centers

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

d(DataPoint, Centers) = MiNg sointsx from centers d(DataPoint, x)

G
.
*



Distance from Data to Centers

MaxDistance(Data, Centers) =
MAaX |l points DataPoint from Data d(Data'DOint/ Centers)

G
.
*




k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimizing MaxDistance(Data,

Centers).

 Input: A set of points Data and an integer k.

*  Qutput: A set of k points Centers that minimizes
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

.
.
A\




k-Center Clustering Problem

k-Center Clustering Problem. Given a set of points

Data, find k centers minimizing MaxDistance(Data,

Centers).

 Input: A set of points Data and an integer k.

*  Qutput: A set of k points Centers that minimizes
MaxDistance(DataPoints, Centers) over all
possible choices of Centers.




k-Center Clustering Heuristic

FarthestFirstTraversal(Daia, k)
Centers € the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint ¢ a point in Data maximizing d(DataPoint, Centers)
among all data points
add DataPointto Centers




k-Center Clustering Heuristic

FarthestFirstTraversal(Daia, k)
Centers € the set consisting of a single DataPoint from Data
while Centers have fewer than k points
DataPoint ¢ a point in Data maximizing d(DataPoint, Centers)
among all data points
add DataPointto Centers

a,
L]
-
.
.
L]
-
v,
L]




What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimize
MaxDistance(Data, Centers).

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

human eye FarthestFirstTraversal
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Modifying the Objective Function

The maximal distance between Data

and Centers:

MaxDistance(Data, Centers)=
MAX p,0point from Data dDataPoint, Centers)

A single data point contributes
to MaxDistance

The
between Data and Centers:

Distortion(Data, Centers) =

Y Dataroint from Data d(DataPoint, Centers)2/n

All data points contribute to
Distortion




k-Means Clustering Problem

k-Center Clustering Problem: k-Means Clustering Problem:
Input: A set of points Data and an || Input: A set of points Data and an
integer k. integer k.
Output: A set of k points Centers Output: A set of k points Centers
that minimizes that minimizes

MaxDistance(DataPoints,Centers) Distortion(Data,Centers)

over all choices of Centers. over all choices of Centers.

NP-Hard for k > 1

o o*® ¢ o+
B A=




k-Means Clusteringfor k=1

Center of Gravity Theorem: The center of gravity of

points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
2 all points DataPoint in Data DataPoint/ #IOOintS In Data

5 O i-th coordinate of the center of
oravity = the average of the j-th
e © coordinates of datapoints:

(2+4+6)/3, 3+1+5)/3 ) =(4, 3)




The Lloyd Algorithm in Action

Select k arbitrary data points as Centers




The Lloyd Algorithm in Action
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assign each data point to its nearest center




The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

 Centers to Clusters: Assign each data point to the
cluster corresponding to its nearest center (ties
are broken arbitrarily).

* Clusters to Centers: After the assighment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).




Must the Lloyd Algorithm Converge?

If a data point is assigned to a new center
during the Centers to Clusters step:

— the squared error distortion is reduced
because this center must be closer to

the point than the previous center was.

If a center is moved during the Clusters to
Centers step:

— the squared error distortion is reduced
since the center of gravity is the only
point minimizing the distortion (the
Center of Gravity Theorem).
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Clustering Yeast Genes

Cluster 1 Cluster 2 Cluster 3

2 2
4 4
Cluster 4 Cluster 5 Cluster 6
4 4
2 2




k-means Clustering vs. the Human Eye

How would the Lloyd algorithm cluster these sets of
points?




Soft vs. Hard Clustering

The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
» “hard” assignmentof data points to clusters.
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Soft vs. Hard Clustering

» The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
» “hard” assighnment of data points to clusters.
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« Can we color the midpoint half-red and half-blue?
 “soft” assignment of data points to clusters.



Soft vs. Hard Clustering

(0.98, 0.02)
/
o ° o
® .o ® 9
o ® o0
/° K ® . (0.01,0.99
(0.48,0.52) ¢ ®® ¢~

Hard choices: points are
colored red or blue depending
on their cluster membership.

Soft choices: points are assigned
“red” and “blue” responsibilities
rblueand Fred Wplue + Tred =1)




Flipping One Biased Coin

* We flip a loaded coin with an unknown bias6
(probability that the coin lands on heads).
» The coin lands on heads i out of n times.

» For each bias, we can compute the probability of the
resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|0) = 0" * (1-0)"

This expression is minimized at@= i/n (most likely bias)




Flipping Two Biased Coins

Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilities6, and6;




e Knew Which Coin
Used in Each Sequence...

Data HiddenVector

HTTTHTTHTH 0.4 1
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (6, ,6)
when HiddenVector is given




e Knew Which Coin
Used in Each Sequence...

Data HiddenVector

HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
THHHTHHHTH 0.7 0

0, = fraction of heads generated in all flips with coin A =
(4+3) / (10+10) = (0.44+0.3) /2 = 0.35

= fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.94+0.840.7) / (1+1+1) = 0.80



Parameters as a Dot-Product

Data HiddenVector Parameters=(0©6, )
HTTTHTTHTH 0.4 1

(0.35, 0.80)
HTTTTTHHTT 0.3

* %k * ¥ *

0, = fraction of heads generated in all flips with coin A =
= (4+3) / (10+10) = (0.44+0.3) / 2 = 0.35

(0.4*14+0.9*0+0.8*0+0.3*1+0.7*0)/ (14+0+0+1+0) = 0.35
2 all data points Data*HiddenVector; /> .l data boints HiddenVector= 0.35

Data * HiddenVector / (1,1,...%1)Hdtdlem\Vaatar =0.35

1 refers to a vector (1,1, ... ,1) consisting of all 1s



Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 6;)

HTTTHTTHTH 0.4 = 1
*
HTHHHHHTHH 0.8 = 0 (0.35, 0.80)
HTTTTTHHTT 0.3 = 1
THHHTHHHTH O0.7 =% 0

05 = fraction of heads generated in all flips with coin B
= (9+8+7) / (10+10+10) = (0.940.8+0.7) /( T+1+1) = 0.80

(0.5*04+0.9*1+0.8*14+0.4*0+0.7*1) / (O+1+14+0+1) = 0.80



Parameters as a Dot-Product

Data HiddenVector Parameters=(6, 6;)

HTTTHTTHTH 0.4 = 1
*
HTHHHHHTHH 0.8 = 0 (0.35, 0.80)
HTTTTTHHTT 0.3 = 1
THHHTHHHTH O0.7 * 0

0, = fraction of heads generated in all flips with coin A
= (0.4+0.3)/2=0.35
= Data * HiddenVector / 1 * HiddenVector

05 = fraction of heads generated in all flips with coin B

= Data *



Data, HiddenVector, Parameters

Data HiddenVector Parameters=(6,, 0;)

0.4 1
0.9 0
0.8 0 —>» (0.35,0.80)
0.3 1
0.7 0

HiddenVector Parameters




Data, HiddenVector, Parameters

Data HiddenVector Parameters=(6,,

© O 00O
~N W 00O e
VY N D Y

€ (0.35, 0.80)

HiddenVector - Parameters




From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(6,,

0.4 ?
0.9 ?
0.8 ? €&— (035, )
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

)

Pr(1st sequence|8,)=0,* (1-6,)° = 0.35% ¢ 0.65° = 0.00113 >
Pr(1t sequence|B; )= 05*(1-65)° = 0.80* ¢ 0.20° = (0.00003




From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(6,,

0.4 1
0.9 ?
0.8 ? €&— (035, )
0.3 ?
0.7 ?

Which coin is more likely to generate the
15t sequence (with 4 H)?

)

Pr(1st sequence|8,)=0,* (1-6,)° = 0.35% ¢ 0.65° = 0.00113 >
Pr(1t sequence|B; )= 05*(1-65)° = 0.80* ¢ 0.20° = (0.00003




From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(6,,

0p)
0.4 .
0.9 ?
0.8 > € (0.35,0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2nd sequence (with 9 H)?

Pr(2nd sequence|@,)= 6,° (1-6,)'=0.35%¢0.65! = 0.00005 <
Pr(2nd sequence|By)= 82 (1-65)' =0.80° ¢0.20' = 0.02684




From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(6,,

1

E (0.35, 0.80)

© OO O
W 00 O b

0.7

Which coin is more likely to generate the
2nd sequence (with 9 H)?

Pr(2d sequence|6,)= 6,° (1-6,)'=0.35%¢0.65' = 0.00005 <
Pr(2d sequence|Bg)= 652 (1-65)' =0.80° ¢0.20" = 0.02684




HiddenVector Reconstructed!

Data HiddenVector Parameters=(6, 6;)
1

©O OO0 O0O0O
~N W 00 O
O = OO0

€— (0.35, 0.80)



Reconstructing HiddenVector and Parameters

HiddenVector Parameters




Reconstructing HiddenVector and Parameters

HiddenVector Parameters’




Reconstructing HiddenVector and Parameters

Parameters’



Reconstructing HiddenVector and Parameters

HiddenVector’ Parameters’




What does this algorithm remind you of?

0,=06 0,=0.82
————e——fe—
0.3 0.4 0.7 0.8 0.9

Parameters

4

0,=06  06,=0.82
—_ — - — HiddenVector
03 0.4 0.7 0.8 0.9

a
o/

: Parameters

HiddenVector

— = _ Parameters

O ——
w
O ——
~
o
o ——
N
O ——
[o%)
o
o ——
o [l
(@)
o
Tl



From Coin Flipping to k-means Clustering:
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data;,...,Data,)

Parameters: Centers = (Center,,...,Centery)

HiddenVector:
(n-dimensional vector with coordinates varying from 1 to k).

3



Coin Flipping and Soft Clustering

Coin flipping: how would you select between coins A and B if
Pr(sequence|6,) = Pr(sequence|6;)?

k-means clustering: what cluster would you assign a data point it
to if it is a midpoint of centers C; and C,¢

— o .
— ~- — . . gy
- —_— — —
- - -— e B

,/’ \\\ - \\
-’
7 ..:. N, .QQ. \\
/’ 90 ©® N o0 o
o o \
( .... {.‘ .. [ X )
® .. ] R .. |
o0 % \ ®e
\ 00 /
.9 00y 4 ® o
N ) PRI ®e o -
~ - ~ ./

-~
- —” §~~ ——’
e e o e = = T oem e e omm == =

Soft assignments: assigning C; and C, “responsibility” =0.5 for
a midpoint.




Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters =

(6,,65)
0.4 ?
0.9 ?
0.8 ? € 060 )
0.3 ?
0.7 ?

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(15t sequence|6,)=0,> (1-8,)° = 0.60* ¢ 0.40° = 0.000531 >
Pr(15t sequence|6g )= 65°(1-65)° = 0.82% ¢ 0.18° = 0.000015




Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters =

(6,,65)
0.4 1
0.9 ?
0.8 ? € 060 )
0.3 ?
0.7 ?

Which coin is more likely to have generated the first
sequence (with 4 H)?

Pr(15t sequence|6,)=0,> (1-8,)° = 0.60* ¢ 0.40° = 0.000531 >
Pr(15t sequence|6g )= 65°(1-65)° = 0.82% ¢ 0.18° = 0.000015




From Data & Parameters to HiddenMatrix

Data HiddenMatrix Parameters =

6,
Ox ) 0.97

W 00 O b

)

<€ (0.60,0.82)

N

©O OOO

N

0.7

N

What are the responsibilities of coins for this sequence?

Pr(1t sequence|B,) = 0.000531 >
Pr(1st sequence|Bg ) = 0.000015

0.000531 /(0.000531 + ) = 0.97
0.000015 /(0.000531 + 0.000015) = 0.03



From Data & Parameters to HiddenMatrix

Data HiddenMatrix  Parameters = (6,

%) 0.4 0-97
o o 0-12
0.8 <€ (0.60, 0.82)
0.3
0.7

o)

What are the responsibilities of coins for the 2" sequence

Pr(2nd sequence|B,) = 0.0040 <

0.0040 / (0.0040 + ) =0.12
/ (0.0040 + ) =0.88




HiddenMatrix Reconstructed!

Data HiddenMatrix Parameters =

0.4 0.97
o o 0-12

0.8 0.29 0.71€ (0.60,0.82)
0.3 0.99 0.01

0.7 0.55 0.45



Expectation Maximization Algorithm

Parameters



E-step

HiddenMatrix Parameters




M-step

HiddenVector Parameters’




Memory Flash: Dot Product

Data HiddenVector Parameters=(6, 6y)

HTTTHTTHTH 0.4 = 1
HHHHTHHHHH 0.9 = 0
HTHHHHHTHH 0.8 * 0 22?2
HTTTTTHHTT O0.3 =* 1
THHHTHHHTH 0.7 * 0
0,=Data * HiddenVector / 1 * HiddenVector

Op= Data *



From Data & HiddenMatrix to Parameters

Data HiddenVector Parameters=(6,0;)

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT O0.3 1
THHHTHHHTH 0.7 0
0,=Data * HiddenVector / 1 * HiddenVector

HiddenVector= (1 0 0O 1T 0)

What is HiddenMatrix corresponding to this HlddenVector?




From Data & HiddenMatrix to Parameters

Data HiddenVector Parameters=(6,0;)

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT O0.3 1
THHHTHHHTH 0.7 0
0,=Data * HiddenVector / 1 * HiddenVector

0, = Data * 15 row of HiddenMatrix / 1*1st row of HiddenMatrix

8z = Data * 2" row of HiddenMatrix / 1*2"d row of HiddenMatrix
HiddenVector= (1 0 0 1 0)

Hidden Matrix = 0 0 1 0= HiddenVector
= 1 - HiddenVector



From Data & HiddenMatrix to Parameters

Data HiddenMatrix
HTTTHTTHTH 0.4 0.97 0.03
HHHHTHHHHH 0.9 0.12 0.88
HTHHHHHTHH 0.8 0.29 0.71
HTTTTTHHTT O0.3 0.99 0.01
THHHTHHHTH 0.7 0.55 0.45
6,=Data * HiddenVector N

Parameters=(0,,6p)

HiddenVector

0, = Data * 15 row of HiddenMatrix / 1*1st row of HiddenMatrix

8z = Data * 2" row of HiddenMatrix / 1*2"d row of HiddenMatrix

HiddenVector =

Hidden Matrix =

(1T 0

0 T 0)

97 .03 .29 .99



From HiddenVectorto HiddenMatrix

Data: data points Data = {Data;, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenVector:

A B C D E F G

HiddenVector 1 2 1 3 2 1 3 3

1 1

HiddenMatrix 271 0

3

0

1

0

1

Q\

J o
1



From HiddenVectorto HiddenMatrix

Data: data points Data = {Data;, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenMatrix; ;: responsibility of center / for data point)

A B C D E F G
11707 | o 0 0 1
HiddenMatrix o[ 0.2 p 0 ) 0
3 & 0 1 0 0
o ov



From HiddenVectorto HiddenMatrix

.. ,Data,}
.. ,Center,}

Data: data points Data = {Data;, .
Parameters: Centers = {Center, .
data point

HiddenMatrix; ;: responsibility of center /

1
HiddenMatrix 2

3

A

C

D

0.70

0.73

0.40

0.80

0.05

0.05

0.20

0.17

0.20

0.10

0.05

0.20

0.10

0.10

0.40

0.10

0.90

0.75




Responsibilities and the Law of Gravitation

planets

0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
stars 0.20 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

of star/ for a planet | is proportional to the
pull (Newtonian law of gravitation):

Force; =1/distance(Data;, Center)?

HiddenMa trix;;: =

FOI‘CG,'//' / Zall centers | FOI’Ce,'//'




Responsibilities and Statistical Mechanics

data points
0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
centers| 020 | 0.80 | 0.17 | 0.20 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

of center / for a data point j is proportional to

— -B-dist Dataj, Centeri
FOI’C@,-//- — e B-distance(Dataj, Centeri)

wheref is a stiffness parameter.

HiddenMa trix;;: =

FOI’CG,'//' / Zall centers | FOI’Ce,'//’




How Does Stiffness Affect Clustering?

Hard k-means
clustering

Soft k-means
clustering
(stiffness B=1)

Soft k-means
clustering
(stiffness B= 0.3)




Stratification of Clusters

Clusters often have subclusters, which have
subsubclusters, and so on.




Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.
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From Data to a Tree

To capture stratification, the hierarchical clustering
algorithm organizes n data pointsinto a tree.

1 |

g 810 g fol _I
o

o ° o -
84




From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering
algorithm organizes n data pointsinto a tree.

1 |
87 .
%6 ® ‘ Llng

— crossing

g U DR N A L
%3 .30 5 g _I the tree

84 at 4 points
: |_  c

!

*—

e 6 6 6 o o o o
83 85 8s 87 81 86 810 82 84 89



From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering
algorithm first organizes n data points into a tree.

A |

.\. ‘

Line

D o g - —I crossing
@‘ gog. \ %) _ the tree
58

e 6 6 o o o o o
8s 87 81 86 810 82 84 89

6 Clusters

l _at 6 points



Constructing the Tree

Hierarchical clustering starts from a transformation of n x

expression matrix into n x n similarity matrix or distance matrix.

fp)

810 g,
[ ]

® o

84

810

81

Distance Matrix

82 83 84 85
8.1 9.2 7.7 9.3

12.0 0.9 12.0

11.2 0.7

11.2

86
2.3

9.5

11.1
9.2
11.2

87
5.1

10.1

8.1
9.5

8.5

5.6

8s
10.2

12.8
1.1

12.0
1.0

12.1

9.1

89
6.1

2.0

10.5

10.6
7.7

8.3

810
7.0

1.0
11.5
1.1
11.6
8.5
9.3
12.4

1.1




Constructing the Tree

Identify the two closest clusters and merge them.

&1 82 83 8a 85 86 87

g, 8.1 9.2 7.7 93 23 5.1

g, 12.0 0.9 12.0 9.5 10.1

g 11.2 0.7 11.1 8.1

g 112 92 95

g: 112 85

{g3/ gS} 86 5.6

|_ -| 87
®© 0000660 00O0O0 ®
g3 95 8Hs 87 81 86 810 82 8B4 8o

8s
10.2

12.8
1.1

12.0

1.0
12.1

9.1

89
6.1

2.0

10.5

10.6
7.7

8.3

810
7.0

1.0
11.5
1.1
11.6
8.5
9.3
12.4

1.1



Constructing the Tree

Recompute the distance between two clusters as
average distance between elements in the cluster.

81
82

83, 85

{gS/ gS} 87

I_ -‘ 8s
®© 6000006000 ®
g3 95 8Hs 87 81 86 810 82 8B4 8o

81

8 838 8s 86
8.1 9.2 7.7 2.3

12.0 09 95

11.2 11.1

9.2

87
5.1

10.1

8.1

9.5

5.6

8s 89 810
10.2 6.1 7.0

128 2.0 1.0
1.0 105 11.5
120 1.6 1.1
121 7.7 85
91 83 93
11.4 124

1.1



Constructing the Tree

Identify the two closest clusters and merge them.

81 8 838 8 86 87 8s 89 810

g 81 92 77 23 51 102 61 7.0
2 120 09 95 101 12.8 2.0 1.0

g 8 112 111 81 1.0 105 11.5

{g2, g4} 2, 92 95 12.0 1.6 1.1

-@®- 2 56 121 7.7 85

{g3, g5} g 9.1 83 93

|' 'I g 11.4 12.4
9 1.1

® 0600006 0000 ’

9y 95 8s & & 8 o 9 %4 &9 B0



Constructing the Tree

Recompute the distance between two clusters (as
average distance between elements in the cluster).

81 8281+ 848 86 87 8s 89 810

g 77 92 23 51 102 6.1 7.0
82 & 112 92 95 120 1.6 1.0

8 8s 1.1 81 1.0 105 115

{82, g4l 86 56 121 7.7 85

@] 87 9.1 83 93

183 85t g 114 12.4

|- -| 89 1.1
810

® 6 6 6 6 6 6 66 o O
g3 85 8s 87 81 86 8o 82 84 8o



Constructing the Tree

Identify the two closest clusters and merge them.

81 8281 8385 8e 87 8s 89 810

g 77 92 23 51 102 61 7.0
183/ 85/ 8sl 8 &4 112 92 95 120 16 1.0
] 85 & 111 81 1.0 105 11.5
{82 84} 86 56 121 7.7 85
Bl 87 9.1 83 93
88 11.4 124
89 1.1

810

® & 6 6 6 &6 0 o
8s 87 81 86 810 82 8§14 8o

T @—
* @—



Constructing the Tree

Iterate until all elements form a single cluster (root).




Constructing a Tree from a Distance Matrix D

HierarchicalClustering (D, n)

Clusters < n single-element clusters labeled 1 to n

I < a graph with the n isolated nodes labeled 1 to n

while there is more than one cluster
find the two closest clusters C; and C;
merge C; and C; into a new cluster C,,, with |G| + |G| elements
add a new node labeled by cluster C,.,, to T
connect node C,,, to C; and C;by directed edges
remove the rows and columns of D corresponding to C; and C;
remove C;and C; from Clusters
add a row and column to D for the cluster C,,, by computing

D(C,., ,C) for each cluster C in Clusters

add C,..,, to Clusters

assign root in T as a node with no incoming edges

return |




Different Distance Functions Result in Different

Trees

Average distance between elements of two clusters:

Davg<C1/ ) = (Z all points /and in clusters C1 and C2, respectively Di,j)/ (l C1 |*|C2|>

Minimum distance between elements of two clusters:

Dmin(C1/ C2> = Min 4 points i and j in clusters C1 and , respectively

DI//




Clusters Constructed by HierarchicalClustering

Cluster 1 Cluster 2 Cluster 3
44 1 4 - ]
2 4|

,,,,, wjv//
01: 0-
-2| Surge in expression -2 1 -2 1
at final checkpoint

-4 -4 1 -4

Cluster 4 Cluster 5 Cluster 6
4 4 4




Markov Clustering Algorithm

Unlike  most  clustering  algorithms, the  MCL
(micans.org/mcl) does not require the number of expected
clusters to be specified beforehand. The basic idea
underlying the algorithm is that dense clusters correspond
to regions with a larger number of paths.

Material and code at micans.org/mcl




Markov Clustering Algorithm

We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.

A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible for
both strengthening and weakening of current.

(Strengthens strong currents, and weakens already weak
currents). An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.




Markov Clustering Algorithm

Matrix representation

0 0 0 0 0 0 OEEIENIEUENINNSN 0 0 0 0 0 O

0 0 0 0 0 0 OEIIIEINGEN 0 0 0 0 0 0




Markov Clustering Algorithm

@ Input is an un-directed graph, with power parameter e (usually =2), and inflation
parameter r (usually =2).

© Create the associated adjacency matrix

_Mpg_

Zi qu

@ Expand by taking the e-th power of the matrix; for example, if e = 2 just multiply
the matrix by itself.

© Normalize the matrix; M,, =

(Mpg)"

@ Inflate by taking inflation of the resulting matrix with parameterr : Mpq = S (Mg)"

O Repeat steps 4 and 5 until a steady state is reached (convergence).



I\/Iarkov CIusterlng Algorlthm




Markov Clustering Algorithm

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n?).
The inflation has complexity O(n?). However, the
matrices are generally very sparse, or at least the vast
majority of the entries are near zero. Pruning in MCL
involves setting near-zero matrix entries to zero, and
can allow sparse matrix operations to improve the speed

of the algorithm vastly.




Genome Assembly
Outline

Why do we map reads?

Using the Trie

From a Trie to a Suffix Tree

String Compression and the Burrows-Wheeler Transform
Inverting Burrows-Wheeler

Using Burrows-Wheeler for Pattern Matching

Finding the Matched Patterns

Setting Up Checkpoints

Inexact Matching



Toward a Computational Problem

* Reference genome: database genome used
for comparison.

* Question: How can we assemble individual
genomes efficiently using the reference?

T C A Individual

G A T Reference



Why Not Use Assembly?

Multiple copies of

a genome

I LN

// \\ |\///\\/\//
Shatter the \ \ N\ | \ —
genome into |~ \/\ \\ \/ / \| —
reads | NN AU A
> /// / // \\// \/\\ /’

Sequence the AGAATATCA| |TGAGAATAT| GAGAATATC

Assemble the
genome with
overlapping reads

. TGAGAATATCA. ..



Why Not Use Assembly?

 Constructing a de Bruijn graph Eg/@%

takes a lot of memory. cat  Tacf
ATG
T~ g~@
* Hope: a machinein a clinic ATG
that would collect and Iear tach
map reads in 10 minutes. c cGA %)GGG

* |dea: use existing structure of reference
genome to help us sequence a patient’s
genome.



Read Mapping

* Read mapping: determine where each read
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
GAGGA CCACG TGA-A Reads



Why Not Use Alighment?

* Fitting alignment: align each read Pattern to
the best substring of Genome.

* Has runtime O(|Pattern| * |Genome]|) for
each Pattern.

* Has runtime O(|Patterns| * | Genome|) for a
collection of Patterns.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Single Pattern Matching Problem:
— Input: A string Pattern and a string Genome.

— Output: All positionsin Genome where Pattern
appears as a substring.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positionsin Genome where a string
from Patterns appears as a substring.



A Brute Force Approach

* We can simply iterate a brute force approach
method, sliding each Pattern down Genome.

panamabananas Genome
nana Pattern

* Note: we use words instead of DNA strings for
convenience.



Brute Force Is Too Slow

* The runtime of the brute force approach is too
high!
— Single Pattern:  O(|Genome]| * | Pattern|)
— Multiple Patterns: O(| Genome| * | Patterns|)
— | Patterns| = combinedlength of Patterns



Processing Patterns into a Trie

* |dea: combine reads into a graph. Each
substring of the genome can match at most

one read. So each read will correspondto a
unique path through this graph.

* The resulting graph is called a trie.



Patterns

banana
pan

and

nab
antenna
bandana
ananas
nana



Using the Trie for Pattern Matching

* TrieMatching: Slide the trie down the
genome.

* At each position, walk down the trie and see if
we can reach a leaf by matching symbols.

* Analogy: bus stops






Success!

* Runtime of Brute Force:
— Total: O(| Genome | * | Patterns|)

* Runtime of Trie Matching:

— Trie Construction: O(| Patterns|)
— Pattern Matching: O(| Genome| * |LongestPattern|)



Memory Analysis of TrieMatching

* Son completely forgot
about memory!

e Our trie: 30 edges,
| Patterns| = 39

* Worst case: # edges
= O(| Patterns|)




Preprocessing the Genome

What if instead we create a data structure
from the genome itself?

Split Genome into all its suffixes. (Show
matching “banana” by finding the suffix
“bananas”.

How can we combine these suffixes into a
data structure?

Let’s use a trie!
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The Suffix Trie and Pattern Matching

* For each Pattern, see if Pattern can be spelled
out from the root downward in the suffix trie.



dndna

dna

0

e OO OO0 000000~
c O ©®© < @©C < «©@ un &£

O—OC0O0O0O0O0O 000w
™ S ®©® £ ® » &



Memory Trouble Once Again

: : Suffixes
e Worst case: the suffix trie
panamabananas$

holds O( | Suffixes|) nodes. anamabananas$
hamabananas$

amabananas$

mabananas$

abananas$

* Fora Genome of length n, b;zgg:g

| Suffixes| = n(n —1)/2 = O(n?) nanas$
anas$

nas$

as$

s$

$



Compressing the Trie

e This doesn’t mean that our idea was bad!

* To reduce memory, we can compress each
“nonbranching path” of the tree into an edge.



2]

() <

0

g O ®© <Cc © C©c © v
C

O—O OO0 O0O0O0O0O0O0

s O @©C <Cc @©w C©C © o £
= 0O-0-0,0-0;0;0.0
@ c ®© c © u o
o)
o QO

(V)]
+—0O-0O0-0O-0O
C o v &
E O OO O0OO0OO0OO0OO0OO0O0
o O ©®© c©c © C©c © v
e ‘OO 0O OO O0OOO0O0O0
®c O ©oO© cCc @©C C©Cc © v e

O—0O0O0O00 000
c < @© < © un &

.a



12

 This data structure is called a suffix tree.

 Forany Genome, # nodes < 2| Genome|.

— # leaves = | Genome|;
— # internal nodes < |Genome| — 1



Runtime and Memory Analysis

* Runtime:
— O(|Genome|?) to construct the suffix tree.
— O(|Genome| + | Patterns|) to find pattern matches.

* Memory:
— O(| Genome|?) to construct the suffix tree.
— O(|Genome|) to store the suffix tree.



Runtime and Memory Analysis

* Runtime:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome| + | Patterns|) to find pattern matches.
— Total: O(| Genome| + | Patterns|)

* Memory:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome|) to store the suffix tree.
— Total: O(| Genome | + | Patterns|)



We are Not Finished Yet

* | am happy with the suffix tree, but | am not
completely satisfied.
* Runtime: O(|Genome| + | Patterns|)
* Memory: O(|Genome|)

* However, big-O notation ignhores constants!

* The best known suffix tree implementations
require ~ 20 times the length of | Genome].

e Can we reduce this constantfactor?



Genome Compression

* |dea: decrease the amount of memory
required to hold Genome.

* This indicates that we need methods of
compressing a large genome, which is
seemingly a separate problem.



ldea #1: Run-Length Encoding

* Run-length encoding: compresses a run of n
identical symbols.

Genome
GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

|

10G11C7A15T5C1G
Run-length encoding

* Problem: Genomes don’t have lots of runs...



Converting Repeats to Runs

e ...but they do have lots of repeats!
Genome
How do we do this step? l Convert repeats to runs

Genome*™

l Run-length encoding

CompressedGenome™



The Burrows-Wheeler Transform

panamabananass$ S IS a
Spanamabananas
s$Spanamabanana s
a
n
a
n b
a

Form all cyclic rotations of
“panamabananas$”



The Burrows-Wheeler Transform

panamabananass$ S IS a
Spanamabananas

s$Spanamabanana s

as$Spanamabanan
nasS$Spanamabana
anas$panamaban
nanasSpanamaba
ananasS$panamab
bananasSpanama
abananas$panam n
mabananas$pana
amabananas$pan
namabananasS$pa a
anamabananasS$Sp

Form all cyclic rotations of
“panamabananas$”



The Burrows-Wheeler Transform

Form all cyclic rotations of
“panamabananas$”

Spanamabananas
abananasSpanam
amabananas$pan
anamabananasS$p
ananas$panamab
anasS$Spanamaban
asSpanamabanan
bananasSpanama
mabananas$pana
namabananasS$pa
nanasSpanamaba
nasS$Spanamabana
panamabananass$
sSpanamabanana

Sort the strings
lexicographically
($ comes first)



The Burrows-Wheeler Transform

S

m

n

p

b

n

n

> a

a

a

a

a

$

a

Form all cyclic rotations of Burrows-Wheeler

“panamabananas$” Transform:

Last column =
smnpbnnaaaaa$a



BWT: Converting Repeats to Runs

Genome

Burrows-Wheeler Transforml! Convert repeats to runs

BW'T(Genome)

l Run-length encoding

Compression(BWT(Genome))



How Can We Decompress?

Genome

IS IT POSSIBLE? I l Burrows-Wheeler Transform

BW'T(Genome)

EASYI l Run-length encoding

Compression(BWT(Genome))



Reconstructing banana

Sb a as Sb
as n na as
an n na an
an b —_— ba —_— an
ba $ 2-mers Sb Sort ba
na a an na
na a an na

 We now know 2-mer composition of the
circular string banana$

e Sorting gives us the first 2 columns of the
matrix.



Reconstructing banana

Sba a asSb Sba
asShb n nas$ aShb
ana n nan ana
ana b —_— ban - ana
ban $ 3-mers Sba Sort ban
na$ a ana nas$
nan a ana nan

 We now know 3-mer composition of the
circular string banana$

* Sorting gives us the first 3 columns of the
matrix.



Reconstructing banana

Sbanana aSba Sban
aSba n na$b aSbb
anas$ n nana anaa
anan b — bana —_— anaa
banana$ 4-mers $ban Sort bann
naSb a anas$ naSb
nana a anan nana

 We now know 4-mer composition of the
circular string banana$

e Sorting gives us the first 4 columns of the
matrix.



Reconstructing banana

Sbanana aSban Sbana
aSbanan naSba aSbbn
anaSban nanas anaab
ananashb —_— banan — anaaa
banana$ 5-mers $bana Sort bannn
naSbana anasShb naSba
nanaShba anana nanas$

 We now know 5-mer composition of the
circular string banana$

e Sorting gives us the first 5 columns of the
matrix.



Sbana
aSban
anaS$Shb
anana
banan
naS$Sba
nanas$

O O O B BY

Reconstructing banana

6-mers

aSbana
naSban
nanaShb
banana
Sbanan
anaSba
ananas

—_—

Sort

Sbanan
aSbbna
anaaba
anaaas$
bannna
naSban
nanaShb

 We now know 6-mer composition of the
circular string banana$

e Sorting gives us the first 6 columns of the

matrix.



Reconstructing banana

Sbanana aSbana Sbanan
aSbanan naSban aSbbna
anaSban nanasShb anaaba
ananaS$hb — S banana —_s anaaa$
banana$ 6-mers S$banan Sort bannna
naSbana anaSba naSban
nanaSba ananas$ nanaSb

 We now know 6-mer composition of the
circular string banana$

e Sorting gives us the first 6 columns of the
matrix.



Reconstructing banana

Sbanana

e We now know the entire matrix!

* Taking all elementsin the first row (after S)
produces banana.



More Memory Issues

e Reconstructing Genome from BWT(Genome)
required us to store | Genome| copies of
| Genome|.

Sbanana
aSbanan
anaSban
ananaS$Shb
bananas$
naSbana
nanaSba

 Can we invert BWT with less space?



A Strange Observation

nmEaes Qa0 Oo oo @ v ©
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A Strange Observation

nmE s Q0 ada9 O©C o ©OC ©Uvrd©
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Is It True in General?

$ s
abananasS$Spanam
amabananas$pan
anamabananasS$p
ananasS$panamab
anas$panamaban
as$Spanamabanan
b a

NVl WDNR

wto B8 BB
O oY O o W

These strings are sorted

/’

Chop off a

bananasS$Spanam
mabananas$pan
namabananas$p
nanasS$Spanamab
nasS$Spanamaban
s$panamabanan



Is It True in General?

$ s
abananasS$Spanam
amabananas$pan
anamabananasS$p
ananasS$panamab
anas$panamaban
as$Spanamabanan
b a

NVl WDNR

wto B8 BB
O oY O o W

These strings are sorted

/’

Chop off a

bananasS$Spanam
mabananas$pan
namabananas$p
nanasS$Spanamab
nasS$Spanamaban
s$panamabanan

Still
sorted



NVl WDNR

These strings are sorted

Is It True in General?

O oo oo n
S o0 B 38 ®m

a n
bananasSpanama
mabananasS$pana
namabananasS$pa
nanas$panamaba
nas$Spanamabana

P $
sSpanamabanana

U WDN PR

/’

Chop off a

Ordering
doesn’t
change!

Add a
to end

\ 4

bananasSpanama
mabananasS$Spana
namabananas$pa
nanasSpanamaba
nasSpanamabana
sSpanamabanana

Still
sorted

Still
sorted



Is It True in General?

* First-Last Property: The k-th %t

a

occurrence of symbol in a,
FirstColumn and the k-th a3
] a

occurrence of symbol in a
LastColumn correspond to :6
the same position of symbol '
In Genome. n,
n;

nj



More Efficient BWT Decompression



More Efficient BWT Decompression



More Efficient BWT Decompression

$1 S, $ P a
a; m;
a, n;
a3 P S
ay b,
dsg n,
A ns; a
b, a;
m; a,
n, aj

n
n, ay
ns; asg
P1 S
Sl a'6 a

n b
a

e Memory: 2|Genome| = O(|Genome]|).



Recalling Our Goal

e Suffix Tree Pattern Matching:
— Runtime: O(| Genome| + | Patterns|)
— Memory: O(| Genome|)

— Problem: suffix tree takes 20 x | Genome| space

e Can we use BWT(Genome) as our data
structure instead?



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

$1 S
aj m;
a; n;
asna P1
a,na b,
dgna n,
e nj
b, aj
m; a;
n; as
n, Ay
nj as
P $1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

$1 S
a; m;
a, n;
as P
a, b,
as N,
Ae nj
b, aj
m; a;
n; as
n, agy
nj as
P1 $1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

$1 S
a; m;
a, n,
as P11
a, b,
as n,
Ae nj;
b, aj
m; a;
n; as
n, agy
nj as
P1 $1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

$1 S
aj m;
a; n;
asna P
a,na b,
dgna n,
e nj
b, aj
m; a;
n; as
n, agy
nj as
P1 $1



Where Are the Matches?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where one of
Patterns appears as a substring.

 Where are the positions? BWT has not
revealed them.



Where Are the Matches?

e Example: We know that 31
ana occurs 3 times, but a,
where? asna



Using the Suffix Array to Find Matches

e Suffix array: holds $ 1
starting position of a,
each suffix beginning a3
a row. a.



Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,
starting position of a,
each suffix beginning a3
a row. a




Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,
. .« . 5 a;bananass$
starting position of a,
each suffix beginning a3

a row. a.

abananasS




Using the Suffix Array to Find Matches

* Suffix array: holds 13| $,

. .y a;bananass$
starting position of 5| a,mabananass
each suffix beginning a3

a row. a.

&)

amabananasS$S




Using the Suffix Array to Find Matches

$1

a;bananass$
a,mabananass$
a;namabananass$

e Suffix array: holds 1
starting position of
each suffix beginning
a row. a.

R W 0l W

anamabananasS$S




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

ananassS

N = W oW

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

anassS

O JdJ L WO W

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

as$S

R O Jd Bk WO W

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$

as;nass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

bananasS

|—\
OO R O Jd kL WOLL W

=

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$
as;nass$

ags$s

b,ananasS$



Using the Suffix Array to Find Matches

[

SO NSO O KL WOLGWw

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$
as;nass$

ags$s
b,ananasS$
m,abananas$
n,amabananass$
n,anass$

n;ass$

o1

S

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

nass$

=




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass$

[

= =
OO WNBPBOK ONRFR WL Ww

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$
as;nass$

ags$s

b,ananasS$
m,abananas$
n,amabananass$
n,anass$

n;ass$
p;anamabananass$;
S



Using the Suffix Array to Find Matches

[

N O oo NN EOERFR O JdPRF, WO W

$1

a;bananass$
a,mabananass$
a;namabananass$
a,nanass$
as;nass$

ags$s

b,ananasS$
m,abananas$
n,amabananass$
n,anass$

n;ass$
p;anamabananass$;

s;S$

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

n
W
|—l




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass$

[

=

|—l
N O oo NN EOERFR O JdPRF, WO W




Using the Suffix Array to Find Matches

e Suffix array: holds $ 1
. . a,
starting position of a,
each suffix beginning > 2ena
4
a row. 9 asna
ag
b,
m;
 Thus, ana occurs at n,
positions 1, 7, 9 of 02
3
panamabananass$. P,

T )



The Suffix Array: Memory Once Again

* Memory:~ 4 x | Genome|.

T 12

M3 s 3 1 7 9 11 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

* Memory:~ 4 x | Genome|.

T 12

M3 s 3 1 7 9 11 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

* Memory:~ 4 x | Genome|.

T 12

M3 s 3 1 7 9 11 6 4 2 8 10 0 1



Reducing Suffix Array Size

 We don’t want to have to store all of the suffix
array; can we store only part of it? Show how

checkpointing can be used to store 1/100 the
suffix array.

A Return to Constants

* Explain that using a checkpointed array
increases runtime by a constant factor, but in
practice it is a worthwhile trade-off.
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ana
$1 S1
a; My
ar n;
as P1
a, b,
as n;
ag ns;
b, ai
m as
ni as
Ny dy
N3 ds
b1 $1
S1 de

ana
$1 S1
ai my
as 1951
as P1
Ay b,
ds Ny
de N3
b, ai
my as
n;a as
n,a a,
n;a as
P1 $1
S1 de

ana
$1 S1
ay my
as ng
asna P1
a,na b,
asna n,
de N3
b, ai
my as
ng as
%) dy
N3 ds
P1 S1
S1 de




Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Approx. Pattern Matching Problem:

— Input: A string Pattern, a string Genome, and an
integerd.

— Output: All positionsin Genome where Pattern
appears as a substring with at most d mismatches.



Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Multiple Approx. Pattern Matching Problem:

— Input: A collection of strings Patterns, a string
Genome, and an integerd.

— Output: All positionsin Genome where a string
from Patterns appears as a substring with at most
d mismatches.



Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern actt|iggct

Genome actalggct




Method 1: Seeding

e Say that Pattern appears in Genome with 1
mismatch:

Pattern acttiggct

Genome actalggct

* One of the substrings must match!



Method 1: Seeding

* Theorem: If Pattern occurs in Genome with d
mismatches, then we can divide Pattern into

d + 1 “equal” pieces and find at least one exact
match.

X X X X XKEXXXXKX
X X X ) X X| XKXXXXKX




Method 1: Seeding

Say we are looking for at most d mismatches.

Divide each of our strings into d + 1 smaller
pieces, called seeds.

Check if each Pattern has a seed that matches
Genome exactly.

If so, check the entire Pattern against Genome.



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$1 S
a.]_ ml 1
a, n, 0
Now we extend o o 1
. . 4 1
all strings with at as n, 0
most 1 mismatch. :6 s 0
14 ai
mla az
n;a as
n,a a,
n;a as
Pia $1



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$1 S

a; m;

a, n;

: as P

One string o b,

produces a as n,

second mismatch  ° 0
1A a; 1
(the $), so we m,;a a, 1
} . n;a aj; 0
discard it. noa o 0
n;a as 0
pia $1 2



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

S S,

a;ba m, 1

a,ma n, 1

as;na P 0

In the _end, we 2 na b 0

have five 3-mers asna n, 0
with at most 1 o "3
] 1 a;
m|SmatCh. m; a,
n; aj
P $1



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 S
a; m,
a, n;
aj Pi1

In the end, we - na b 7
have five 3-mers  a: n,
with at most 1 26 23
1 1
mismatch. m, a,
n; a s
ns; as
P1 $1



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 S
aj m;
a, n;
In the end, we 2 b

have five 3-mers asna n, 9
with at most 1 26 23
1 1
mismatch. m, a,
n; a s
P S



Hidden Markov Models
Outline

-rom a Crooked Casino to a Hidden Markov Model
Decoding Problem

The Viterbi Algorithm

Profile HMMs for Sequence Alignment

Classifying proteins with profile HMMs
Viterbi Learning

Soft Decoding Problem

Baum-Welch Learning



The Crooked Casino

A crooked dealer may use one of two identically
looking coins:

* The fair coin (F) gives heads with probability 2:
Pre(“Head”) = 1/2 Pr(“Taily =1/2
* The biased coin (B) gives heads with probability /72y
Pry(“Head”) = 3/4 Pro(“Tail”) = 1/4 &

What coin is more likely if 63 out of 100 flips
resulted in heads?

Hint: 63 is closer to 75 than to 50!




Fair or Biased?

 Given a sequence of n flips with k “Heads”:
X=X;Xp...X,
« The probability this sequence was generated by the fair coin:
Pr(x|F) = Pre(x;) *...* Pre(x,) = (1/2)"
 The probability that it was generated by the biased coin:
Pr(x|B) = Prg(x;) *...* Pry(x,) = (3/4)<e (1/4)™k

Pr(x|F) > Pr(x| ) = fair is more likely
Pr(x|F) < Pr(x|B) = biased is more likely

Equilibrium: P(x|F) = P(x|B)
(1/2)" = (3/4)<e (1/4)7k > 27 =3k > k - log,3 e n > k= 0.632en

Even though 63 is closer to 75 than to 50,
fair coin is more likely to result in 63 heads!




Two Coins Up the Dealer Sleeve

* Now the dealer has both fair and coins and can
change between them at any time (without you
noticing) with probability 0.1.

After watching a sequence of flips, can you tell when the
dealer was using fair coin and when he was using biased
coin?




Reading the Dealer’s Mind

Casino Problem: Civen a sequence of coin flips, determine
when the dealer used a fair coin and a biased coin.

* Input: A sequence x = x; X, . . . X, of flips made by coins F
(fair) and  (biased).

*  Output: A sequencen =m; m, - - - m, with each m; being
equal to either I or B and indicating that x; is the result of
flipping the fair or biased coin, respectively.




The Problem with the Casino Problem

* Any outcome of coin tosses could have been generated

by any combination of fair and coins!
— HHHHH could be generated by BBBBB, FFFFF, FBFBF,
etc.

We need to grade different scenarios:
BBBBB, FFFFF, FBFBF, etc.
differently, depending on how likely they are.

How can we explore and grade 2" possible
scenarios




Reading the Dealer’s Mind
(one window at a time)

HHHTHTHHHT
BBBBB (x| F)/
FFFFF Or(x| F)/

1 (X

Pr (X

B)
B) >

Log-odds ratio of sequence x = log, Pr(x|F) / Pr(x|B)
log, (1/2)7/(3/4)e(1/4)"* = #Tosses - log,3 * #Head:s




Reading the Dealer’s Mind
(one window at a time)

HHHTHTHHHT
BBBBB Log-odds O
FFFFF Log-odds > O

Log-odds ratio of sequence x = log, Pr(x|F) / Pr(x|B)
= #Tosses - log,3 * #Heads

0
e | 0@ -0 S Fatio

Log-odds ratio < 0 Log-odds ratio > 0

coin more likely Fair coin more likely



Reading the Dealer’s Mind

HHHTHTHHHT

FFFFF
FFFFF
FFFFF
BBBBB
FFFFF

What are the disadvantages of this approach?




Disadvantages of the Sliding Window Approach

L4

HHHaéTHHHT
BBBHA
FFREF
FREFF
REFFF

HBBBB
FFFFF

Different windows may classify the same coin flip differently!

The results depend on the window length. How to choose it?




Why Are CG Dinucleotides More Rare than GC
Dinucleotides in Genomic Sequences?

* Different species have widely varying GC-content
(percentages of G+C nucleotidesin the genome).

St L o RS, e
i S % e S PR S A s

46% for gorilla and human 58% for platypus

 Each of the dinucleotidesCC, CG, GC, and GG is
expected to occurin the human genome with
frequency 0.23 * 0.23 =5.29%.

But the frequency of CG in the human genome is only 1%!




Methylation

Methylation: adds a methyl (CH;) group to the
cytosine nucleotide (often within a CG dinucleotide).

* The resulting methylated cytosine has the tendency to
deaminate into thymine.

Kethylatlon /@ammaﬂon /g
N~ 0

Cytosme 5- methyl Thymine
Cytosine

* As aresult of methylation, CG is the least frequent
dinucleotide in many genomes.



Looking for CG-islands

Methylation is often suppressed around genes in
areas called CG-islands (CG appears frequently).

ATTTCTTFTCGTCGACGCTAATTTC TTGGAAATATCATTAT

In a first attempt to find genes, how would you
search for CG-islands?




Looking for CG-islands

0
e | 0@ -0 S TatiO

CG-island more likely | Non-CG island more likely

Different windows may classify the same position in
the genome differently.

It is not clear how to choose the length of the
window for detecting CG-islands.

Does it make sense to choose the same window
length for all regions in the genome?




Turning the Dealer into a Machine

* Thinkof the dealer as a machine with k
hidden states (F and ) that proceedsin a

sequence of steps. W ETH ]

* In each step, it emitsa symbol (H orT)
while beingin one of its hidden states.

 Whilein a certain state, the machine
makes two decisions:

o Whichsymbol will | emit?

o Which hidden state will | move to
next?




Why “Hidden”?

* An observercan see the emitted symbols of an HMM
but does not know which state the HMM is currently
In.

 The goalis to infer the most likely sequence of
hidden states of an HMM based on the sequence of
emitted symbols.



Hidden Markov Model (HMM)

3: an alphabet of emitted symbols HandT
States : a set of hidden states Fand B
Transition = (transition,,): a |States| x[States| F b
matrix of transition probabilities (of F 0.9 0.1
changing from state / to state k) 5 01T 0.9
Emission= (emission,(b)): a |States| x |3 | H T
matrix of emission probabilities (of F 050 050

emitting symbol b when the HMM s in state k) 075 025



HMM Diagram

] 1/10 \

[ \

y a

\ 1/10 /

p—

F

Transition

F b

0.9 0.1
0.1 0.9

Emission

H T

0.50 0.50
0.75 0.25



Hidden Path

Hidden path: the sequencen = x,... 7, of states that
the HMM passes through.

* Pr(x, t): the probability that an HMM follows the hidden
path 1t and emits the string x =x; x, ... x,.

nm. F F F B B B B B F F F

Z all possible emitted strings x Z all possible hidden paths = PF(X, TC) =

* Pr(x|n): the conditional probability that an HMM
emits the string x after following the hidden path =.

2 all possible emitted strings x PI‘(X|T[) =1




Prix, )= Pr(x|r) *
* Pr(x, m): the probability that an HMI\/FPcrI(qw} the
nidden path it and emits the string x.
* Pr(x;|m;)— probability that x, was emitted from the
state i, (equal to emission_;(x;)).

* Pr(m,_,—>m,)— probability that the HMM moved from
1,21 (equal to transition ; .1).

X T H T H H H T H T T

T F F F B B B B B F F

Pr(n,;»=) [.5) .9 .9 .1 .9 .9 .9 .9 .1 .9 .
Prixi|m) oY% 0% % % % 4% % L% L

Pr(nt) = N;_q , Pr(mi_i>m) = Mg ptransition;_q

Pr(x|m) = Ny ,Pr(x;|m) = N;2; ,emission(x;)




Computing Probability of a Hidden Path Pr(rm)
and Conditional Probability of an Outcome Pr(x| )

Probability of a Hidden Path Problem. Compute the probability of
an HMM'’s hidden path.

* Input: A hidden path  in an HMM
(>, States, Transition,Emission).

* Output: The probability of this path, Pr(n).

Probability of an Outcome Given a Hidden Path Problem.
Compute the probability that an HMM will emit a given string
given its hidden path.

* Input: A string x=x;,...x,, emitted by an HMM (3, States,
Transition, Emission) and a hidden path n= n,,..., &,.

* Output: The conditional probability Pr(x|x) that x will be
emitted given that the HMM follows the hidden path =.




Decoding Problem

Decoding Problem: Find an optimal hidden path in an
HMM given its emitted string.

* Input: Astringx=x;...x,emittedbyan HMM (3,
States, Transition, Emission).

e Output: A path mt that maximizes the probability Pr(x,m)
over all possible paths through this HMM.

Pr(x, ) = Pr(x|m) * Pr(m)
=N -y , Prix;|m) * Pr(m_;>m)
=M ;=1 pemissiong; (x;) * transition; q




Building Manhattan for the Crooked Casino

1/10

r @ @ 5 HMM diagram
N/

K XK KX

f—>f —> [ ——> [ ——> [ —> F



Building Manhattan for the Crooked Casino

1/10

r @ @ 5 HMM diagram

1/10

—> ) —>—y s —

><><><><></

f—>f —>  —> [ ——> [ —> F

F F



Building Manhattan for Decoding Problem

|States| <

//‘\\ MM diagram

=%

A A— (A — (A — (A —>(A—>(A

VAV

. (C —IC — Cc —8ic —8c —8>cC

Y
Number of symbols emitted (n)



Building Manhattan for Decoding Problem

//‘\\ MM diagram

A—> A —> A —> A —> A —> A

C —> C —> C —> C —> C —>C



Alignment Manhattan vs. Decoding Manhattan

Alignment Decoding
three valid directions many valid directions
@

»
»
| \




Edge Weights in the HMM Manhattan

%0 8

N\
LY §§§§/

C —> € —>C —>C —>C —>(C
i-1 I

A—> A

Edge (/, k, i-1) from node (/, i-1) to node (k, i):
* transitioning from state / to state k (with probability transition, ;)
emitting symbol x; (with probability emission,(x;)

weight(l, k, i-1)=emission,(x;) * transition;




Edge Weights for the Crooked Casino

F 5]
emission F 0.9 0.1
| | o B B 01 0.9
weight(lk,i-1) =emission(x;) * transition;
H T
W@ight;(B,B, 7)2 transition F 0.50 0.50
emissiong(H) * transitiong g = B 0.75 0.25

0.75*0.9
%B—)B—)B—>B—>B—)B
50*0

R 2

me—>r—>F—>F—>F

H H T T H H



Product Weight of a Hidden Path

A —> A wmmp f —> A —> A —>[ A

N

C—>C —>C —>(C = ( —>(C

Prix, m) = N _; , emission; (x;) * transition .y
=M ., ,weight of the i-th edge in path
= [ i=1n W@ight(ﬂi_1, TC;, I- ])




Why Have Biologists Still Not Developed an HIV Vaccine?

Classifying HIV Phenotypes
Gambling with Yakuza

From a Crooked Casino to a Hidden Markov Model
Decoding Problem / / \
The Viterbi Algorithm > 5

Profile HMMs for Sequence Alicgnmen'tC
Classifying proteins with profile HMMs
Viterbi Learning

Soft Decoding Problem

Baum-Welch Learning



Dynamic Programming for Decoding Problem

score; ; : the maximum product weight among all
paths from source to node (k i):

A o
48 '@‘v
Wi

i-1 i

A—> A —>A

ol

C—> C —> C —>C

SCOrey ;= Max 4| states / 15COre 11+ weight of edge from (/,i-1) to (k, i)}
= MaX 4| states / 15COrE, .1 - weight(lk, i-1)}




Recurrence for Viterbi Algorithm

Recurrence:
score, ; = MaX 4 sates ; 1SCOTE; ;1 - weight(l,k,i-1)}

Initialization:
ScoreSOUI’Ce 1

The maximum product weight over all paths from source to
sink:
SCOr€gjn = MAX 5y states | score,,,




Running Time of the Viterbi Algorithm

A (A—— (A — (A —— (A —— (A ——(A

. ([ —(C —IC —Cc —>(c —>(cC

>
Number of symbols emitted (n)

Running time ~ #edges in the Viterbi graph
~ O(| States |? * n)




Running Time of the Viterbi Algorithm

Forbidden transition: an edge not represented in the

HMM diagram.
CA —> BO / 5 . \
1 — i \C C C C C C/
! \ /

Running time ~ #edges in the Viterbi graph
~ O(#edges in the HMM diagramen)




From Product of Weights to Sum of Their
Logarithms

Since score; ; may become small (danger of underflow),
biologists prefer to work with logarithms of scores:

score, ;= MaX ) saes ) L SCOre;., - weight(lk,i-1) }

v

log(score, ;) = max y sates /1 lOg(score; ;) +log(weight(l k,i-1) }

This transformation substitutes weights of edges by their
logarithms:

product of weights - sum of weights




Computing Pr(mt) Versus Computing Pr( )

* Pr(x, m): the probability that an HMM follows the hidden
path tand emits the string x =x; x,. .. x,.

nm. F F F B B B B B F F F
.5 .9 .9 .1 .9 .9 .9 .9 .1 .9 .9

Pr(n) = Zall possible emitted strings PI’(X, ﬂ:>:ni=1,ntraHSIUOnni—1,7ti

Pr(x) = 2. ai possible hidden paths © Pr(x, m) =

Pr(x) = 2. all possible hidden paths = PrOdUCt Weight of T

SCOr€gjp=mMax 4 possible hidden paths n PrOdUCt Welght of T




What is the Most Likely Outcome of an HMM?

 Outcome Likelihood Problem. Find the probability
that an HMM emits a given string.

* Input: Astringx=x;...x, emittedbyan HMM (3,
States, Transition, Emission).

e Output: The probability Pr(x) that the HMM emits x.

Can you solve the Outcome Likelihood Problem by
making a single change in the Viterbi recurrence
scorey ; = MaX ) states / {SCOreE; 1.1 - Weight(lk,i-1)} ¢




Viterbi Algorithm: From MAX to >

* forward, ;: total product weight of all paths to (k,i):

A—> A —> A

S Ao

C — —>C —> C —>C —>C
’-

fOI’WGI’de, Z aIIstates/{ WEIght of (/ I- 1)%(k l)}
= Z aIIstates/{forWGrd/,i—l ] W€ight(/, k; i'l)}



Viterbi Algorithm: From MAX to >

* forward,;: total product weight of all paths to (k,i):

A—> A —> A

S Ao

C — —>C —>C —> C —>C
’-
Scoreg; = max aIIstates/{ W€Ight(/ k I- 1)}



Classifying Proteins into Families

* Proteins are organized into protein families
represented by multiple alignments.

* Adistantcousin may have weak PG 5 PPWDT [
pairwise similarities with family SRS
members failing a significance R SEWT [ T entaacno

* However, it may have weak similarities with many
family members, indicating a relationship.




From Alignment to Profile

1 2 3 4
A C D E
A F D A
Alignment A - - E
A D D E

5

F

AA

7
D
C
D

D

Remove columns if the fraction of space symbols (
exceeds 6, the maximum fraction of insertions

threshold.

{1 //)




From Alignment to Profile

Alignment

Alignment*

PROFILE(Alignment®)

MO QP

1

2

2/4
1/4

1/4

3

3/4

0

4

J>

1/5

4/5

5

=]

- O O O O

6

A
3/5
1/5

0

0
1/5

7

@)

D

0
1/4
3/4

0

0

0
2/5
0
0
3/5



Alignment

Alignment*

PROFILE(Alignment®)

HMM diagram

From Profile to HMM

O QP

1

2

3

4

3 I e I 3 B = £

5

= o= = 1]

6

= B T =

e

~N



Toward a Profile HMM

My —— My ——> M) ——> (M) ——> (M) ——> (Mg ——> (M) ——> (M3

A F D D A F F D F

How do we model insertions?




Toward a Profile HMM: Insertions

OO O O O O

/ I I Iy

295
VAYAVAYAVAYAYAY,

M, —>M29M3 %%%M};%%%%%M

A F D D A F F D F

How do we model deletions?




Toward a Profile HMM: Deletions




Toward a Profile HMM: Deletions

I \\\\ / 5&5//
M, /\/I3 —> M, —— l\/l5 M, Mg

How many edges are in this HMM diagram?




Adding “Deletion States”

D) —s D)y —os D, ——> D) ——> Dy ——— D, ——> D;, ———> D,

\&&%%&&

—>—>—>—>—>—>—>



Adding “Deletion States”

D; ——> D; mmp D; —> Dy ——> Ds ——> Dy ——> D; ——> Dy

,0 }<ﬁ>><f> : D><3><ﬁ)><ﬁ) O @O
AN AN AN _)\ _)\ _)\ _>\/

My ——> My ——> M3 ——> M,

A A F F D F

Are any edges still missing in this HMM diagram?




Adding Edges Between Deletion/Insertion States

Dy ——> D) —» D; —> D, ——> Dy ——> Dy, ——> D, ——> Dy

VAVAVAVAYAVAYVAY,

1 —> VM) — > My —> My ——> M5 ——> Mg ——> M7; ——> Vg



The Profile HMM is Ready to Use!

— QDN

Dy ——>» D) ——» D, —> D, ——> Ds ——> Dy, ——> D; ——> Dy

NN /K/ / : AN
\\ M

Profile HMM Problem: Construct a profile HMM from a

multiple alignment.

 Input: A multiple alignment Alignment and a threshold
0 (maximum fraction of insertions per column).

* Qutput: Transition and emission matrices of the profile

HMM HMM(Alignment,0).




Hidden Paths Through Profile HMM

A C D E F AC A D F|
A F D A - B C C F|
A — - E F D- F D c|
A A B F——A —
A D E F A D
D, D, D, Dy Dy D,

°W/W%WKW<E?

°W/W%KKW/“\

o Note: thls is a hldden path in an H/\/I/\/I
diagram (not in a Viterbi graph)

A (=) (=) E F D D C

WV




Transition Probabilities of Profile HMM

<

<
\//
4 transitions from @:
o 3 / / / /\\ |
~ \ \//~ +1+1=3into /s

1 into M,

0 into D
e—> f) / k/i/g(/ gi L \\ o ~e
\‘ \ V transjtionMatch(5),/nsertion(5) = 3/4

transjtionMatch(S),Match(6) =1/4

transition paech(s), Deletione) = 0O
\ //



Emission Probabilities of Profile HMM

/\\
\V

/\\
\//

/\\
\V

/\\
\//

/\\
\//

\k® \® Ew '\® \® @
B8 0 0 @ 6
%i W%i %f
\\ \ \ \
s
GO @O @O BOK @O @ODX @
\x‘m @g(\® \@ \@

symbols emitted from

C, FC D

emiSSiON pyach2)
emiSSiON pyach2)
€MISSION yjaecho)
)\
o)

So2z
|| || ” Il ||

2/4

emission yaich
emission yach

E)
F)

E




Forbidden Transitions

y —> Dy ——> Dy —> D, —> Dy —> D, —> D; ——> D,

S

I5 Mg | D M| D7l (Mg Dg | Ig | E

Gray cells:

22 edges in the
1 HMM diagram.

Clear cells:
5 2 forbidden

transitions.

.33 .67

Don’t forget pseudocounts:
HMM(Alignment,6,0)




Why Have Biologists Still Not Developed an HIV Vaccine?

* Classifying HIV Phenotypes
 Gambling with Yakuza

* From a Crooked Casino to a Hidden Markov Model
 Decoding Problem

* The Viterbi Algorithm

* Profile HMMs for Sequence Alignment
e Classifying proteins with profile HMMs

* ViterbilLearning

* Soft Decoding Problem
* Baum-Welch Learning



Aligning a Protein Against a Profile HMM

D—>D—>D

S

A CEsD E F"AC A D F
A F—D A — i C C F
Alignment 2 - E F D-F D C
A —— E F'ie—=— A - C
A D—D E F AA A D F
Protein ACAFDEAF



Aligning a Protein Against a Profile HMM
®

D, D, D, @ D, Dy

s \ | 0 / K / \ I (£ ]

o—0® 0—0 - @ @/
A C AF D E (-) A (=) F

D,

A C—0D E FFAC A D F
A F——D A — B C C F
Alignment o - -——-- E FD-F D C
A D—-——0D E FFAA A D F
Protein ACAFDEAF

Apply Viterbi algorithm to find optimal hidden path!




Aligning a Protein Against a Profile HMM

D, Dy

AN; /\'/\/M\'/

%—% @—% ty—@——Q

C AF D (=) A (=) F

A C-——-D E F AC A D F

A F—D A - —C C F

Alignment o --——-- E FD-F D C
A D——D E F AA A D F

Protein A C AF D E - ——A — F

Apply Viterbi algorithm to find optimal hidden path!




Profile HMM // /%Zgi/%i/%fgi/ /\\
diagram \//’

How many rows and columns does the Viterbi
graph of this profile HMM have?
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Profile HMM

diagram

v O OO OO 006 6 O €

A= 5702

e e @

7z

04

o
~
o

Viterbi graph of

profile HMM:

#columns

#visited states
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Profile HMM ./
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Viterbi graph of

profile HMM:

Q
3MD\M s s 4 =
& . " T = T = =" =

— —, T —

N

D,
I

2
I

3

I

< s o

s N

n n -

NN

p 8’ @

3 Q

© L N ~

77777

G s 4

4

Vertical edges
enter “silent

deletion states




N/

D, D D, D D

>
>

D,

Profile HMM ./

%
N

@
\

g
\

e
WA

\

\

diagram

S > =
> =>

,w

M,

M,

C

n =

= s < Mz\D 5 &
e

[a]

=3

E

(=)

@
A

d

=S b Q

\@

D, D,
\ )\

~

! ~

S Q

M,

X -

s @ & & @

| -

2 N = n

n
~

" "

© © B

©

© ©

3
3

©

~

MolwoyeMSDs/
/@Dels%oyl_,Mst/s

) 5_9 & _835_@ &
—_7 7 |
B © © © ©

- i~

CJ @ -
=&

Correct Viterbi
graph of profile
HMM:

Adding 0-th

column that

contains only
silent states




Alignment with a Profile HIVIIVI

%@@ M

C AF D

Sequence Alignment WIth Proflle HMM Problem: Align
a new sequence to a family of aligned sequences using
a profile HMM.

* Input: A multiple alignment Alignment, a string Text,
a threshold 8 (maximum fraction of insertions per
column), and a pseudocount o.

* Output: An optimal hidden path emitting Text in the
profile HMM HMM(Alignment, 6, o).




Have | Wasted Your Time?

— —> —> —> —>

— @ SM(/-)/,-:maX{SD(/ 1),i-1 Welght( (/ ) (/)
Smi-1y,-1 * weight(M(j-1), (/)

]

\ \ \ \ \
“/l/v/v/v/v
o & & & o

L St 1t score(v,-,vv/-)

N\
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N ,

> s; ;=max1 Sjj1 +scorelw))
N
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3 The choice of alignment path is

i‘ H.&.ﬁv now based on varying transition
VM3 v
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and emission probabilities!
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| Have Not Wasted Your Time!

e \/\/

D,
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//v/v/v/v/v
o & & o o
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v /
A/\ID
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Swmi-1y,i-1 " weight (M(j-1), M(j)

Individual scoring parameters for
each edge in the alignment graph
capture subtle similarities that
evade traditional alignments.
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HMM Parameter Estimation
 Thus far, we have assumed that the transition
and emission probabilities are known.

* Imagine that you only know that the
crooked dealer is using two coins and obse

HHTHHHTHHHTTTTHTTTTH

What are the biases of the coins and how often the
dealer switches coins?

Can we develop an algorithm for parameter estimation
for an arbitrary HMM¢?




If Dealer Reveals the Hidden Path...

HMM Parameter Estimation Problem: Find optimal

parameters explaining the emitted string and the hidden

path.

* Input: A string x = x; . . . x, emitted by a k-state HMM
with unknown transition and emission probabilities
following a known hidden pathnt ==, ... @,.

* Output: Transition and Emission matrices that
maximize Pr(x, ) over all possible matrices of
transition and emission probabilities.

HHTHHHTHHHETTTTHTTTTH
FFBFFFBBFFBFFBBBBEEF



If the Hidden Path is Known...

* T, #Htransitions from state / to state k in path m.

transition; =

fttransitions from state / to state k / # all transitions from /

= T, / #visits to state /

HHTHHHTHHHETTTTHTTTTH

F

i

BFFFBBFFBFFBBBBFF T =5/9




If the Hidden Path is Known...

* E/(b): # times symbol b is emitted when path rtis in
state k.

emission,(b) =
#times symbol b is emitted in state k / # all symbols emitted in state k
= E,(b) / #visits to state /

HHTHHHTHHHTTTTHTTTH  EAT)=6/11
() T N A g\ B
FFBFFFBBFFBFFBBBFEF T f=5




When BOTH HiddenPath and Parameters
Are Unknown

HMM Parameter Learning Problem. Estimate the

parameters of an HMM explaining an emitted string.

* Input: A string x = x; . . . x, emitted by a k-state
HMM with unknown transition and emission

probabilities.

* Output: Matrices Transition and Emission that
maximize Pr(x, ) over all possible transition and
emission matrices and over all hidden paths .




Reconstructing HiddenPath AND Parameters

emitted
string

Start from arbitrary
choice of Parameters

Decoding
Problem

hidden path Parameters



Reconstructing HiddenPath AND Parameters

emitted
string

HMM Paramete

Estimation
Problem

hidden path Parameters



Viterbi Learning

emitted
string

hidden path Parameters’



Changing the Question

* The Viterbi algorithm gives a “yes” or “no” answer to
the question: "Was the HMM in state k at time | given
that it emitted string x?”

This question fails to account for how certain we are
in the “yes”/“no” answer. How can we change this
hard question into a soft one?




What Is Pr(m.=k, x)?

Pr(m.=k, x): the unconditional probability Pr(r.=k, x) that a
hidden path will pass through state k at time i and emit x.

What is the probability that the dealer was using the Fair
coin at the 5™ flip given that he generated a sequence of
flips HHTHTHHHTT?




Pr(ri=k, x):
Total Product Weight of All Paths Through ®

Pr(r=k, x): the unconditional probability that a hidden path
will pass through state k at time i and emit x.

PI‘(TEi:k, X) =2 all paths & with mi =k Pr(x, m)

/’7 ’*;@v
N\ %gsﬁ/

Z all possible states k, all possible paths x Pl’(ﬂ:iZk, X) =1




What Is Pr(rt; =k|x)?

Pr(rt; =k | x): the conditional probability that the HMM was in
state k at time j given that it emitted string x.

What is the probability that the dealer was using the Fair

coin at the 5™ flip given that he generated a sequence of
flips HHTHTHHHTT?

Compare with:

Pr(mi=k, x): the unconditional probability that a hidden path
will pass through state k at time i and emit x.

What is the probability that the dealer will generate a
sequence of flips HHTHTHHHTT?
while using the Fair coin at the 5% flip?




What Is Pr(rt; =k|x)?

Pr(r; =k|x): the conditional probability that the HMM was
in state k at time i given that it emitted string x.

/>71 > —( — \\—>
\ > > //—> —\;\‘ — /
I
Pr(m; =k|x): the fraction of the product weight of paths
visiting ® over the weight of all paths:

Pr(m; =k|x) = Pr(m;=k, x) /
— Z all paths © with m/ =k PI‘(X, m) / Z all paths = PF(X, m)




Soft Decoding Problem

Soft Decoding Problem: Find the probability that an

HMM was in a particular state at a particular

moment, given its output.

* Input: A string x = x; . . . x, emitted by an HMM
(>, States, Transition, Emission).

* Output: The conditional probability Pr(r; =k|x)
that the HMM was in state k at step /, given x.




Computing Pr(m.=k, x)

* Pr(m=k, x) = total product weights of all paths through the Viterbi
graph for x that pass through the node (k, i).

* Each such path is formed by a blue subpath ending in the node
and a bpath starting in the node

Viterbi

% Eg ‘\\ graph
%j% with all

edges
\ \\“ / reversed

> € > > >

Pr(mi=k, x)
Y product Welghts of all blue paths * > product weights of all red paths

:



Computing Pr(m.=k, x)

* Pr(m=k, x) = total product weights of all paths through the Viterbi
graph for x that pass through the node (k, i).

* Each such path is formed by a blue subpath ending in the node
and a bpath starting in the node

Viterbi

% Eg ‘\\ graph
%j% with all

edges
\ \\“ / reversed

> € > > >

Pr(mi=k, x)
Y product Welghts of all blue paths * > product weights of all red paths

forward, * backward, ;



Forward-Backward Algorithm

* Since the reverse edge connecting node (/, i+1) to node (k, i) in
the reversed graph has weight weight(k, |, i):

backward; =3 4y states| - weight(k, |, i)
D <€ <€ < <
/ N
N AP0 A
i i+1

* Combining the forward-backward algorithm with the
solution to the Outcome Likelihood Problem vyields

Forward,; *backwardy

P . :/( =P ’:k/ /P =
r(m; =k|x) r(m=k, x)/Pr(x) forward(sink)



The Conditional Probability Pr(rt=/, ;. ;=k| x) that the
HMM Passes Through an Edge in the Viterbi Graph

A A A A
B | B B
C C C \\® C C
I I+1

> weights of blue paths * weight of black edge * > weights of red paths

forward,; * weight(l, k, i) * backward, ;,

P ':// I+ :k -
r(n=/, m;, ;=k|x) forward(sink)




Node Responsibility Matrix

* Node responsibility matrix [M* = (1%, ;):
n*k/i = PI‘(TE,:/(|X)

% ;g N
Node responsibility matrix for the crooked casino

T H T H H H T H T T H
F 0.636 0.593 0.600 0.533 0.515 0.544 0.627 0.633 0.692 0.686 0.609
B 0.364 0.407 0.400 0.467 0.485 0.456 0.373 0.367 0.308 0.314 0.391




Responsibility Matrix

[1** Lk i= PI’TE —/ TE,+7—/(|X

\%&EV

Edge responsibility matrix for the

Every €
(edge) in the Viterbi grap !

=26 0.4168 0.351 0322 0282 0265 0293



Baum-Welch Learning

Baum-Welch learning alternates between two steps:

* Re-estimatingthe responsibility profile 1 given the

current HMM parameters (the E-step):

* Re-estimatingthe HMM parameters given the current
responsibility profile (the M-step): ‘

y

-9

(emitted string, ¢, Parameters) = M

(emitted string, N, ?) > Parameters



Using a Responsibility Matrix to Compute
Parameters

* We have defined a transformation
(x, M, ?) - Parameters
that uses estimators T, , and E,(b) based on a path m.

* We now want to define a transformation:
(x, N, ?) > Parameters
but the path is unknown.

Idea: Use expected values T, and E,(b) over all
possible paths.




Redefining Estimators for Parameters
(for a known path m)

* T, #transitions from state/ to state k in path it

1 ifﬂ:i: /and i1 = k

T =
Lk {O otherwise

Rewriting T, =5, .1 T,
estimators:

HHTHHHTHHHTTTTHTTTTH

T ¢ :%g%go&g&ggooo L




Redefining Estimators for Parameters
(for a known path m)

* E.(b): #times b is emitted when the pathmis in state k

1ifn,=/and m, i gl ifmt=kandx,=b
. E'(b)={ .
0 otherwise 0 otherwise
How would you redefine these estimators if & is unknown?
Reyvriting T/,k :2i=1,n—1 Ti/, Ek<b) = Z i=1,n Elk(b>
estimators:

F(T)=00100010001011 1
HHTHHHTHHHTTTTHTTTTH EAT)=6

seb rrb B AR Te T =5

lgr =10010000100100000100



Redefining the Estimators T, and E',(b)
When the Path is Unknown

Ti :{1 ifﬂ:i: /and TE,‘_,_] — k
"k otherwise

T =Pr(m; =1, m;,; =k|x)

' — k k
Iy =T

can lifm=kand x;,= b
Ek(b)_{O otherwise

Pr(m; =k|x) if x;= b
0 otherwise

F'(b)={

I_I*/(/i lf X,' — b
O otherwise

F'(b)={



Baum-Welch Learning

Baum-Welch learning alternates between two steps:

* Re-estimatingthe responsibility profile 1 given the

current HMM parameters (the E-step):

* Re-estimatingthe HMM parameters given the current
responsibility profile (the M-step): ‘

y

-9

(emitted string, ¢, Parameters) = M

(emitted string, M, ¢) - Parameters



Stopping Rules for the Baum-Welch Learning

 Compute the probability that the HMM emits
the string x under current Parameters:
Pr(emitted string | Parameters)

— Compare with the probability for previous values of
Parameters and stop if the differenceis small.

— Stop after a certain number of iterations.



Nature is a Tinkerer and Not an Inventor

Protein domain: a conserved part
of a protein that often can function
independently.

Nature uses domains as building
blocks, shufflingthem to create
multi-domain proteins.

Goal: classity domains into families
even though sequence similarities A multi-domain
between domains from the same protein

family can be low.




Searching for Protein Domains with Profile HMMs

1. Use alighmentsto break proteins ABCDEFGHKLMNP
into domains ERGHKLNPABTD
KLSNPACDEFTH

2. Construct alignment of domains
from a given family (startingfrom ABCD  KLMNP
highly similar domains whose ABTD KL-NP
attribution to a family is non- AL=D RLONE
controversial).

3. For each family, construct a
profile HMM and estimate its
parameters.

4. Alignthe new sequence against

each such HMM to find the best o
fitting HMM. @ @ @ /\/\/



Pfam: Profile HMM Database

Each domain family in Pfam has:

Seed alighment: Initial multiple alignment of domains
in this family.

HMM: Built from seed alignment for new searches.

Full alignment: Enlarged multiple alignment generated
by aligning new domains against the seed HMM.



