
BioInformatics algorithms
• Pietro	Lio’,	pl219@cam.ac.uk

• Multidisciplinarity (Biology	and	Machine	Learning)

• Computer	scientists	could	help	biologists

• Biology	could	inspire	computer	science

• No	biology	in	the	exam	questions

• You	need	to	know	only	the	biology	in	the	slides	to	understand	the	
reason	for	the	algorithms

• Partly	based	on	book:	Compeau and	Pevzner Bioinformatics	
algorithms	(chapters	3,5,7-10);	also	Biological	Sequence	Analysis:	
Probabilistic	Models	of	Proteins	and	Nucleic	Acids	Richard	Durbin,	
Sean	R.	Eddy,	Anders	Krogh,	Graeme	Mitchison

• Color	slides	from	the	course	website

Protein

mRNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA
GCACTCGGTTGATAACTACTT

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

DNA: 4-letter alphabet, A (adenosine), T (thymine), C (cytosine) and G (guanine). In the double
helix A pairs with T, C with G
Gene: hereditary information located on the chromosomes and consisting of DNA.
RNA: same as DNA but T -> U (uracil)
3 letters (triplet – a codon) code for one amino acid in a protein.
Proteins: units are the 20 amino acids A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.
Genome: an organism’s genetic material

How	Do	We	Compare	Biological	Sequences
Outline

• From	Sequence	 Comparison	to	Biological	Insights	

• The	Alignment	Game	and	the	Longest	Common	Subsequence	

• The	Manhattan	Tourist	Problem	

• The	Change	Problem	

• Dynamic	Programming	and	Backtracking	Pointers	

• From	Manhattan	to	the	Alignment	Graph	

• From	Global	to	Local	Alignment

• Penalizing	Insertions	and	Deletions	 in	Sequence	Alignment	

• Space-Efficient	Sequence	Alignment	

• Multiple	Sequence	Alignment

• Nussinov folding	algorithm

The	Alignment	Game

A T G T T A T A
A T C G T C C

Alignment	Game	(maximizing	the	number	of	points):		

• Remove	the	1st	symbol	from	each	sequence	
• 1 point		if	the	symbols	match,	0 points	if	they	don’t	match

• Remove	the	1st	symbol	from	one	of	the	sequences	
• 0	points

The	Alignment	Game

A T - G T T A T A
A T C G T - C - C
+1+1 +1+1 =4

What	Is	the	Sequence	Alignment?

A T - G T T A T A
A T C G T - C - C
+1+1 +1+1 =4

Alignment of	two	sequences	 is	a	two-row	matrix:	

1st row:	 symbols	of	the	1st sequence	(in	order)	interspersed	by	“-”	
2nd row:	symbols	of	the	2nd sequence	 (in	order)	interspersed	by	“-”	

matches insertions deletions mismatches

Longest	Common	Subsequence

A T - G T T A T A
A T C G T - C - C

Matches	in	alignment	of	two	sequences	(ATGT)	form	their	
Common	Subsequence	

Longest	Common	Subsequence	Problem:	Find	a	longest	
common	subsequence	of	two	strings.

• Input: Two	strings.
• Output: A	longest	common	subsequence	of	these	

strings.

Walk	from	the	
source to	the	
sink (only	in	the	
South	↓ and	
East	→	
directions) and	
visit	the	
maximum	
number	of	
attractions

From	Manhattan	to	a	Grid	Graph	

Manhattan Tourist Problem

Manhattan	Tourist	Problem:	Find	a	longest	path	in	a	
rectangular	city	grid.

•Input:	A	weighted	rectangular	grid.
•Output:	A	longest	path	from	the	source	to	the	sink	in	

the	grid.

01 342

3 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

30

Greedy	
algorithm?

01 342

3 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

3 5 9

13

15 19

20

23

0

Greedy	
algorithm?

1 3

4

2

3 6 5
2

1

4 4

5

2 1

5

3 2 4 0

3 2 4

20 7 3

3 3 0 2

1 3 2 2

6 8 5 3

4

4

4

6

From	a	
regular	to	an	
irregular	grid	

Search	for	Longest	Paths	in	a	Directed	Graph

Longest	Path	in	a	Directed	Graph	Problem:	Find	a	
longest	path	between	two	nodes	in	an	edge-weighted	
directed	graph.

• Input: An	edge-weighted	directed	graph	with	
source	and	sink	nodes.

• Output: A	longest	path	from	source	to	sink	in	
the	directed	graph.

A T - G T T A T A
A T C G T - C - C
↘ ↘ → ↘ ↘ ↓ ↘ ↓

↘

Do	You	See	a	Connection	between	
the	Manhattan	Tourist	and	the	Alignment	Game?	

A T C G T C C

A

T

G

T

T

A

T

A

A T - G T T A T A
A T C G T - C - C
↘ ↘ → ↘ ↘ ↓ ↘ ↓ ↘

?
alignment	→	path

A T C G T C C

A

T

G

T

T

A

T

A

A T - G T T A T A
A T C G T - C - C
↘ ↘ → ↘ ↘ ↓ ↘ ↓ ↘

?
alignment	→	path

A T C G T C C

A

T

G

T

T

A

T

A

?
path	→ alignment	
A T G T T - A T A
- - A T C G T C C
↓ ↓ ↘ ↘ ↘ → ↘ ↘ ↘

highest-scoring	
alignment

=
longest	path	in	a	
properly	built	
Manhattan	

A T C G T C C

A

T

G

T

T

A

T

A

How	to	built	a	
Manhattan	for	the	
Alignment	Game	

and		the	
Longest	Common	
Subsequence	
Problem?	

Diagonal	red	edges	
correspond	to	
matching	symbols	
and	have	scores	1

01 342

3 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3
South	
or	
East?

There	are	
only	2	ways	
to	arrive	to	
the	sink:	
by	moving	
South	↓	
or	by	moving	
East	→

SouthOrEast(n,m)
if n=0		and	m=0
return 0

if n>0		and	m>0
xß SouthOrEast(n-1,m)+weight	of	edge	“↓”into	(n,m)
yß SouthOrEast(n,m-1)+	weight	of	edge	“→”into	(n,m)
returnmax{x,y}

return -infinity

South	or	East?	

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

0

1

5

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

1

5

9

14

South	
or	
East?

1+3 >	3+0
4

01 342

4 6 5 2 1

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 3

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9

41

5

9

14

We	arrived	
to	(1,1)
by	the	bold
edge:	

4
3

1 42

4 6

4 4 5 2 1

5

3 2 4 0

3 2

7 3 3

2 2

6 8

0

1

5

9

14

3

4

10

14

20

5

7

17

22

30

9

13

20

22

32

9

15

24

25

34

Backtracking	
pointers:		
the	best	way	
to	get	to	
each	node

si,	j:	the	length	of	a	longest	path	from	(0,0)	to	(i,j)

si-1,	j	+	weight	of	edge	“↓”into	(i,j)
si,	j-1	 +	weight	of	edge	“→”into	(i,j)

Dynamic	Programming	Recurrence

si,	j	=	max	{

1 3

4

2

3 6 5
2

1

4 4

5

2 1

5

3 2 4 0

3 2 4

20 7 3

3 3 0 2

1 3 2 2

6 8 5 3

4

4

4

6

41

5

3 5
7

0
How	does	
the	
recurrence	
change	for	
this	graph?	

3

4

1 3

4

2

3 6 5
2

1

4 4

5

2 1

5

3 2 4 0

3 2 4

20 7 3

3 3 0 2

1 3 2 2

6 8 5 3

4

4

4

6

41

5

3 5

?

4 choices:	
5	+	2
3	+	7
5	+	4
4	+	2

7

sa=	maxall predecessors	bof	node	a{sb+	weight	of	edge	from	b to	a}

10

3

4

0

1 3

4

2

3 6 5
2

1

4 4

5

2 1

5

3 2 4 0

3 2 4

20 7 3

3 3 0 2

1 3 2 2

6 8 5 3

4

4

4

6

41

5

3 5

?

4 choices:	
5	+	2
3	+	7
5	+	4
4	+	2

7

sa=	maxall predecessors	bof	node	a{sb+	weight	of	edge	from	b to	a}

10

99

13

8

4

14 18

3

12
19141710

4

20171714

0

29272520

si,	j:	the	length	of	a	longest	path	from	(0,0)	to	(i,j)

si-1,	j	+	weight	of	edge	“↓”	into	(i,j)
si,	j-1	 +	weight	of	edge	“→”	into	(i,j)
si-1,	j-1+	weight	of	edge	“↘”	into	(i,j)

Dynamic	Programming	Recurrence	for	the	
Alignment	Graph

si,	j=	max	 {

red	edges	↘	– weight	1
other	edges		– weight	0		

si,	j:	the	length	of	a	longest	path	from	(0,0)	to	(i,j)

si-1,	j	+	0
si,	j-1	 +	0
si-1,	j-1+	1,	if	vi=wj

Dynamic	Programming	Recurrence	for	the	
Longest	Common	Subsequence	Problem	

si,	j=	max	 {

red	edges	↘	– weight	1
other	edges		– weight	0		

A T C G T C C

A

T

G

T

T

A

T

A

backtracking	 pointers	
for	the	Longest	
Common	Subsequence

red	edges	↘	– weight	1
other	edges		– weight	0		

A T C G T C C

A

T

G

T

T

A

T

A

backtracking	 pointers	
for	the	Longest	
Common	Subsequence	

Computing	Backtracking	Pointers

si,j-1+0		
si,j ←max{	si-1,j+0

si-1,j-1+1,	if vi=wj

“→”, if si,j=si,j-1
backtracki,j ← {“↓", if si,j=si-1,j

“↘”,	if	si,j=si-1,j-1+1

1 42

4 6

4 4 5 2 1

5

3 2 4 0

3 2

7 3 3

2 2

6 8

0

1

5

9

14

3

4

10

14

20

5

7

17

22

30

9

13

20

22

32

9

15

24

25

34

Why	did	we	
store	the	
backtracking	
pointers?	

1 42

4 6

4 4 5 2 1

5

3 2 4 0

3 2

7 3 3

2 2

6 8

0

1

5

9

14

3

4

10

14

20

5

7

17

22

30

9

13

20

22

32

9

15

24

25

34

What	is	the	
optimal	
alignment	
path?		

A T C G T C C

A

T

G

T

T

A

T

A

backtracking	 pointers	
for	the	Longest	
Common	Subsequence	

Using	Backtracking	Pointers	to	Compute	LCS

OutputLCS (backtrack,	v, i,	j)	
if i =	0	or j =	0		
return

if backtracki,j =	“→”
OutputLCS (backtrack,	v,	i,	j-1)

else	if	backtracki,j =	“↓”
OutputLCS (backtrack,	v,	i-1,	j)

else	
OutputLCS (backtrack,	v,	i-1,	j-1)	
output vi

6

4

2
1

1 2

4

2

1
1

0

6

4

?

Computing	Scores	of	ALL Predecessors

sa=	maxALL predecessors	bof	node	a{sb+	weight	of	edge	from	b to	a}

6

4

2
1

1 2

4

2

1
1

0

6

4

?

?

6

4

2
1

1 2

4

2

1
1

0

6

4

?

? ?

6

4

2
1

1 2

4

2

1
1

0

6

4

?

? ?

?

A	Vicious	Cycle

• By	the	time	a	node is	analyzed,	the	scores	of	all	its	
predecessors should	already	be	computed.

• If	the	graph	has	a	directed	cycle,	this	condition	is	
impossible	to	satisfy.

• Directed	Acyclic	Graph (DAG):	a	graph	without	directed	
cycles.

In	What	Order	Should	We	Explore	Nodes	of	the	Graph?

sa=	maxALL predecessors	bof	node	a{sb+	weight	of	edge	from	b to	a}

• Topological	 Ordering:	Ordering	of	nodes	of	a	DAG	on	a	line	
such	that	all	edges	go	from	left	to	right.

• Theorem:	Every	DAG	has	a	topological	ordering.

Topological	Ordering	

LongestPath

LongestPath(Graph,	 source,	sink)
for each	node	a in	Graph
sa ← -infinity	

ssource ← 0	
topologically	 order	Graph
for each	node	a	(from	source to	sink in	topological	order)	
sa← maxall predecessors	b of	node	a{sb+	weight	of	edge	from	b to	a}

return ssink

Mismatches	and	Indel Penalties	

#matches −	μ ·	#mismatches	−	σ ·	#indels
A T - G T T A T A
A T C G T - C – C
+1+1-2+1+1-2-3-2-3=-7

A C G T −
A +1 −µ −µ −µ -σ
C −µ +1 −µ −µ -σ
G −µ −µ +1 −µ -σ
T −µ −µ –µ +1 -σ
− -σ -σ -σ -σ

Scoring	matrix

A C G T −
A +1 −3 −5 −1 -3
C −4 +1 −3 −2 -3
G −9 −7 +1 −1 -3
T −3 −5 –8 +1 -4
− -4 -2 -2 -1
Even	more	general	scoring	matrix

Scoring	Matrices	for	Amino	Acid	Sequences	

7-5

Y	(Tyr)	often	mutates	into	F	(score	+7)
but	rarely	mutates	into	P	(score	-5)		

si-1,	j	+	weight	of	edge	“↓”	into	(i,j)
si,	j-1	 +	weight	of	edge	“→”	into	(i,j)
si-1,	j-1+	weight	of	edge	“↘”	into	(i,j)

Dynamic	Programming	Recurrence	for	the	
Alignment	Graph

si,	j=	max	 {

si-1,	j	 - σ	
si,	j-1	 - σ	
si-1,	j-1 + 1,	if vi=wj

si-1,	j-1 - μ,	if vi≠wj

Dynamic	Programming	Recurrence	for	the	
Alignment	Graph

si,	j=	max	 {

si-1,	j	+	score(vi,-)	
si,	j-1	 +	score(-,wj)	
si-1,	j-1+	score(vi,wj)	

Dynamic	Programming	Recurrence	for	the	
Alignment	Graph

si,	j=	max	 {

Global	Alignment

Global	Alignment	Problem:	Find	the	highest-scoring	
alignment	between	two	strings	by	using	a	scoring	matrix.

• Input: Strings	v andw as	well	as	a	matrix	score.

• Output: An	alignment	of	v and	w	whose	alignment	
score	(as	defined	by	the	scoring	matrix	score)	is	
maximal	among	all	possible	alignments	of	v and	w.

Which	Alignment	is	Better?	

• Alignment	1:	score	=	22	(matches)	- 20	(indels)=2.

• Alignment	2:	score	=	17 (matches)	- 30	(indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----

Which	Alignment	is	Better?	

• Alignment	1:	score	=	22	(matches)	- 20	(indels)=2.

• Alignment	2:	score	=	17 (matches)	- 30	(indels)=-13.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

---G----C-----C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-----A------T-----

local	alignment

G
C
C
C
A
G
T
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A
T G T C A G A T

GCC−C−AGT−TATGT-CAGGGGGCACG−−A−GCATGCAGA-
GCCGCC−GTCGT-T-TTCAG----CA−GTTATG−T−CAGAT

Global alignment

−−−G−−−−C−−−−−C−−CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG−−−−−A−−−−−−T −−−−

Local alignment

G
C
C
C
A
G
T
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A
T G T C A G A T

Local	Alignment

Global alignment

Local	Alignment=	Global	Alignment	in	a	Subrectangle

Global alignment

Compute	a	Global	
Alignment	within	
each	rectangle	to	
get	a	Local	
Alignment

Local	Alignment	Problem	

Local	Alignment	Problem:	Find	the	highest-scoring	local	
alignment	between	two	strings.

• Input: Strings	v and	w as	well	as	a	matrix	score.

• Output: Substrings	of	v and	w whose	global	alignment	
(as	defined	by	the	matrix	score),	is	maximal	among	all	
global	alignments	of	all	substrings	of	v and	w.

G
C
C
C
A
G
T
T
A
T
G
T
C
A
G
G
G
G
G
C
A
C
G
A
G
C
A
T
G
C
A
C
A

G C C G C C G T C G T T T T C A G C A G T T A
T G T C A G A T

GCC−C−AGT−TATGT-CAGGGGGCACG−−A−GCATGCACA-
GCCGCC−GTCGT-T-TTCAG----CA−GTTATG−T−CAGAT

Global alignment

−−−G−−−−C−−−−−C−−CAGTTATGTCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG−−−−−A−−−−−−T −−−−

Local alignment

Free	Taxi	Rides!	

What	Do	Free	Taxi	Rides	Mean	 in	the	Terms	of	the	Alignment	Graph?	

Building	Manhattan	for	the	Local	Alignment	Problem	

How	many	edges	have	we	added?

si-1,	j	+	weight	of	edge	“↓”	into	(i,j)
si,	j-1	 +	weight	of	edge	“→”	into	(i,j)
si-1,	j-1+	weight	of	edge	“↘”	into	(i,j)

Dynamic	Programming	for	the	Local	Alignment

si,	j=	max	 {

weight	of	edge	from	(0,0)	to	(i,j)

si-1,	j	+	weight	of	edge	“↓”	into	(i,j)
si,	j-1	 +	weight	of	edge	“→”	into	(i,j)
si-1,	j-1+	weight	of	edge	“↘”	into	(i,j)

Dynamic	Programming	for	the	Local	Alignment

si,	j=	max	 {

0

Scoring	Gaps

• We	previously	assigned	a	fixed	penalty	σ to	
each	indel.

• However,	this	fixed	penalty	may	be	too	severe	
for	a	series	of	100	consecutive	indels.

• A series	of	k indels often	represents	a	single	
evolutionary	event	(gap)	rather	than	k events:

GATCCAG GATCCAG
GA-C-AG GA--CAG

a	single	gap	
(higher	score)

two	gaps	
(lower	score)

More	Adequate	Gap	Penalties	

σ - the	gap	opening	penalty
ε - the	gap	extension	penalty
σ	>	ε,	since	starting	a	gap	should	be	penalized	
more	than	extending	it.

Affine	gap	penalty for	a	gap	of	length k:		σ+ε·(k-1)

Modelling	Affine	Gap	Penalties	by	Long	Edges

Building	Manhattan	with	Affine	Gap	Penalties

We	have	just	added	O(n3)	edges	to	the	graph…	

σ+ε σ+ε

σ+ε·2

Building	Manhattan	on	3	levels

bottom	level
(insertions)

middle	level
(matches/mismatches)

upper	level
(deletions)

σ

ε

σ

ε

0

0

loweri-1,j - ε	
middlei-1,j	 - σ

loweri,j =	max	{				

upperi,j-1 - ε	
middlei,j-1 - σ

upperi,j =	max	{																																																																																																																	

loweri,j
middlei-1,j-1 +	score(vi,wj)	 	
upperi,j

middlei,j =	max	{	

How	can	we	emulate	
this	path	in	the	3-level	
Manhattan?	

A

T

T

C

A

A

A								C								G								G A								A

Middle	Column	of	the	Alignment

middle	column
(middle=#columns/2)

A

T

T

C

A

A

A								C								G								G A								A

Middle	Node	of	the	Alignment

middle	node	
(a	node	where	an	optimal	alignment	path	crosses	the	middle	column)	

Divide	and	Conquer	Approach	to	Sequence	Alignment

AlignmentPath(source,	sink)
findMiddleNode A

T

T

C

A

A

A								C								G								G A								A

Divide	and	Conquer	Approach	to	Sequence	Alignment

AlignmentPath(source,	sink)
findMiddleNode
AlignmentPath(source,	MiddleNode)

A

T

T

C

A

A

A								C								G								G A								A

Divide	and	Conquer	Approach	to	Sequence	Alignment

The	only	problem	left	is	how	to	find	this	middle	node	in	linear	space!

AlignmentPath(source,	sink)
findMiddleNode
AlignmentPath(source,	MiddleNode)
AlignmentPath(MiddleNode,	sink)

A

T

T

C

A

A

A								C								G								G A								A

Computing	Alignment	Score	in	Linear	Space

Finding	the	longest	path	in	the	alignment	graph	
requires storing	all	backtracking	pointers	– O(nm)	
memory.	

Finding	the	length	of	the	longest	path	in	the	
alignment	graph	does	not	require	storing	any	
backtracking	pointers	– O(n)	memory.	

A										C										G										G										A										A

00 00 0 0

0 1 1 1 1 1

10 11 1 1

0 1 1 1 1 1

20 21 2 2

0 1 2 2 2 3

0

1

1

1

2

3

0 1 2 2 2 3 4

A

T

T

C

A

A

Recycling	the	Columns	in	the	Alignment	Graph

A

T

T

C

A

A

A								C								G								G A								A

Can	We	Find	the	Middle	Node	without	
Constructing	the	Longest	Path?	

i-path – a	longest	 	path	among	paths	that	visit	the	i-th node	in	the	middle	column

4-path that	visits	the	node	
(4,middle)	

In	the	middle	column	

2

4

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	All	i-paths?	

A								C								G								G A								A

length(i):
length	of	an	i-path:

length(0)=2
length(4)=4

2

3

3

3

4

3

1

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	All	i-paths?	

A								C								G								G A								A

2

3

3

3

4

3

1

A

T

T

C

A

A

Can	We	Find	The	Lengths	of	i-paths?	

length(i)=fromSource(i)+toSink(i)

length(i):
length	of	an	i-path		

A								C								G								G A								A

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

A								C								G								G A								A
2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A

A								C								G								G A								A

0

fromSource(i)

Computing	FromSource and	toSink

toSink(i)

00 00

0 1 1 1

10 11

0 1 1 1

20 21

0 1 2 2

0 1 2 2

A

T

T

C

A

A

2 2 1

2 2 1

2 2 1

2 2 1

2 2 1

1 1 1

0

0

0

0

0

0

0 0 0

A

T

T

C

A

A
0

How	Much	Time	Did	It	Take	to	Find	the	Middle	Node	?		

area/2 area/2area/2+area/2=area

A								C								G								G A								A A								C								G								G A								A

fromSource(i) toSink(i)

A

C

T

T

A

A

T

T

G								A								G								C								A								A T									T

Laughable	Progress:	O(nm)	Time	to	Find	ONE Node!		

How	much	time	would	it	take	to	conquer	2	subproblems?	

Each	subproblem
can	be	conquered	

in	time	
proportional	to	

its	area:	

area/4+area/4=
area/2

A

C

T

T

A

A

T

T

G								A								G								C								A								A T									T

Laughable	Progress:	O(nm+nm/2)	Time	to	Find	THREENodes!		

How	much	time	would	it	take	to	conquer	4	subproblems?	

Each	subproblem
can	be	conquered	

in	time	
proportional	to	

its	area:	

area/8+area/8+
area/8+area/8=

area/4

A

C

T

T

A

A

T

T

G								A								G								C								A								A T									T

O(nm+nm/2+nm/4)	Time	to	Find	NEARLY	ALL	Nodes!		

How	much	time	would	it	take	to	conquer	ALL	subproblems?	

area+
area/2
+area/4
+area/8
+area/16
+….+
<

2·area

Total	Time:	area+area/2+area/4+area/8+area/16+…

1	+	½	+	¼	+...		<	2

1st	pass:	1	area

2nd pass:	1/2

3rd pass:	1/4

4th pass:	1/8

A

C

T

T

A

A

T

T

G A G C A A T
T

The	Middle	Edge		

Middle	Edge:	
an	edge	in	an	

optimal	
alignment	path	
starting	at	the	
middle	node	

The	Middle	Edge	Problem	

Middle	Edge	in	Linear	Space	Problem. Find	a	middle	edge	
in	the	alignment	graph	in	linear	space.

• Input: Two	strings	and	matrix	score.	

• Output: A	middle	edge	in	the	alignment	graph	of	
these	strings	(as	defined	by	the	matrix	score).

A

C

T

T

A

A

T

T

G A G C A A T
T

A

C

T

T

A

A

T

T

G A G C A A T
T

LinearSpaceAlignment(top,bottom,left,right)
if left	=	right
return alignment	formed	by	bottom-top edges	“↓”

middle	←	⌊(left+right)/2⌋
midNode ←	MiddleNode(top,bottom,left,right)
midEdge ←		MiddleEdge(top,bottom,left,right)	 		
LinearSpaceAlignment(top,midNode,left,middle)
output midEdge
if midEdge =	“→“	or midEdge =	“↘”
middle		←	middle+1

if midEdge =	“↓“	or midEdge =	“↘”
midNode ←	midNode+1

LinearSpaceAlignment(midNode,bottom,middle,right)

Recursive	LinearSpaceAlignment

Generalizing	Pairwise	to	Multiple	Alignment

• Alignment	of	2	sequences	is	a	2-row	matrix.
• Alignment	of	3	sequences	is	a	3-row	matrix

A T - G C G -
A - C G T - A
A T C A C - A

• Our	scoring	function	should	score	alignments	with	
conserved	columns	higher.

A A T -- C

A -- T G C

-- A T G C

Alignments	=	Paths	in	3-D

• Alignment	of	ATGC,	AATC,	and	ATGC

0 1 1 2 3 4 #symbols	up	to	a	given	position	

0 1 2 3 3 4

A A T -- C

A -- T G C

-- A T G C

Alignments	=	Paths	in	3-D

• Alignment	of	ATGC,	AATC,	and	ATGC

0 1 1 2 3 4

0 1 2 3 3 4

0 0 1 2 3 4

(0,0,0)→(1,1,0)→(1,2,1)	→(2,3,2)	→(3,3,3)	→(4,4,4)

(i-1,j-1,k-1)

(i,j-1,k-1)

(i,j-1,k)

(i-1,j-1,k) (i-1,j,k)

(i,j,k)

(i-1,j,k-1)

(i,j,k-1)2-D

2-D	Alignment	Cell	versus	3-D	Alignment	Cell	

• δ(x, y, z) is	an	entry	in	the	3-D	scoring	matrix.

Multiple	Alignment:	Dynamic	Programming

()
()
()
()
()
()
()⎪

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−+

−−+

−−+

−+

−+

−+

+

=

−

−

−

−−

−−

−−

−−−

kkji

jkji

ikji

kjkji

kikji

jikji

kjikji

kji

us
ws

vs
uws
uvs

wvs
uwvs

s

,,

,,

,,

,,

,,

,,

,,

max

1,,

,1,

,,1

1,1,

1,,1

,1,1

1,1,1

,,

δ

δ

δ

δ

δ

δ

δ

Multiple	Alignment:	Running	Time

• For	3	sequences	of	length	n,	the	run	time	is	
proportional	to	7n3

• For	a	k-way	alignment,	build	a	k-dimensional	
Manhattan	graph	with
– nk nodes
– most	nodes	have	2k – 1	incoming	edges.		
– Runtime:	O(2knk)

Multiple	Alignment	Induces	Pairwise	Alignments

Every	multiple	alignment	induces	pairwise	alignments:		
A C- G CG G- C
A C- G C- GA G
G CC G C- GA G

ACGCGG-C AC-GCGG-C AC-GCGAG
ACGC-GAC GCCGC-GAG GCCGCGAG

Idea:	Construct	Multiple	from	Pairwise	Alignments

Given	a	set	of	arbitrary pairwise	alignments,	can	
we	construct	a	multiple	alignment	that	induces	
them?

AAAATTTT---- ----AAAATTTT TTTTGGGG----
----TTTTGGGG GGGGAAAA---- ----GGGGAAAA

• In	the	past	we	were	aligning	a	sequence	
against	a	sequence.
– Can	we	align	a	sequence	against	a	profile?	
– Can	we	align	a	profile	against	a	profile?	

Aligning	Profile	Against	Profile

- A G G C T A T C A C C T G
T A G – C T A C C A - - - G
C A G – C T A C C A - - - G
C A G – C T A T C A C – G G
C A G – C T A T C G C – G G

A 0 1 0 0 0 0 1 0 0 .8 0 0 0 0
C .6 0 0 0 1 0 0 .4 1 0 .6 .2 0 0
G 0 0 1 .2 0 0 0 0 0 .2 0 0 .4 1
T .2 0 0 0 0 1 0 .6 0 0 0 0 .2 0
- .2 0 0 .8 0 0 0 0 0 0 .4 .8 .4 0

• Choose	the	most	similar	sequences	and	
combine	them	into	a	profile,	thereby	reducing	
alignment	of	k sequences	to	an	alignment	of	
of	k	– 2 sequences	and	1	profile.

• Iterate

Multiple	Alignment:	Greedy	Approach

• Sequences:	GATTCA,	GTCTGA,	GATATT,	GTCAGC.

• 6	pairwise	alignments	(premium	for	match +1,	
penalties	for	indels and	mismatches	-1)	

s2 GTCTGA
s4 GTCAGC (score = 2)

s1 GAT-TCA
s2 G-TCTGA (score = 1)

s1 GAT-TCA
s3 GATAT-T (score = 1)

s1 GATTCA--
s4 G—T-CAGC (score = 0)

s2 G-TCTGA
s3 GATAT-T (score = -1)

s3 GAT-ATT
s4 G-TCAGC (score = -1)

Greedy Approach: Example

• Since s2 and s4 are	closest,	we	consolidate	them	
into	a	profile:

• New	set	of	3	sequences	to	align:

s2 GTCTGA
s4 GTCAGC

s2,4 = GTCt/aGa/cA

s1 GATTCA
s3 GATATT
s2,4 GTCt/aGa/c

Greedy	Approach:	Example

105 bifurcationi,j pair j unpairedi unpaired

i j
j-1i+1

i
ji+1

j
j-1i

i k

jk+1

RNA Secondary Structure
• Secondary Structure :

– Set of paired positions on interval [i,j]
– This tells which bases are paired in the subsequence from xi to xj

• Every optimal structure can be built by extending optimal substructures.
• Suppose we know all optimal substructures of length less than j-i+1.

The optimal substructure for [i,j] must be formed in one of four ways:
1. i,j paired
2. i unpaired
3. j unpaired
4. combining two substructures

Note that each of these consists of extending or joining substructures of
length less than j-i+1.

Example: GGGAAAUCC

0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

G G G A A A U C C
j

i

G
 G

 G
 A A A U

 C

0i)(i, & 01)-i(i, == γγtionInitialisa

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

U

A A

C
A

C
G
G

G

The	Nussinov	Folding	Algorithm

Starting	with	all	subsequences	of
length	2,	to	length	L:

Where	δ(i,j) = 1 if xi and	xj
are	a	complementary	base	pair,
and	δ(i,j) =	0,	otherwise.

γ(i,j) is	the	maximum	number
of	base	pairs	in	segment [i,j]

Nussinov Folding Algorithm:
After scores for subsequences of length 2

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 1
0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm:
After scores for subsequences of length 3

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 1

0 0 1 0
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
After scores for subsequences of length 4

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Two	optimal	substructures	for	same	subsequence

Nussinov Folding Algorithm
After scores for subsequences of length 5

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
After scores for subsequences of length 6

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 1 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
After scores for subsequences of length 7

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1

0 0 0 0 0 0 1 2
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
After scores for subsequences of length 8

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
After scores for subsequences of length 9

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

+

=

<< j)]1,(kk)(i,[max
j)(i,1)-j1,(i

1)-j(i,
j)1,(i

max

j)(i,

jki γγ

δγ

γ

γ

γ

Nussinov Folding Algorithm
Traceback

G G G A A A U C C

G
 G

 G
 A A A U

 C

i

j

U

A A

C
A

C
G
G

G

0 0 0 0 0 0 1 2 3

0 0 0 0 0 0 1 2 3
0 0 0 0 0 1 2 2

0 0 0 0 1 1 1
0 0 0 1 1 1

0 0 1 1 1
0 0 0 0

0 0 0
0 0

Nussinov algorithm	
(a	different	example):	
fill-stage

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9
Pink: joining of substructures 1..4 and 5..8

Green: addition of paired bases 1,7

Blue: addition of unpaired base 3 or 7

Scoring system:
δ(i,j) = 1 for all RNA Watson-Crick base-
pairs including G-U else δ(i,j) = 0.

Nussinov	algorithm:	
trace-back

0 0 1 2 2 2 3 4 4

0 0 1 1 1 2 2 3 3

0 0 0 0 1 1 2 2

0 0 0 1 1 2 2

0 0 0 1 2 2

0 0 1 1 1

0 0 0 0

0 0 0

0 0

G G C C A G U U C

1 2 3 4 5 6 7 8 9

G 1

G 2

C 3

C 4

A 5

G 6

U 7

U 8

C 9

current record stack
1,9

1,9 1,8
1,8 1,4 5,8
1,4 1,4 2,3 5,8
2,3 2,3 3,2 5,8
3,2 5,8
5,8 5,8 6,7
6,7 6,7 7,6
7,6

Phylogeny
Outline

• Transforming Distance Matrices into Evolutionary Trees

• Toward an Algorithm for Distance-Based Phylogeny Construction

• Additive Phylogeny

• Using Least-Squares to Construct Distance-Based Phylogenies

• Ultrametric Evolutionary Trees

• The Neighbor-Joining Algorithm

• Character-Based Tree Reconstruction

• The Small Parsimony Problem

• The Large Parsimony Problem

• Back to the alignment: progressive alignment

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

Di,j = number of differing symbols between i-th and
j-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

Di,j = number of differing symbols between i-th and
j-th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Constructing a Distance Matrix

How else could we form a distance matrix?

Di,j = number of differing symbols between i-th and
j-th rows of a multiple alignment.

cnidarians

flowering !
seed plants

non-flowering!
seed plants

sponges

bacteria

archaebacteria

protoctists

green algae

ferns

mosses

fungi

ANIMALS

PLANTS

EUKARYOTES

LIFE

flatworms

rotifers roundworms lophophorates

snakes!
& lizards

crocodiles!
& birds

ARTHROPODS

echinoderms

VERTEBRATES

mollusks segmented!
worms

chelicerates

crustaceans insects

cartilaginous!
fish

bony fish

TETRAPODS

amphibians

AMNIOTES

mammals

turtles

Leaves (degree = 1):
present-day species

Internal nodes
(degree ≥ 1):
ancestral species

Tree: Connected
graph containing
no cycles.

Trees

Present Day

Most Recent Ancestor

TIME

Rooted tree: one node is designated as the root
(most recent common ancestor)

Trees

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The unrooted tree “fitting” this distance

matrix.

Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

Fitting a Tree to a Matrix

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The unrooted tree fitting this distance

matrix.

Return to Distance-Based Phylogeny

Now is this problem well-defined?

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Try fitting a tree to the following
matrix.

Return to Distance-Based Phylogeny

No Tree Fits a Matrix

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Try fitting a tree to the following
matrix.

Additive matrix: distance matrix such that there
exists an unrooted tree fitting it.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

More Than One Tree Fits a Matrix

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Chimp

1

1
3

1.5

0

Seal
0.5

More Than One Tree Fits a Matrix

Human 1

Whale

Seal

Human

Chimp

2

1
3

2

0

Which Tree is “Better”?

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix.

Distance-Based Phylogeny Problem: Construct an
evolutionary tree from a distance matrix.
• Input: A distance matrix.
• Output: The simple tree fitting this distance

matrix (if this matrix is additive).

Reformulating Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

Human

Chimp

2

1
3

2

0

An Idea for Distance-Based Phylogeny

Seal and whale are neighbors (meaning they share
the same parent).

Whale

Seal

Human

Chimp

2

1
3

2

0

An Idea for Distance-Based Phylogeny

Theorem: Every simple tree with at least two nodes
has at least one pair of neighboring leaves.

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

How do we compute
the unknown
distances?

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Toward a Recursive Algorithm

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Toward a Recursive Algorithm

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
di,m = (Di,k + Di,j – Dj,k) / 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
di,m = (Di,k + Di,j – Dj,k) / 2

m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
dSeal,m = (DSeal,Chimp + DSeal,Whale – DWhale,Chimp) / 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal

?

m

dSeal,m
Chimp

Chimp

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
dSeal,m = 2

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

Chimp

An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Whale

Seal
2

0

m

4

2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0

m 4 5 2 0 0

Chimp
4

Human 5

Human 5

Chimp
4 2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5

Seal 6 7 0 2 2
Whale 4 5 2 0 0

m 4 5 2 0 0

Human 5

Chimp
4 2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

?

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
dChimp,a = (DChimp,m + DChimp,Human – DHuman,m) / 2

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

?

1

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
dChimp,a = 1

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

2

1

a

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

Chimp Human m

Chimp 0 3 4
Human 3 0 5

m 4 5 0

2

1

a
3

Human

Chimp
2

An Idea for Distance-Based Phylogeny

Whale

Seal

0

m

2

1

a
3

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Exercise Break: Apply this recursive approach to the
distance matrix below.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

An Idea for Distance-Based Phylogeny

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

What Was Wrong With Our Algorithm?

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

What Was Wrong With Our Algorithm?

j

i k

l

11

2

4
6

7

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

j

i k

l

11

2

4
6

7

What Was Wrong With Our Algorithm?

minimum
element is Dj,k

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

minimum
element is Dj,k

j and k are
not neighbors!

j

i k

l

11

2

4
6

7

What Was Wrong With Our Algorithm?

Rather than trying to find neighbors, let’s instead try
to compute the length of limbs, the edges attached
to leaves.

From Neighbors to Limbs

j

i k

l

?

?

4
?

?

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

From Neighbors to Limbs

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2
di,m = Di,k – (Di,k + Dj,k – Di,j) / 2
di,m = (Di,k + Di,j – Dj,k) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

∴

From Neighbors to Limbs

Assumes that i and
j are neighbors...

Code Challenge: Solve the Limb Length Problem.

Computing Limb Lengths

Limb Length Problem: Compute the length of a limb
in the simple tree fitting an additive distance matrix.
• Input: An additive distance matrix D and an

integer j.
• Output: The length of the limb connecting leaf j

to its parent, LimbLength(j).

Limb Length Theorem: LimbLength(i) is equal to the
minimum value of (Di,k + Di,j – Dj,k)/2 over all leaves
j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j –
Dchimp,k)/2 over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j –
Dchimp,k)/2 over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dchimp, human + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dchimp, human + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1

(Dchimp, whale + Dchimp, seal – Dwhale, seal) / 2 = (6 + 4 – 2) / 2 = 4

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j –
Dchimp,k)/2 over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

(Dhuman, chimp + Dchimp, seal – Dhuman, seal) / 2 = (3 + 6 – 7) / 2 = 1

(Dhuman, chimp + Dchimp, whale – Dhuman, whale) / 2 = (3 + 4 – 5) / 2 = 1

(Dwhale, chimp + Dchimp, seal – Dwhale, seal) / 2 = (6 + 4 – 2) / 2 = 4

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j –
Dchimp,k)/2 over all leaves j and k.

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Computing Limb Lengths

Whale

Seal

Human

Chimp

2

1
3

2

0

Limb Length Theorem: LimbLength(chimp) is equal
to the minimum value of (Dchimp,k + Dchimp,j –
Dchimp,k)/2 over all leaves j and k.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D
j

i k

l

11

2

4
6

7

TREE(D)

AdditivePhylogeny In Action

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

1. Pick an arbitrary leaf j.

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

LimbLength(j) = 2

2. Compute its limb length, LimbLength(j).

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

AdditivePhylogeny In Action

j

i k

l

11
4

6

70

TREE(Dbald)

3. Subtract LimbLength(j) from each row and column
to produce Dbald in which j is a bald limb (length 0).

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dtrim

AdditivePhylogeny In Action

4. Remove the j-th row and column of the matrix to
form the (n – 1) x (n – 1) matrix Dtrim.

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dtrim

AdditivePhylogeny In Action

5. Construct Tree(Dtrim).

i

k

l

15
6

7

TREE(Dtrim)

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

AdditivePhylogeny In Action

6. Identify the point in Tree(Dtrim) where leaf j should
be attached.

j

i k

l

11
4

6

70

TREE(Dbald)

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

D

AdditivePhylogeny In Action

LimbLength(j) = 2

j

i k

l

11

2

4
6

7

TREE(D)

7. Attach j by an edge of length LimbLength(j) in
order to form Tree(D).

AdditivePhylogeny(D):
1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5. Construct Tree(Dtrim).
6. Identify the point in Tree(Dtrim) where leaf j should

be attached.
7. Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

AdditivePhylogeny

AdditivePhylogeny(D):
1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5. Construct Tree(Dtrim).
6. Identify the point in Tree(Dtrim) where leaf j should

be attached.
7. Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

AdditivePhylogeny

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald i

k

l

15
6

7

TREE(Dtrim)

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald

i,j + Dbald
j,k –

Dbald
i,k)/2 over all leaves i and k.

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0

i

k

l

15
6

7

TREE(Dtrim)

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (Dbald

i,j + Dbald
j,k –

Dbald
i,k)/2 over all leaves i and k.

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

(Dbald
i,j + Dbald

j,k – Dbald
i,k)/2 = 0

Dbald
i,j + Dbald

j,k = Dbald
i,k

i

k

l

15
6

7

TREE(Dtrim)

Attaching a Limb

i j k l

i 0 11 21 22

j 11 0 10 11

k 21 10 0 13

l 22 11 13 0

Dbald

j

i k

l

11
4

6

70

TREE(Dbald)

The attachment point for j is found on the path
between leaves i and k at distance Dbald

i,j from i.

Dbald
i,j + Dbald

j,k = Dbald
i,k

AdditivePhylogeny

Code Challenge: Implement AdditivePhylogeny.

AdditivePhylogeny(D):
1. Pick an arbitrary leaf j.
2. Compute its limb length, LimbLength(j).
3. Subtract LimbLength(j) from each row and column to

produce Dbald in which j is a bald limb (length 0).
4. Remove the j-th row and column of the matrix to

form the (n – 1) x (n – 1) matrix Dtrim.
5. Construct Tree(Dtrim).
6. Identify the point in Tree(Dtrim) where leaf j should

be attached.
7. Attach j by an edge of length LimbLength(j) in order

to form Tree(D).

j

i k

l

T
1.5

1.5

1

1

1.5

Discrepancy(T, D) = Σ1≤ i < j ≤ n (di,j(T) – Di,j)2

= 12 + 12 = 2

Sum of Squared Errors

D d

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

i j k l

i 0 3 4 4

j 3 0 4 4

k 4 4 0 2

l 4 4 2 0

j

i k

l

T
?

?

?

?

?

D d

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

i j k l

i 0 ? ? ?

j ? 0 ? ?

k ? ? 0 ?

l ? ? ? 0

Exercise Break: Assign lengths to edges in T in order
to minimize Discrepancy(T, D).

Sum of Squared Errors

Least-Squares Distance-Based Phylogeny Problem:
Given a distance matrix, find the tree that minimizes
the sum of squared errors.
• Input: An n x n distance matrix D.
• Output: A weighted tree T with n leaves

minimizing Discrepancy(T, D) over all weighted
trees with n leaves.

Least-Squares Phylogeny

Unfortunately, this problem is NP-Complete...

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

23
33

10

10

6

1

22
6

edge weights: correspond
to difference in ages on the
nodes the edge connects.

Ultrametric Trees

33

23

13

7

6

2

Rooted binary tree: an
unrooted binary tree with
a root (of degree 2) on
one of its edges.

Ultrametric tree: distance
from root to any leaf is the
same (i.e., age of root).

Baboon Orangutan Gorilla Chimpanzee Bonobo HumanSquirrel
Monkey

Ultrametric Trees

23
33

10

10

6

1

22
6

33

23

13

7

6

2

UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species, each
containing a single leaf.

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
i j k l 0000

UPGMA: A Clustering Heuristic

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

2. Find the two closest clusters C1 and C2 according
to the average distance

Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|
where |C| denotes the number of elements in C.

i j k l 0000

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

3. Merge C1 and C2 into a single cluster C.

UPGMA: A Clustering Heuristic

{ k, l }

i j k l

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0
0000

4. Form a new node for C and connect to C1 and C2

by an edge. Set age of C as Davg(C1, C2)/2.

UPGMA: A Clustering Heuristic

{ k, l }
1

11

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ k, l }

UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

1.5

1.51.5

i j k l 0000

1

11

i j { k, l }

i 0 3 3.5

j 3 0 4.5

{ k, l } 3.5 4.5 0

{ i, j }

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

1.5

1.51.5

i j k l 0000

1

11

{ i, j }
{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

{i, j} { k, l }

{i, j} 0 4

{ k, l } 4 0

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

UPGMA: A Clustering Heuristic

6. Iterate until a single cluster contains all species.

UPGMA: A Clustering Heuristic

UPGMA(D):
1. Form a cluster for each present-day species, each

containing a single leaf.
2. Find the two closest clusters C1 and C2 according to the

average distance
Davg(C1, C2) = Σi in C1, j in C2 Di,j / |C1| � |C2|

where |C| denotes the number of elements in C
3. Merge C1 and C2 into a single cluster C.
4. Form a new node for C and connect to C1 and C2 by an

edge. Set age of C as Davg(C1, C2)/2.
5. Update the distance matrix by computing the average

distance between each pair of clusters.
6. Iterate steps 2-5 until a single cluster contains all species.

i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

i j k l

1

11

1.5

1.51.5

2

1

0.5

0000

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

UPGMA Doesn’t “Fit” a Tree to a Matrix

• AdditivePhylogeny:
– good: produces the tree fitting an additive matrix
– bad: fails completely on a non-additive matrix

• UPGMA:
– good: produces a tree for any matrix
– bad: tree doesn’t necessarily fit an additive matrix

• ?????:
– good: produces the tree fitting an additive matrix
– good: provides heuristic for a non-additive matrix

In Summary...

Neighbor-Joining Theorem

Given an n x n distance matrix D, its neighbor-joining
matrix is the matrix D* defined as

where TotalDistanceD(i) is the sum of distances from i
to all other leaves.

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

D*

D*i,j = (n – 2)�Di,j – TotalDistanceD(i) – TotalDistanceD(j)

Neighbor-Joining Theorem

D

TotalDistanceD

56

38

46

48

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

D*

Neighbor-Joining Theorem: If D is additive, then the
smallest element of D* corresponds to neighboring
leaves in Tree(D).

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

1. Construct neighbor-joining matrix D* from D.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

2. Find a minimum element D*i,j of D*.

Neighbor-Joining in Action

D*

TotalDistanceD

56

38

46

48

i j k l

i 0 -68 -60 -60

j -
68

0 -60 -60

k -
60

-60 0 -68

l -
60

-60 -68 0

3. Compute Δi,j = (TotalDistanceD(i) –
TotalDistanceD(j)) / (n – 2).

Δi,j = (56 – 38) / (4 – 2)
= 9

Neighbor-Joining in Action

TotalDistanceD

56

38

46

48

4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and
LimbLength(j) equal to ½(Di,j – Δi,j).

Δi,j = (56 – 38) / (4 – 2)
= 9

D

i j k l

i 0 13 21 22

j 13 0 12 13

k 21 12 0 13

l 22 13 13 0

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

Neighbor-Joining in Action

5. Form a matrix D’ by removing i-th and j-th
row/column from D and adding an m-th row/column
such that for any k, Dk,m = (Di,k + Dj,k – Di,j) / 2.

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

TotalDistanceD

21

23

24

j

i

m

kdi, k = di, m + dk, m

dj, k = dj, m + dk, m

di, j = di, m + dj, m

Flashback: Computation of dk,m

dk,m = (di,k + dj,k – di,j) / 2
dk,m = (Di,k + Dj,k – Di,j) / 2

dk,m = [(di,m + dk,m) + (dj,m + dk,m) – (di,m + dj,m)] / 2

Neighbor-Joining in Action

6. Apply NeighborJoining to D’ to obtain Tree(D’).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

j

i

m

k

4
6

7
l

Tree(D’)

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

LimbLength(i) = ½(13 + 9) = 11
LimbLength(i) = ½(13 – 9) = 2

j

i k

l

11

2

4
6

7

Neighbor-Joining in Action

7. Reattach limbs of i and j to obtain Tree(D).

m k l

m 0 10 11

k 10 0 13

l 11 13 0

D’

Tree(D)

NeighborJoining(D):
1. Construct neighbor-joining matrix D* from D.
2. Find a minimum element D*i,j of D*.
3. Compute Δi,j = (TotalDistanceD(i) – TotalDistanceD(j)) / (n

– 2).
4. Set LimbLength(i) equal to ½(Di,j + Δi,j) and LimbLength(j)

equal to ½(Di,j – Δi,j).
5. Form a matrix D’ by removing i-th and j-th row/column

from D and adding an m-th row/column such that for any
k, Dk,m = (Dk,i + Dk,j – Di,j) / 2.

6. Apply NeighborJoining to D’ to obtain Tree(D’).
7. Reattach limbs of i and j to obtain Tree(D).

Neighbor-Joining

Code Challenge: Implement NeighborJoining.

Neighbor-Joining

i j k l

i 0 3 4 3

j 3 0 4 5

k 4 4 0 2

l 3 5 2 0

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive
matrix. How does the result compare with the tree
produced by UPGMA?

D

2

1

0.5

1.5

1.51.5

i j k l 0000

1

11

UPGMA
tree

We lost information when we converted a multiple
alignment to a distance matrix...

Weakness of Distance-Based Methods

SPECIES ALIGNMENT DISTANCE MATRIX

Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 5

Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

An Alignment As a Character Table

n species

m characters

SPECIES ALIGNMENT

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

n species

m characters

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

?????????? ??????????

??????????

Chimp Human Seal Whale

Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT

Seal TCGAGAGCAC
Whale TCGAAAGCAT

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along
each edge.

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

21

2

02

1

Parsimony score: sum of Hamming distances along
each edge.

Parsimony Score: 8

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
• Input: A rooted binary tree with each leaf labeled

by a string of length m.
• Output: A labeling of all other nodes of the tree

by strings of length m that minimizes the tree’s
parsimony score.

Toward a Computational Problem

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
• Input: A rooted binary tree with each leaf labeled

by a string of length m.
• Output: A labeling of all other nodes of the tree

by strings of length m that minimizes the tree’s
parsimony score.

Toward a Computational Problem

Is there any way we can simplify this problem
statement?

Small Parsimony Problem: Find the most
parsimonious labeling of the internal nodes of a
rooted tree.
• Input: A rooted binary tree with each leaf labeled

by a single symbol.
• Output: A labeling of all other nodes of the tree

by single symbols that minimizes the tree’s
parsimony score.

Toward a Computational Problem

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

Toward a Computational Problem

v

A Dynamic Programming Algorithm

Let Tv denote the subtree of T
whose root is v.

Tv

Define sk(v) as the minimum
parsimony score of Tv over
all labelings of Tv, assuming
that v is labeled by k.

The minimum parsimony score for the tree is equal to
the minimum value of sk(root) over all symbols k.

Exercise Break: Prove the following recurrence
relation:

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A Dynamic Programming Algorithm

For symbols i and j, define
• δi,j = 0 if i = j
• δi,j = 1 otherwise.

v

Tv

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 2 1

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

2 1 2 1

A! C G T!

2 2 0 2

A! C G T!

1 1 2 2

A! C G T!

2 0 2 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

sk(v) = minall symbols i {si(Daughter(v)) + δi,k} + minall symbols i {si(Son(v)) + δj,k}

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

A Dynamic Programming Algorithm

Exercise Break: “Backtrack” to fill in the remaining
nodes of the tree.

A Dynamic Programming Algorithm

A! C G T!

� 0 � �

A! C G T!

� 0 � �

A! C G T!

0 � � �

A! C G T!

� 0 � �

A! C G T!

� � 0 �

A! C G T!

� � 0 �

A! C G T!

� 0 � �

A! C G T!

� � � 0

A! C G T!

2 0 2 2

A! C G T!

1 1 2 2

A! C G T!

2 2 0 2

A! C G T!

2 1 3 3

A! C G T!

3 2 2 2

A! C G T!

5 3 4 4

A! C G T!

2 1 2 1

C!

C! C! A! C! G! G! T! C!

C! C!

G! C!C!C!

Code Challenge: Solve the Small Parsimony
Problem.

Cow

Pig

Horse

Mouse

Palm Civet

Human

Turkey

Dog

Cat

Exercise Break: Apply SmallParsimony to this tree to
reconstruct ancestral coronavirus sequences.

Small Parsimony in an Unrooted Tree Problem: Find
the most parsimonious labeling of the internal nodes
of an unrooted tree.
• Input: An unrooted binary tree with each leaf

labeled by a string of length m.
• Output: A position of the root and a labeling of

all other nodes of the tree by strings of length m
that minimizes the tree’s parsimony score.

Code Challenge: Solve this problem.

Small Parsimony for Unrooted Trees

ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

ACGTAAGCCT TCGAAAGCAT

ACGAAAGCCT

Chimp Human Seal Whale

21

2

02

1

Finding the Most Parsimonious Tree

Parsimony Score: 8

ACGTAGGCCT ATGTAAGACTTCGAGAGCAC TCGAAAGCAT

42

0

23

0

Chimp HumanSeal Whale

ACGTAAGCAT ACGTAAGCAT

ACGTAAGCAT

Parsimony Score: 11

Finding the Most Parsimonious Tree

ACGTAGGCCT ATGTAAGACT TCGAGAGCACTCGAAAGCAT

31

2

52

1

Chimp Human SealWhale

ACGTAAGCCT ACGTAAGCCT

ACGTAAGCCT

Parsimony Score: 14

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimizes

the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of strings,
find a tree (with leaves labeled by all these strings)
having minimum parsimony score.
• Input: A collection of strings of equal length.
• Output: A rooted binary tree T that minimizes

the parsimony score among all possible rooted
binary trees with leaves labeled by these strings.

Finding the Most Parsimonious Tree

Unfortunately, this problem is NP-Complete...

A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

Z

YW

X

w

x

a b

y

z

A Greedy Heuristic for Large Parsimony

Z

YW

X

w

x

a b

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

YW

X

w

x

y

z

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, Z).

A Greedy Heuristic for Large Parsimony

Z

Y W

X Z

X W

Y

X

Y W

Z

w

x

a b

y

z

w

z

a b

y

x

w

y

a b

x

z

Rearranging these subtrees is called a nearest
neighbor interchange.

Nearest Neighbors of a Tree Problem: Given an
edge in a binary tree, generate the two neighbors of
this tree.
• Input: An internal edge in a binary tree.
• Output: The two nearest neighbors of this tree

(for the given internal edge).

Code Challenge: Solve this problem.

A Greedy Heuristic for Large Parsimony

Code Challenge: Implement the nearest-neighbor
interchange heuristic.

A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:
1. Set current tree equal to arbitrary binary rooted

tree structure.
2. Go through all internal edges and perform all

possible nearest neighbor interchanges.
3. Solve Small Parsimony Problem on each tree.
4. If any tree has parsimony score improving over

optimal tree, set it equal to the current tree.
Otherwise, return current tree.

Back to alignment: progressive alignment

Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is CLUSTALW

Progressive Alignment

Clustalw:
1. Given N sequences, align each sequence against

each other.
2. Use the score of the pairwise alignments to

compute a distance matrix.
3. Build a guide tree (tree shows the best order of

progressive alignment).
4. Progressive Alignment guided by the tree.

Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment (compare the
alignments on the left and right)

Progressive Alignment
The progressive alignment builds a final alignment by
merging sub-alignments (bottom to top) with a guide tree

Progressive Alignment

Implementation: http://www.ebi.ac.uk/Tools/msa/

Small section (3 columns) of the
alignment of 4 sequences

Approximate Search
It is common to observe strong sequence similarity between a
gene (or a protein) and its counterpart in another species.
The Basic Local Alignment Search Tool (BLAST) is a computer
program for finding regions of local similarity between two
DNA or protein sequences. It is designed for comparing a
query sequence against a target database. It is a heuristic that
finds short matches between query and database sequences
and then attempts to start alignments from these seed hits.
BLAST is arguably the most widely used program in
bioinformatics. By sacrificing sensitivity for speed, it makes
sequence comparison practical on huge sequence databases
currently available.

Approximate Search
On the right there is an
example of BLAST output
for the following task: a
query (an unknown gene
sequence) is compared
with other sequences with
known functions in a
database. Perfect hits are
red colored. Regions that
were weaker in match are
pink, green, or blue

Approximate Search
BLAST is an alignment algorithm which runs in O(n) time.
The key to BLAST is that we only actually care about
alignments that are very close to perfect. A match of 70% is
worthless; we want something that matches 95% or 99% or
more. What this means is that correct (near perfect) alignments
will have long substrings of nucleotides that match perfectly.
Most popular Blast-wise algorithms use a seed-and-extend
approach that operates in two steps: 1. Find a set of small
exact matches (called seeds) 2. Try to extend each seed match
to obtain a long inexact match.

Approximate Search

BLAST provides a trade off between speed and sensitivity, by setting
a ”threshold” parameter T. A higher value of T yields greater speed,
but also an increased probability of missing weak similarities (the
figure shows an example with protein query; it shows perfect
matches and nearly perfect matches, +).

Approximate Search
To speed up the homology search process, BLAST employs a
filtration strategy: it first scans the database for length-w word
matches of alignment score at least T between the query and
target sequences and then extends each match in both ends to
generate local alignments (in the sequences) with score larger
than a threshold x.
The matches are called high-scoring segment pairs (HSPs).
BLAST outputs a list of HSPs together with E-values that
measure how frequent such HSPs would occur by chance.
A HSP has the property that it cannot be extended further to
the left or right without the score dropping significantly below
the best score achieved on part of the HSP.
Try http://blast.ncbi.nlm.nih.gov/Blast.cgi

Approximate Search
Assume that the length m and n of the query and database
respectively are sufficiently large; a segment-pair (s, t) consists of
two segments, one in m and one in n, of the same length. We think
of s and t as being aligned without gaps and score this alignment;
the alignment score for (s, t) is denoted by σ(s, t).
Given a cutoff score x, a segment pair (s, t) is called a high-scoring
segment pair (HSP), if it is locally maximal and σ(s, t) ≥ x and the
goal of BLAST is to compute all HSPs.
The BLAST algorithm has three parameters: the word size W, the
word similarity threshold T and the minimum match score x (cutoff
score).
BLAST outputs a list of HSPs together with E-values that measure
how frequent such HSPs would occur by chance. The E-value is
calculated with respect of a database with similar size and random
data. E-value close to zero means that the sequence is almost
identical to the query.

Approximate Search
The list of all words of length W that have similarity ≥ T to
some word in the query sequence m is generated. The
database sequence n is scanned for all hits t of words s in the
list. Each such seed (s, t) is extended until its score σ(s, t) falls a
certain distance below the best score found for shorter
extensions and then all best extensions are reported that have
score ≥ x.
The list of all words of length W that have similarity ≥ T to
some word in the query sequence m can be produced in time
proportional to the number of words in the list. These are
placed in a keyword tree and then, for each word in the tree,
all exact locations of the word in the database n are detected
in time linear to the length of n. The original version of BLAST
did not allow indels, making hit extension very fast.

Approximate Search
The use of seeds of length W and the termination of
extensions with fading scores are both steps that speed up the
algorithm, but also imply that BLAST is not guaranteed to find
all HSPs.
Blast uses a two-bit encoding for DNA. This saves space and
also search time, as four bases are encoded per byte. In
practice, W is usually 12 for DNA and 4 for proteins.
HSP scores are characterized by two parameters, W and λ. The
expected number of HSPs with score at least Z is given by the
E-value, which is: E (Z) = Wmne−λZ .
Essentially, W and λ are scaling-factors for the search space
and for the scoring scheme, respectively.
As the E-value depends on the choice of the parameters W
and λ, one cannot compare E-values from different BLAST
searches.

Genome	Sequencing
Outline

• What	Is	GenomeSequencing?	
• Exploding	Newspapers
• The	String	Reconstruction	Problem
• String	Reconstruction	as	a	Hamiltonian	Path	Problem
• String	Reconstruction	as	an	Eulerian Path	Problem	
• Similar	Problems	with	Different	Fates
• De	Bruijn Graphs
• Euler’s	Theorem	
• Assembling	Read-Pairs

• Late	2000s:	The	market	for	new	
sequencing	machines	takes	off.
– Illuminareduces	the	cost	of	sequencing					
a	human	genome	from	$3	billion	to	
$10,000.

– Complete	Genomics	builds	a	genomic	
factory	in	Silicon	Valley	that	sequences	
hundreds	of	genomes	per	month.

– Beijing	Genome	Institute	orders	hundreds	
of	sequencing	machines,	becoming	the	
world’s	largest	sequencing	center.

Next	Generation	Sequencing	Technologies	

• 2010: Nicholas	Volker	became	the	first	human	
being	to	be	saved	by	genome	sequencing.
– Doctors	could	not	diagnose	his	condition;	he	went	
through	dozens	of	surgeries.	

– Sequencing	revealed	a	rare	mutation	in	a	XIAP gene	
linked	to	a	defect	in	his	immune	system.

– This	led	doctors	to	use	immunotherapy,	which	saved	the	
child.

Why	Do	We	Sequence	Personal	Genomes?	

• Different	people	have	slightly	different	genomes:	
on	average,	roughly	1	mutation	in	1000	
nucleotides.		

The Newspaper Problem

The Newspaper Problem as an
Overlapping Puzzle

The Newspaper Problem as an
Overlapping Puzzle

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Multiple	Copies	of	a	Genome	(Millions	of	them)

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking	the	Genomes	at	Random	Positions

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

Generating	“Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC

CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC

CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC

CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning”	Some	Reads

ATGCATTAGCAA
GCTATCGGA

ACTACTGCTA

GCTGTATTACG

CTGATGATGG

CTGATGATGGACT

TACCACATCGT

No	Idea	What	Position	Every	Read	Comes	From

Multiple (unsequenced) genome copies

Reads

Assembled genome
…GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC…

Read	generation

Genome	assembly

From	Experimental to Computational Challenges	

• Modern	sequencing	machines	cannot	read	an	
entire	genome	one	nucleotide	at	a	time	from	
beginning	to	end	(like	we	read	a	book)

• They	can	only	shred	the	genome	and	generate	
short		reads.

• The	genome	assembly	is	not	the	same	as	a	jigsaw	
puzzle:	we	must	use	overlapping reads	to	
reconstruct	the	genome,	a	 giant	overlap	puzzle!

What Makes Genome Sequencing Difficult?

Genome	Sequencing	Problem.	Reconstruct	a	genome	from	reads.
• Input.	A	collection	of	strings	Reads.	
• Output.	A	string	Genome reconstructed	from	Reads.	

Composition3(TAATGCCATGGGATGTT)=

What	Is	k-mer Composition?

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT

Composition3(TAATGCCATGGGATGTT)=
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

=
AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g.,	lexicographic	order	(like	in	a	dictionary)

k-mer Composition

String	Reconstruction	Problem.	Reconstruct	a	string	from	
its	k-mer composition.	

• Input.	A	collection	of	k-mers.	

• Output.	A	Genome such	that	Compositionk(Genome) is	
equal	to	the	collection	of	k-mers.	

Reconstructing	a	String	from	its	Composition

ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT

TAA	
AAT

ATG

A	Naive	String	Reconstruction	Approach

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG

TAA	
AAT
ATG
TGT
GTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Composition3(TAATGCCATGGGATGTT)=

Representing	a	Genome	as	a	Path		

Can	we	construct	this	genome	path	without	knowing	the	genome	TAATGCCATGGGATGTT,	 only	
from	its	composition?	

Yes.	We	simply	need	to	connect	k-mer1 with	k-mer2 if								suffix(k-mer1)=prefix(k-mer2).	
E.g.	TAA	→ AAT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A	Path	Turns	into	a	Graph		

Yes.	We	simply	need	to	connect	k-mer1 with	k-mer2 if								suffix(k-mer1)=prefix(k-mer2).	
E.g.	TAA	→ AAT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Can	we	still	find	the	genome	path	in	this	graph?	

A	Path	Turns	into	a	Graph		

Where	Is	the	Genomic	Path?		

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

Nodes	are	arranged	 from	left	to	right	in	lexicographic	 order.	 	What	are	we	trying	to	find	in	this	graph?			

A	Hamiltonian	path:	a	path	that	visits	each	node	in	a	graph	
exactly	once.

TAATGCCATGGGATGTT

Does	This	Graph	Have	a	Hamiltonian	Path?				

Icosian game	(1857)

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.	
Input. A	graph.	 	
Output. A	path	visiting	every	node in	the	graph	exactly	once.	

William	
Hamilton

Undirected	graph

1 2
346

7
8

9

10

11

1213

14

15

1617

18
19

20

5

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAATGCCATGGGATGTT

TAATG ATGGG ATGTTCC

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

A	Slightly	Different	Path			

3-mers as nodes

3-mers as edges

TAA

How	do	we	label	the	starting	and	ending	nodes	of	an	edge?	

TA AAprefix of	TAA suffix of	TAA

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

Labeling	Nodes	in	the	New	Path		

3-mers as nodes

3-mers as edges and 2-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

Labeling	Nodes	in	the	New	Path		

3-mers as edges and 2-mers as nodes

TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing	Identically	Labeled	Nodes			
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing	Identically	Labeled	Nodes			

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing	Identically	Labeled	Nodes			

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing	Identically	Labeled	Nodes			

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing	Identically	Labeled	Nodes			

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

De	Bruijn Graph	of	TAATGCCATGGGATGTT

Where	is	the	Genome
hiding	in	this	graph?

What	are	we	trying	to	
find	in	this	graph?			

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

It	Was	Always	There!	

An	Eulerian path in	a	
graph	is	a	path	that	
visits	each	edge exactly	
once.

TAATGCCATGGGATGTT

Eulerian Path	Problem				
Eulerian Path	Problem.	Find	an	Eulerian path	in	a	graph.	

• Input. A	graph.	 	

• Output. A	path	visiting	every	edge	in	the	graph	exactly	once.	

Eulerian Versus	Hamiltonian	Paths				
Eulerian Path	Problem.	Find	an	Eulerian path	in	a	graph.	

• Input. A	graph.	 		

• Output. A	path	visiting	every	edge	in	the	graph	exactly	once.	

Hamiltonian	Path	Problem.	Find	a	Hamiltonian	path	in	a	graph.	

• Input. A	graph.	 	

• Output. A	path	visiting	every	node	in	the	graph	exactly	once.	

Find a difference!

What	Problem	Would	You	Prefer	to	Solve?	

Hamiltonian Path Problem Eulerian Path Problem

While	Euler	solved	the	Eulerian Path	Problem	
(even	for	a	city	with	a	million	bridges),	nobody	
has	developed	a	fast	algorithm	for	the	
Hamiltonian	Path	Problem	yet.		

NP-Complete	Problems
• The	Hamiltonian	Path	Problem	belongs	to	a	
collection	containing	thousands	of	
computational	problems	for	which	no	fast	
algorithms	are	known.

That	would	be	an	excellent	argument,	but	the	
question	of	whether	or	not	NP-Complete	
problems	can	be	solved	efficiently	is	one	of	
seven	Millennium	Problems in	mathematics.		

NP-Complete	problems	are	all	equivalent:	find	an	
efficient	solution	to	one,	and	you	have	an	
efficient	solution	to	them	all.

Eulerian Path	Problem				
Eulerian Path	Problem.	Find	an	Eulerian path	in	a	graph.	

• Input. A	graph.	 	

• Output. A	path	visiting	every	edge in	the	graph	exactly	once.	

We	constructed	the	de	Bruijn
graph	from	Genome,	but	in	
reality,	Genome is	unknown!	

What	We	Have	Done:	From	Genome to	de	Bruijn Graph				

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

What	We	Want:	From	Reads	(k-mers)	to	Genome				
TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

What	We	will	Show:	From	Reads	to	de	Bruijn Graph	to	Genome

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

Constructing	de	Bruijn Graph	when	Genome Is	Known

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAATGCCATGGGATGTT

TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Constructing	de	Bruijn when	Genome Is	Unknown

Composition3(TAATGCCATGGGATGTT)

TAA

AAT

ATG

TGC

GCC

CCA

CAT

ATG

TGG

GGG

GGA

GAT

ATG

TGT

GTT

Representing	Composition	as	a	Graph	Consisting	of	Isolated	Edges

Composition3(TAATGCCATGGGATGTT)

TAA
TA AA

AAT
AA AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Constructing	de	Bruijn Graph	from	k-mer Composition

Composition3(TAATGCCATGGGATGTT)

TAA
TA AA

AA
AT

ATG
AT TG

TGC
TG GC

GCC
GC CC

CCA
CACC

CAT
CA AT

ATG
AT TG

TGG
TG GG

GGG
GG GG

GGA
GG GA

GAT
GA AT

ATG
AT TG

TGT
TG GT

GTT
GT TT

Gluing	Identically	Labeled	Nodes

TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT
GT

GTT
GT TT

ATG

TAA
TA AA

AAT ATG
AT TG

TGC GCC
GC CC

CCA CAT
CA AT

TGG
TG GG

GGG GGA
GG GA

GAT ATG
AT TG

TGT GTT
GT TT

ATG

We	Are	Not	Done	with	Gluing	Yet

TAA AAT
ATG

TGG GGG GGA GAT ATG TGT GTT
TA AA AT TG GG GG GA AT TG GT TT

TGC

GCCCCA

CAT
CA

TG

GC

CC

ATGAT

Gluing	Identically	Labeled	Nodes			
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

TA CAAA AT TG GC CC AT TG GG GG GA AT TG GT TT

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

Gluing	Identically	Labeled	Nodes			

TAA

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG
TGT GTT

TA

CA

AA

TG

AT

TG

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

AT

AT

AAT

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGG
GGA

GAT

ATG TGT GTT
TA

CA

AA AT

GG

GG

GA

TG GT TT

TAATGCCATGGGATGTT

GC

CC

ATG

Gluing	Identically	Labeled	Nodes			

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

The	Same	de	Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome	Composition)

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers

connect its prefix node with its suffix node by an edge

Constructing	de	Bruijn Graph	

De	Bruijn graph	of	a	collection	of	k-mers:
– Represent	every	k-mer as	an	edge	between	its	prefix	
and	suffix

– Glue	ALL nodes	with	identical	labels.

From	Hamilton											to	Euler												to	de	Bruijn

Universal	String	Problem	(Nicolaas de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer exactly	
once.		

000		001		010		011		100		101 110		111

0 0

0

1

11

0

1

From	Hamilton											to	Euler												to	de	Bruijn

Universal	String	Problem	(Nicolaas de	Bruijn,	1946).	Find	a	circular	string	containing	each	binary	k-mer exactly	
once.		

000 001 010 011 100 101 110		111
000

00 00
001

00 01
010

01 10
011

01 11
100

10 00
101

10 01
110

11 10
111

11 11

00 01

10 11

From	Hamilton											to	Euler												to	de	Bruijn

00 01

10 11

0 0

0

1

11

0

1

De	Bruijn Graph	for	4-Universal	String

Does	it	have	an	Eulerian cycle?	If	yes,	how	can	we	find	it?

Eulerian CYCLE	Problem				
Eulerian CYCLE	Problem.	Find	an	Eulerian cycle	in	a	graph.	

• Input. A	graph.	 	

• Output. A	cycle	visiting	every	edge	in	the	graph	exactly	once.	

A	Graph	is	Eulerian if	It	Contains	an	Eulerian
Cycle.

Is	this	graph	Eulerian?		

A	Graph	is	Eulerian if	It	Contains	an	Eulerian
Cycle.

Is	this	graph	Eulerian?		
1	in,	2	out

A	graph	is	balanced if	indegree =	outdegree for	each	node	

• Every	Eulerian graph	is	balanced
• Every	balanced* graph	is	Eulerian

Euler’s	Theorem	

(*)	and	strongly	connected,	of	course!

Recruiting	an	Ant	to	Prove	Euler’s	Theorem	

Let	an	ant	randomly	walk	through	the	graph.	
The	ant	cannot	use	the	same	edge	twice!	

If	Ant	Was	a	Genius…	

“Yay! Now
can I go
home
please?”

A	Less	Intelligent	Ant	Would	Randomly	Choose	a	
Node	and	Start	Walking…

Can	it	get	stuck?	In	what	node?	

The	Ant	Has	Completed	a	Cycle																BUT	has	not	
Proven	Euler’s	theorem	yet…

The	constructed	cycle	is	not	Eulerian.	Can	we	enlarge	it?	

Let’s	Start	at	a	Different	Node	in	the	Green	Cycle

Let’s	start	at	a	node	with	still	unexplored	edges.

“Why	should	I	start	at	a	different	node?	
Backtracking?	I’m	not	evolved	to	walk	
backwards!	And	what	difference	does	it	
make???”

1

2

3
“Why	do	I	have	to	walk	along	the	
same	cycle	again???	Can	I	see	
something	new?”	

An	Ant	Traversing	Previously	Constructed	Cycle	
Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	 (green	cycle)	and	return	back	to	the	starting	node.

13

2

4

I	Returned	Back	BUT…	I	Can	Continue	Walking!	

After	completing	 the	cycle,	start	random	exploration	 of	still	
untraversed edges	in	the	graph.

Starting	at	a	node	that	has	an	unused	edge,	traverse	the	already	
constructed	 (green	cycle)	and	return	back	to	the	starting	node.

1

2

3

4

5

6 7

8

Stuck	Again!		

No	Eulerian cycle	yet…	can	we	enlarge	the	green-blue	 cycle?	

The	ant	should	walk	along	the	constructed	cycle	 starting	at	
yet	another	node.	Which	one?		

1

2

3

4

5

6

7 8

I	Returned	Back	BUT…	I	Can	Continue	Walking!	

“Hmm,	maybe	these	
instructions	were	not	
that	stupid…”	

I	Proved	Euler’s	Theorem!	

4

5

2

3

7 8

1

6

9

10
11

EulerianCycle(BalancedGraph)
form	a	Cycle	by	randomly	walking	in	BalancedGraph (avoiding	already	visited	edges)
while Cycle is	not	Eulerian
select	a	node	newStart in Cycle with	still	unexplored	outgoing	edges			
form	a	Cycle’ by	traversing	Cycle from	newStart and	randomly	walking	afterwards		
Cycle	←	Cycle’	

return Cycle

000

001

010

011

100

101

110

1111001

1100

0000 1111

1010

0101

0011

0110

11010100

0010 1011

0111

11101000

0001

From	Reads	to	de	Bruijn Graph	to	Genome

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

Multiple	Eulerian Paths

TAA AAT

TGC

GCCCCA

CAT

ATG

TGG

GGGGGA

GAT

ATG TGT GTT
TA

CA

AA AT

GGGA

TG GT TT

GC

CC

ATG

TAATGCCATGGGATGTT TAATG ATGGG ATGTTCC

Breaking	Genome	into	Contigs

TAATGCCATGGGATGTT

TAA AAT
TA AA AT

TGT GTT
TG GT TT

TGC

GCCCCA

CA

AT TG

GC

CC

TGG

GGA

AT

GGGA

TAAT

TGCCAT

GGGAT

TGTT

ATG

AT TG

ATG

ATGAT TG

ATG

AT TG

TGG
GG

TG

GGG
GG

GGG

TGG

DNA	Sequencing	with	Read-pairs

Randomly	 cut	genomes	into	large	equally	
sized	fragments	of	size	InsertLength

Multiple		identical	copies	of	genome

Generate	read-pairs:		
two	reads	from	the	
ends	of	each	fragment		
(separated	by	a	fixed	
distance)200	bp 200	bp

InsertLength

From	k-mers to	Paired	k-mers

Genome

Read	1 Read	2

...A	T	C	A	G	A	T	T A	C	G	T	T C	C G	A	G	…

A	paired	k-mer is	a	pair	of	k-mers at	a	fixed	distance	d apart	in	Genome.					
E.g.		TCA and	TCC are	at	distance	d=11	apart.	

Distance	d=11

Disclaimers:	
1.	In	reality,	Read1 and	Read2 are	typically	sampled	from	different	 strands:		

(→ …….← rather	than		→……. →)
2.	In	reality,	the	distance	d between	reads	is	measured	with	errors.	

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

What	is	PairedComposition(TAATGCCATGGGATGTT)?

Representing	a	paired	3-mer TAA GCC as	a	2-line	expression:	 TAA
GCC

Show first line first
And then show all the lines

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

PairedComposition(TAATGCCATGGGATGTT)

Representing	PairedComposition in	lexicographic	order

Show first line first
And then show all the lines

TAA
GCC

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

AAT
CCA

String	Reconstruction	from	Read-Pairs	Problem

String	Reconstruction	from	Read-Pairs	Problem. Reconstruct	
a	string	from	its	paired	k-mers.
• Input.	A collection	of	paired	k-mers.	
• Output. A	string	Text such	that	PairedComposition(Text) is	

equal	to	the	collection	of	paired	k-mers.	

How	Would	de	Bruijn	Assemble	Paired	k-mers?	

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Representing	Genome	TAATGCCATGGGATGTT as	a	Path

paired	prefix	of										→ ← paired	suffix	of				

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Labeling	Nodes	by	Paired	Prefixes	and	Suffixes

paired	prefix	of										→ ← paired	suffix	of				

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Glue	nodes	with	identical	labels

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired	de	Bruijn Graph	from	the	Genome

Glue	nodes	with	identical	labels

Constructing	Paired	de	Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

paired	prefix	of										→ ← paired	suffix	of				

CCA
GGG

CC
GG

CA
GG CCA

GGG
CCA
GGG

Constructing	Paired	de	Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AA
CC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

• Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:
– Represent	every	paired	k-mer as	an	edge	between	its	
paired	prefix	and	paired	suffix.	

– Glue	ALL nodes	with	identical	labels.

Constructing	Paired	de	Bruijn Graph

TA
GC

AA
CC

TAA
GCC

AT
CA

AAT
CCA

AT
CA

TG
AT

ATG
CAT

TG
AT

GC
TG

TGC
ATG

GC
TG

CC
GG

GCC
TGG

CC
GG

CA
GG

CCA
GGG

CA
GG

AT
GA

CAT
GGA

AT
GA

TG
AT

ATG
GAT

TG
AT

GG
TG

TGG
ATG

GG
TG

GG
GT

GGG
TGT

GG
GT

GA
TT

GGA
GTT

We	Are	Not	Done	with	Gluing	Yet

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

TG
AT

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Constructing	Paired	de	Bruijn Graph

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Paired	de	Bruijn Graph	from	read-pairs

• Paired	de	Bruijn	graph	for	a	collection	of	paired	k-mers:
– Represent	every	paired	k-mer as	an	edge	between	its	
paired	prefix	and	paired	suffix.	

– Glue	ALL nodes	with	identical	labels.

TA
GC

AA
CC

AT
CA

TG
AT

GC
TG

CC
GG

CA
GG

AT
GA

GG
TG

GG
GT

GA
TT

Which	Graph	Represents	a	Better	Assembly?	

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTT

Unique	genome	 reconstruction	

TAATGCCATGGGATGTT

Multiple	genome	reconstructions	

TAATGCCATGGGATGTT

TAATGGGATGCCATGTT

GGA

Paired	de	Bruijn Graph De	Bruijn Graph

Some	Ridiculously	Unrealistic	Assumptions

• Perfect	coverage	of	genome	by	reads	(every	k-mer
from	the	genome	is	represented	by	a	read)

• Reads	are	error-free.

• Multiplicities	of	k-mers are	known

• Distances	between	reads	within	read-pairs	are	exact.	

Some	Ridiculously	Unrealistic	Assumptions

• Imperfect coverage	of	genome	by	reads	(every	k-
mer from	the	genome	is	represented	by	a	read)

• Reads	are	error-prone.

• Multiplicities	of	k-mers are	unknown.

• Distances	between	reads	within	read-pairs	are	
inexact.	

• Etc.,	etc.,	etc.

1st Unrealistic	Assumption:	Perfect	Coverage

atgccgtatggacaacgact
atgccgtatg
gccgtatgga

gtatggacaa
gacaacgact

250-nucleotide	reads	generated	by	Illumina
technology	capture	only	a	small	fraction	of	250-
mers	from	the	genome,	thus	violating	the	key	
assumption	of	the	de	Bruijn graphs.	

Breaking	Reads	into	Shorter	k-mers

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
gccgtatgga tgccg

gtatggacaa gccgt
gacaacgact ccgta

cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact

atgccgtatggacaacgact atgccgtatggacaacgact
atgccgtatg atgcc
gccgtatgga tgccg

gtatggacaa gccgt
gacaacgact ccgta

cgtaCggaca cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact

cgtaC
gtaCg
taCgg
aCgga
Cggac

2nd Unrealistic	Assumption:	Error-free	Reads

Erroneous	 read	
(change	of	t into	C)

De	Bruijn Graph	of	ATGGCGTGCAATG…		
Constructed	from	Error-Free	Reads

. CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Errors	in	Reads	Lead	to	Bubbles in	the	
De	Bruijn	Graph

CGCA GCAT CATGCCGC

GCCGC

CCGCA CGCAT GCATG

CATGBubble!

CGTA GTAT TATG ATGG TGGA GGAC GACATGCC GCCG CCGTATGC

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA

Bubble	Explosion…Where	Are	the	Correct	Edges	
of	the	de	Bruijn Graph?	

De	Bruin	Graph	of	N.	meningitidis Genome	
AFTER	Removing	Bubbles	

Red edges	represent	repeats

Clustering	Algorithms
Outline

• Clustering as an optimization problem
• The Lloyd algorithm for k-means clustering
• From Hard to Soft Clustering
• From Coin Flipping to k-means Clustering
• Expectation Maximization
• Soft k-means Clustering
• Hierarchical Clustering
• Markov Clustering Algorithm

-6h -4h -2h 0 +2h +4h
+6h

diauxic shift

Measuring	3	Genes	at	7	Checkpoints

Measure expression of various yeast genes at 7 checkpoints:

YLR258W 1.1 1.4 1.4 3.7 4.0 10.0 5.9
YPL012W 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPR055W 1.1 1.1 1.1 1.1 1.1 1.1 1.1

eij = expression level of
gene i at checkpoint j

-12
-8
-4
0
4
8

-12
-8
-4
0
4
8

-12
-8
-4
0
4
810

5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

Switching	to	Logarithms	of	Expression	Levels

-4
-2
0
2
4

-4
-2
0
2
4

-4
-2
0
2
4

YLR258W 1.1 1.4 1.4 3.7 4.0 10.0 5.9
YPL012W 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPR055W 1.1 1.1 1.1 1.1 1.1 1.1 1.1

YLR258W 0.1 0.4 0.5 1.9 2.0 3.3 2.6
YPL012W 0.1 -0.3 -0.2 -1.2 -1.6 -3.0 -3.1
YPR055W 0.2 0.2 0.2 0.1 0.1 0.1 0.1

taking logarithms (base-2)

-12
-8
-4
0
4
8

-12
-8
-4
0
4
8

-12
-8
-4
0
4
810

5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

10
5
2
1

0.5
0.2
0.1

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to
each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

Gene	Expression	Matrix		

gene expression
vector

-4

-3

-2

-1

0

1

2

3

4

Gene	Expression	Matrix		

Goal: partition all yeast genes into clusters so that:
• genes in the same cluster have similar behavior
• genes in different clusters have different behavior

1997: Joseph deRisi
measured expression
of 6,400 yeast genes
at 7 checkpoints
before and after the
diauxic shift.

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to
each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

6,400 x 7 gene
expression matrix

n x	m
gene	expression

matrix

Genes	as	Points	in	Multidimensional	Space

n points in
m-dimensional

space

C H A P T E R 1

Gene Expression Vector µ s2

YLR361C 0.14 0.03 -0.06 0.07 -0.01 -0.06 -0.01 0.01 0.00
YMR290C 0.12 -0.23 -0.24 -1.16 -1.40 -2.67 -3.00 -1.24 1.29
YNR065C -0.10 -0.14 -0.03 -0.06 -0.07 -0.14 -0.04 -0.08 0.00
YGR043C -0.43 -0.73 -0.06 -0.11 -0.16 3.47 2.64 0.66 2.40
YLR258W 0.11 0.43 0.45 1.89 2.00 3.32 2.56 1.54 1.29
YPL012W 0.09 -0.28 -0.15 -1.18 -1.59 -2.96 -3.08 -1.30 1.47
YNL141W -0.16 -0.04 -0.07 -1.26 -1.20 -2.82 -3.13 -1.24 1.43
YJL028W -0.28 -0.23 -0.19 -0.19 -0.32 -0.18 -0.18 -0.22 0.00
YKL026C -0.19 -0.15 0.03 0.27 0.54 3.64 2.74 0.99 2.06
YPR055W 0.15 0.15 0.17 0.09 0.07 0.09 0.07 0.11 0.00

-4

-3

-2

-1

0

1

2

3

4

FIGURE 1.4 The rows of the matrix from Figure 1.3 partitioned into three clusters.
Green genes exhibit increased expression, red genes exhibit decreased expression, and
blue genes exhibit flat behavior and are unlikely to be associated with the diauxic shift.
The element with the largest absolute value in each expression vector is shown in bold,
and the mean µ and variance s2 of each expression vector is shown in the rightmost
two columns. (Bottom) The rows of the matrix visualized as plots.

The Good Clustering Principle

To identify groups of genes with similar expression, we will think of an expression
vector of length m as a point in m-dimensional space; genes with similar expression
profiles will therefore correspond to nearby points. Ideally, clusters should satisfy the
following common-sense principle, which is illustrated in Figure 1.5.

Good Clustering Principle: Every pair of points from the same cluster should be closer to
each other than any pair of points from different clusters.

We have therefore embedded gene expression analysis within the algorithmic problem
of partitioning a collection of n points in m-dimensional space into k clusters, which

10

(1, 6)

(10, 3)(1, 3)

(5, 6)

(8, 7)

(7, 1)

(3, 4)

(5, 2)

Gene	Expression	and	Cancer	Diagnostics

MammaPrint: a test that evaluates the likelihood of
breast cancer recurrence based on the expression
of just 70 genes.

But how did scientists discover these 70 human genes?

Toward	a	Computational	Problem

Good Clustering Principle: Elements within the
same cluster are closer to each other than
elements in different clusters.

Toward	a	Computational	Problem

• distance between elements in the same cluster < ∆
• distance between elements in different clusters > ∆

Clustering	Problem

Clustering Problem: Partition a set of expression
vectors into clusters.
• Input: A collection of n vectors and an integer k.
• Output: Partition of n vectors into k disjoint

clusters satisfying the Good Clustering Principle.

Any partition into
two clusters does not
satisfy the Good
Clustering Principle!

What is the “best” partition into three clusters?

Clustering	as	Finding	Centers

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data.

Goal: partition a set Data into k clusters.

Clustering	as	Finding	Centers

Equivalent goal: find a set of k points Centers that
will serve as the “centers” of the k clusters in Data
and will minimize some notion of distance from
Centers to Data .

Goal: partition a set Data into k clusters.

What is the “distance” from Centers to Data?

Distance	from	a	Single DataPoint to	Centers

d(DataPoint,	Centers)	=	minall points	x fromCenters d(DataPoint,	x)

The distance from DataPoint in Data to Centers is
the distance from DataPoint to the closest center:

Distance	from	Data to	Centers

MaxDistance(Data, Centers) =
max all points DataPoint from Data d(DataPoint, Centers)

k-Center	Clustering	Problem

k-Center Clustering Problem. Given a set of points
Data, find k centers minimizing MaxDistance(Data,
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimizes

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

k-Center Clustering Problem. Given a set of points
Data, find k centers minimizing MaxDistance(Data,
Centers).
• Input: A set of points Data and an integer k.
• Output: A set of k points Centers that minimizes

MaxDistance(DataPoints, Centers) over all
possible choices of Centers.

k-Center	Clustering	Problem

An even better
set of centers!

k-Center	Clustering	Heuristic

FarthestFirstTraversal(Data, k)
Centers ← the set consisting of a single DataPoint from Data
while Centers have fewer than k points

DataPoint ← a point in Data maximizing d(DataPoint, Centers)
among all data points

add DataPoint to Centers

k-Center	Clustering	Heuristic

FarthestFirstTraversal(Data, k)
Centers ← the set consisting of a single DataPoint from Data
while Centers have fewer than k points

DataPoint ← a point in Data maximizing d(DataPoint, Centers)
among all data points

add DataPoint to Centers

What	Is	Wrong	with	FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that minimize
MaxDistance(Data, Centers).

human eye FarthestFirstTraversal

But biologists are interested in typical rather than
maximum deviations, since maximum deviations may
represent outliers (experimental errors).

The	maximal	distance	between	Data
and	Centers:		

MaxDistance(Data,	Centers)=		
max DataPoint from	Data d(DataPoint,	Centers)

The squared error distortion
between Data and Centers:

Distortion(Data, Centers) =

∑ DataPoint from Data d(DataPoint, Centers)2/n

Modifying	the	Objective	Function

A single data point contributes
to MaxDistance

All data points contribute to
Distortion

NP-Hard for k > 1

k-Means	Clustering	Problem
k-Center Clustering Problem:

Input: A set of points Data and an
integer k.
Output: A set of k points Centers
that minimizes

MaxDistance(DataPoints,Centers)

over all choices of Centers.

k-Means Clustering Problem:
Input: A set of points Data and an
integer k.
Output: A set of k points Centers
that minimizes

Distortion(Data,Centers)

over all choices of Centers.

k-Means	Clustering for	k =	1

2 4 6

5

3

1

i-th coordinate of the center of
gravity = the average of the i-th
coordinates of datapoints:

((2+4+6)/3, (3+1+5)/3) = (4, 3)

Center of Gravity Theorem:The center of gravity of
points Data is the only point solving the 1-Means
Clustering Problem.

The center of gravity of points Data is
∑all points DataPoint in Data DataPoint / #points in Data

Select k arbitrary data points as Centers

The Lloyd Algorithm in Action

The Lloyd Algorithm in Action

Clusters

Centers

assign each data point to its nearest center

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

The Lloyd Algorithm in Action

assign each data point to its nearest center

Clusters

Centers

again!

The Lloyd Algorithm in Action

new centers ç clusters’ centers of gravity

Clusters

Centers

again!

The Lloyd Algorithm in Action

Clusters

Centers

again!

assign each data point to its nearest center

The	Lloyd	Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

• Centers to Clusters: Assign each data point to the
cluster corresponding to its nearest center (ties
are broken arbitrarily).

• Clusters to Centers: After the assignment of data
points to k clusters, compute new centers as
clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).

Must	the	Lloyd	Algorithm	Converge?	

• If	a	data	point	is	assigned	to	a	new	center	
during	the	Centers	to	Clusters	step:
– the	squared	error	distortion	is	reduced	

because	this	center	must	be	closer	to	
the	point	than	the	previous	center	was.

• If	a	center	is	moved	during	the	Clusters	to	
Centers step:
– the	squared	error	distortion	is	reduced	

since	the	center	of	gravity	is	the	only	
pointminimizing	 the	distortion	(the	
Center	of	Gravity	Theorem).

Clustering	Yeast	Genes	

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

Cluster 1

Cluster 4 Cluster 5 Cluster 6

Cluster 3Cluster 2

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

k-means Clustering vs. the Human Eye

How would the Lloyd algorithm cluster these sets of
points?

Soft	vs.	Hard	Clustering

• The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue?
• “soft” assignment of data points to clusters.

Midpoint:	A	point	approximately	
halfway	between	two	clusters.

Soft	vs.	Hard	Clustering

• The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
• “hard” assignment of data points to clusters.

• Can we color the midpoint half-red and half-blue?
• “soft” assignment of data points to clusters.

Soft	vs.	Hard	Clustering

Soft choices: points are assigned
“red” and “blue” responsibilities
rblue and rred (rblue + rred =1)

(0.98, 0.02)

(0.48, 0.52)

(0.01, 0.99)

Hard choices: points are
colored red or blue depending
on their cluster membership.

• We flip a loaded coin with an unknown biasθ
(probability that the coin lands on heads).

• The coin lands on heads i out of n times.
• For each bias, we can compute the probability of the

resulting sequence of flips.

Probability of generating the given sequence of flips is

Pr(sequence|θ) = θi * (1-θ)n-i

This expression is minimized atθ= i/n (most likely bias)

Flipping	One	Biased	Coins

Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilitiesθA andθB

Flipping	Two	Biased	Coins	
A B

If	We	Knew	Which	Coin																															Was	
Used	in	Each	Sequence…	

Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (θA ,θB)
when HiddenVector is given

θB = fraction of heads generated in all flips with coin B =
(9+8+7) / (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80

Data HiddenVector
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

If	We	Knew	Which	Coin																															Was	
Used	in	Each	Sequence…	

θA = fraction of heads generated in all flips with coin A =
(4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

1 * HiddenVector

Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as	a	Dot-Product

*
*
*
*
*

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35

∑all data points i Datai*HiddenVectori / ∑all data points iHiddenVectori= 0.35

Data * HiddenVector /

1 refers to a vector (1,1, … ,1) consisting of all 1s

(1,1,…, 1)*HiddenVector =0.35

θA = fraction of heads generated in all flips with coin A =
= (4+3) / (10+10) = (0.4+0.3) / 2 = 0.35

θB = fraction of heads generated in all flips with coin B
= (9+8+7) / (10+10+10) = (0.9+0.8+0.7) /(1+1+1) = 0.80

Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as	a	Dot-Product	

*
*
*
*
*

(0.5*0+0.9*1+0.8*1+0.4*0+0.7*1) / (0+1+1+0+1) = 0.80

∑all points i Datai * (1- HiddenVectori) / ∑ all points i (1- HiddenVectori)=

Data * (1-HiddenVector) / 1 * (1 - HiddenVector)

θA = fraction of heads generated in all flips with coin A
= (0.4+0.3)/2=0.35
= Data * HiddenVector / 1 * HiddenVector

Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 (0.35, 0.80)
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Parameters as	a	Dot-Product

*
*
*
*
*

θB = fraction of heads generated in all flips with coin B
= (0.9+0.8+0.7)/3=0.80
= Data * (1-HiddenVector) / 1 * (1 - HiddenVector)

Data,	HiddenVector,	Parameters	

ParametersHiddenVector

Data HiddenVector Parameters=(θA, θB)
0.4 1
0.9 0
0.8 0 (0.35, 0.80)
0.3 1
0.7 0

Data,	HiddenVector,	Parameters

Data HiddenVector Parameters=(θA,
θB)

0.4 ?
0.9 ?
0.8 ? (0.35, 0.80)
0.3 ?
0.7 ?

ParametersHiddenVector
?

Data HiddenVector Parameters=(θA, θB)
0.4 ?
0.9 ?
0.8 ? (0.35, 0.80)
0.3 ?
0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From	Data	&	Parameters	to	HiddenVector

Which coin is more likely to generate the
1st sequence (with 4 H)?

Data HiddenVector Parameters=(θA, θB)
0.4
0.9 ?
0.8 ? (0.35, 0.80)
0.3 ?
0.7 ?

Pr(1st sequence|θA)=θA
4 (1-θA)6 = 0.354 • 0.656 ≈ 0.00113 >

Pr(1st sequence|θB)= θB
4(1-θB)6 = 0.804 • 0.206 ≈ 0.00003

From	Data	&	Parameters	to	HiddenVector

1

Which coin is more likely to generate the
1st sequence (with 4 H)?

Data HiddenVector Parameters=(θA,
θB)

0.4
0.9 ?
0.8 ? (0.35, 0.80)
0.3 ?
0.7 ?

From	Data	&	Parameters	to	HiddenVector

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

Data HiddenVector Parameters=(θA,
θB)

0.4
0.9
0.8 ? (0.35, 0.80)
0.3 ?
0.7 ?

From	Data	&	Parameters	to	HiddenVector

0

Pr(2nd sequence|θA)= θA
9 (1-θA)1=0.359•0.651 ≈ 0.00005 <

Pr(2nd sequence|θB)= θB
9 (1-θB)1 =0.809 •0.201 ≈ 0.02684

Which coin is more likely to generate the
2nd sequence (with 9 H)?

1

HiddenVectorReconstructed!		

Data HiddenVector Parameters=(θA, θB)
0.4 1
0.9 0
0.8 0 (0.35, 0.80)
0.3 1
0.7 0

Reconstructing	HiddenVector and	Parameters

Data

ParametersHiddenVector

Reconstructing	HiddenVector and	Parameters

Data

Parameters’HiddenVector

Reconstructing	HiddenVector and	Parameters

Data

Parameters’HiddenVector

Reconstructing	HiddenVector and	Parameters

Data

Parameters’HiddenVector’

Iterate!

What	does	this	algorithm	remind	you	of?

0.7 0.8 0.5 0 0.6 0.4 0.1 0.2 0.3 0.9 1

0.7 0.8 0.5 0 0.6 0.4 0.1 0.2 0.3 0.9 1

0.7 0.8 0.5 0 0.6 0.4 0.1 0.2 0.3 0.9 1

0.7 0.8 0.5 0 0.6 0.4 0.1 0.2 0.3 0.9 1

0.7 0.8 0.5 0 0.6 0.4 0.1 0.2 0.3 0.9 1

θA = 0.82

θB = 0.82

θB = 0.85 θA = 0.467

θB = 0.8 θA = 0.35

θB = 0.85 θA = 0.467

θA = 0.6

θA = 0.6 Parameters

HiddenVector

Parameters

HiddenVector

Parameters

From	Coin	Flipping	to	k-means	Clustering:	
Where	Are	Data,	HiddenVector,	and Parameters?

Data: data points Data = (Data1,…,Datan)

Parameters: Centers = (Center1,…,Centerk)

HiddenVector: assignments of data points to k centers
(n-dimensional vector with coordinates varying from 1 to k).

1

2

3

1 2

1

3
3

3

2

1

Coin	Flipping	and	Soft	Clustering

• Coin flipping: how would you select between coins A and B if
Pr(sequence|θA) = Pr(sequence|θB)?

• k-means clustering: what cluster would you assign a data point it
to if it is a midpoint of centers C1 and C2?

Soft assignments: assigning C1 and C2 “responsibility” ≈0.5 for
a midpoint.

Data HiddenVector Parameters =
(θA,θB)

0.4 ?
0.9 ?
0.8 ? (0.60, 0.82)
0.3 ?
0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

Memory	Flash:
From	Data	&	Parameters	to	HiddenVector

Which coin is more likely to have generated the first
sequence (with 4 H)?

Data HiddenVector Parameters =
(θA,θB)

0.4
0.9 ?
0.8 ? (0.60, 0.82)
0.3 ?
0.7 ?

Pr(1st sequence|θA)=θA
5 (1-θA)5 = 0.604 • 0.406 ≈ 0.000531 >

Pr(1st sequence|θB)= θB
5(1-θB)5 = 0.824 • 0.186 ≈ 0.000015

Memory	Flash:
From	Data	&	Parameters	to	HiddenVector

1

Which coin is more likely to have generated the first
sequence (with 4 H)?

Data HiddenMatrix Parameters =
(θA,θB)

0.4
0.9 ?
0.8 ? (0.60, 0.82)
0.3 ?
0.7 ?

Pr(1st sequence|θA) ≈ 0.000531 >
Pr(1st sequence|θB) ≈ 0.000015

From	Data	&	Parameters	to	HiddenMatrix

0.000531 / (0.000531 + 0.000015) ≈ 0.97
0.000015 / (0.000531 + 0.000015) ≈ 0.03

What are the responsibilities of coins for this sequence?

0.97 0.03

Data HiddenMatrix Parameters = (θA,
θB)

0.4
0.9
0.8 ? (0.60, 0.82)
0.3 ?
0.7 ?

From	Data	&	Parameters	to	HiddenMatrix

0.0040 / (0.0040 + 0.0302) = 0.12
0.0342 / (0.0040 + 0.0342) = 0.88

What are the responsibilities of coins for the 2nd sequence?

Pr(2nd sequence|θA) ≈ 0.0040 <
Pr(2nd sequence|θB) ≈ 0.0302

0.97 0.03
0.12 0.88

Data HiddenMatrix Parameters =
(θA,θB)

0.4
0.9
0.8 0.29 0.71 (0.60, 0.82)
0.3 0.99 0.01
0.7 0.55 0.45

HiddenMatrix Reconstructed!	

0.97 0.03
0.12 0.88

Expectation	Maximization	Algorithm

Data

ParametersHiddenMatrix

E-step

Data

ParametersHiddenMatrix

M-step

Data

Parameters’HiddenVector

???

Data HiddenVector Parameters=(θA, θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0 ???
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

*
*
*
*
*

Memory	Flash:	Dot	Product

θA = Data * HiddenVector / 1 * HiddenVector

θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

HiddenVector = (1 0 0 1 0)

θA = Data * HiddenVector / 1 * HiddenVector

θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

From	Data	&	HiddenMatrix to	Parameters

What is HiddenMatrix corresponding to this HIddenVector?

HiddenVector = (1 0 0 1 0)

Hidden Matrix = 1 0 0 1 0
0 1 1 0 1

θA = Data * HiddenVector / 1 * HiddenVector

θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

Data HiddenVector Parameters=(θA,θB)
HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

From	Data	&	HiddenMatrix to	Parameters

θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

= HiddenVector
= 1 - HiddenVector

HiddenVector = (1 0 0 1 0)

Hidden Matrix = .97 .03 .29 .99
.55
.03 .97 .71 .01

θA = Data * HiddenVector / 1 * HiddenVector

θB = Data * (1-HiddenVector) / 1 * (1-HiddenVector)

Data HiddenMatrix Parameters=(θA,θB)
HTTTHTTHTH 0.4 0.97 0.03
HHHHTHHHHH 0.9 0.12 0.88
HTHHHHHTHH 0.8 0.29 0.71
HTTTTTHHTT 0.3 0.99 0.01
THHHTHHHTH 0.7 0.55 0.45

From	Data	&	HiddenMatrix to	Parameters

θB = Data * 2nd row of HiddenMatrix / 1*2nd row of HiddenMatrix

θA = Data * 1st row of HiddenMatrix / 1*1st row of HiddenMatrix

Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenVector: assignments of data points to centers

1 2 1 3 2 1 3 3HiddenVector

1

2

3

1 2

1

3
3

3

2

1

A

A B C D E F G
H

C
F

B
E

D
G

H

1 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

HiddenMatrix
1
2
3

From	HiddenVector to HiddenMatrix

0 1 0 0 1 0 0

1 0 0 1 0 0 0

0 0 1 0 0 1 1

From	HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

HiddenMatrix
1
2
3

0.7

0.2

0.1

A B C D E F G
H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

From	HiddenVector to HiddenMatrix
Data: data points Data = {Data1, … ,Datan}
Parameters: Centers = {Center1, … ,Centerk}
HiddenMatrixi,j: responsibility of center i for data point j

A B C D E F G
H

1

2

3

1 2

1

3
3

3

2

1

A

C
F

B
E

D
G

H

HiddenMatrix
1
2
3

Responsibilities	and	the	Law	of	Gravitation	

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

stars

planets

responsibility of star i for a planet j is proportional to the
pull (Newtonian law of gravitation):

Forcei,j=1/distance(Dataj, Centeri)2

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

Responsibilities	and	Statistical	Mechanics	

centers

data points

responsibility of center i for a data point j is proportional to

Forcei,j = e-β·distance(Dataj, Centeri)

whereβ is a stiffness parameter.

HiddenMatrixij: =
Forcei,j / ∑all centers j Forcei,j

0.70 0.15 0.73 0.40 0.15 0.80 0.05 0.05

0.20 0.80 0.17 0.20 0.80 0.10 0.05 0.20

0.10 0.05 0.10 0.40 0.05 0.10 0.90 0.75

How	Does	Stiffness	Affect	Clustering?	

Hard k-means
clustering

Soft k-means
clustering

(stiffness β=1)

Soft k-means
clustering

(stiffness β= 0.3)

Stratification	of	Clusters

Clusters	often	have	subclusters,	which	have	
subsubclusters,	and	so	on.

Stratification	of	Clusters

Clusters	often	have	subclusters,	which	have	sub-
subclusters,	and	so	on.

From	Data	to	a	Tree

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n data	points	into	a	tree.

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

From	a	Tree	to	a	Partition	into	4	Clusters

To	capture	stratification,	the	hierarchical	clustering	
algorithm	organizes	n data	points	into	a	tree.

Line
crossing
the tree

at 4 points

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

From	a	Tree	to	a	Partition	into	6	Clusters

To	capture	stratification,	the	hierarchical	clustering	
algorithm	first	organizes	n data	points	into	a	tree.

Line
crossing
the tree

at 6 points

6 Clusters

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g1

g6

g7

g3

g5 g8

g9 g10

g4

g2

Hierarchical clustering starts from a transformation of n x m
expression matrix into n x n similarity matrix or distance matrix.

Distance Matrix

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 9.3 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 12.0 9.5 10.1 12.8 2.0 1.0

g3 9.2 12.0 0.0 11.2 0.7 11.1 8.1 1.1 10.5 11.5

g4 7.7 0.9 11.2 0.0 11.2 9.2 9.5 12.0 1.6 1.1

g5 9.3 12.0 0.7 11.2 0.0 11.2 8.5 1.0 10.6 11.6

g6 2.3 9.5 11.1 9.2 11.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 8.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.1 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 10.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 11.6 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Identify the two closest clusters and merge them.

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

Recompute the distance between two clusters as
average distance between elements in the cluster.

g1 g2 g3, g5 g4 g6 g7 g8 g9 g10

g1 0.0 8.1 9.2 7.7 2.3 5.1 10.2 6.1 7.0

g2 8.1 0.0 12.0 0.9 9.5 10.1 12.8 2.0 1.0

g3, g5 9.2 12.0 0.0 11.2 11.1 8.1 1.0 10.5 11.5

g4 7.7 0.9 11.2 0.0 9.2 9.5 12.0 1.6 1.1

g6 2.3 9.5 11.1 9.2 0.0 5.6 12.1 7.7 8.5

g7 5.1 10.1 8.1 9.5 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.8 1.0 12.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 2.0 10.5 1.6 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 1.1 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Identify the two closest clusters and merge them.

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g3, g5}

{g2, g4}

Recompute the distance between two clusters (as
average distance between elements in the cluster).

g1 g2, g4 g3, g5 g6 g7 g8 g9 g10

g1 0.0 7.7 9.2 2.3 5.1 10.2 6.1 7.0

g2, g4 7.7 0.0 11.2 9.2 9.5 12.0 1.6 1.0

g3, g5 9.2 11.2 0.0 11.1 8.1 1.0 10.5 11.5

g6 2.3 9.2 11.1 0.0 5.6 12.1 7.7 8.5

g7 5.1 9.5 8.1 5.6 0.0 9.1 8.3 9.3

g8 10.2 12.0 1.0 12.1 9.1 0.0 11.4 12.4

g9 6.1 1.6 10.5 7.7 8.3 11.4 0.0 1.1

g10 7.0 1.0 11.5 8.5 9.3 12.4 1.1 0.0

Constructing	the	Tree

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

{g2, g4}

{g3, g5, g8}

Identify the two closest clusters and merge them.

Constructing	the	Tree

Iterate until all elements form a single cluster (root).

g3 g5 g8 g7 g1 g6 g10 g2 g4 g9

Constructing	a	Tree	from	a	Distance	Matrix	D
HierarchicalClustering (D, n)

Clusters ← n single-element clusters labeled 1 to n
T ← a graph with the n isolated nodes labeled 1 to n
while there is more than one cluster

find the two closest clusters Ci and Cj
merge Ci and Cj into a new cluster Cnew with |Ci| + |Cj| elements
add a new node labeled by cluster Cnew to T
connect node Cnew to Ci and Cj by directed edges
remove the rows and columns of D corresponding to Ci and Cj
remove Ci and Cj from Clusters
add a row and column to D for the cluster Cnew by computing

D(Cnew ,C) for each cluster C in Clusters
add Cnew to Clusters

assign root in T as a node with no incoming edges
return T

Different	Distance	Functions	Result	in	Different	
Trees

Average distance between elements of two clusters:

Davg(C1, C2) = (∑ all points i and j in clusters C1 and C2, respectively Di,j)/ (|C1|*|C2|)

Minimum distance between elements of two clusters:

Dmin(C1, C2) = min all points i and j in clusters C1 and C2, respectively Di,j

Clusters	Constructed	by	HierarchicalClustering

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

−4
−2

0
2

4

Cluster 1

Cluster 4 Cluster 5 Cluster 6

Cluster 3Cluster 2

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

Surge	in	expression	
at	final	checkpoint

Markov	Clustering	Algorithm
Unlike most clustering algorithms, the MCL
(micans.org/mcl) does not require the number of expected
clusters to be specified beforehand. The basic idea
underlying the algorithm is that dense clusters correspond
to regions with a larger number of paths.

Material and code at micans.org/mcl

Markov	Clustering	Algorithm
We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.
A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible for
both strengthening and weakening of current.
(Strengthens strong currents, and weakens already weak
currents). An expansion parameter, r, controls the extent of
this strengthening / weakening. In the end, this influences
the granularity of clusters.

Markov	Clustering	Algorithm

Matrix representation

Markov	Clustering	Algorithm

Markov	Clustering	Algorithm

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity O(n3).

The inflation has complexity O(n2). However, the

matrices are generally very sparse, or at least the vast

majority of the entries are near zero. Pruning in MCL

involves setting near-zero matrix entries to zero, and

can allow sparse matrix operations to improve the speed

of the algorithm vastly.

Markov	Clustering	Algorithm

Genome	Assembly
Outline

• Why	do	we	map	reads?
• Using	the	Trie
• From	a	Trie to	a	Suffix	Tree
• String	Compression	and	the	Burrows-Wheeler	Transform
• Inverting	Burrows-Wheeler
• Using	Burrows-Wheeler	for	Pattern	Matching
• Finding	the	Matched	Patterns
• Setting	Up	Checkpoints
• Inexact	Matching

Toward	a	Computational	Problem

• Reference	genome:	database	genome	used	
for	comparison.

• Question: How	can	we	assemble	individual	
genomes	efficiently	using	the	reference?

CTGATGATGGACTACGCTACTACTGCTAGCTGTAT Individual

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference

Why	Not	Use	Assembly?

Multiple copies of
a genome

AGAATATCASequence the
reads

Shatter the
genome into
reads

Assemble the
genome with
overlapping reads

...TGAGAATATCA...

 AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT

Why	Not	Use	Assembly?

• Constructing	a	de	Bruijn graph
takes	a	lot	of	memory.

• Hope:	a	machine	in	a	clinic
that	would	collect	and
map	reads	in	10	minutes.

• Idea:	use	existing	structure	of	reference	
genome	to	help	us	sequence	a	patient’s	
genome.

TAA# AAT#

TGC#

GCC#CCA#

CAT#

ATG#

TGG#

GGG#
GGA#

GAT#

ATG#
TA#

CA#

AA# AT#

GG#GA#

TG#

GC#

CC#

ATG#
TGT# GTT#

GT# TT#

Read	Mapping

• Read	mapping:	determine	where	each	read	
has	high	similarity	to	the	reference	genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT
GAGGA CCACG TGA-A

Reference
Reads

Why	Not	Use	Alignment?

• Fitting	alignment:	align	each	read	Pattern to	
the	best	substring	of	Genome.

• Has	runtime	O(|Pattern| *	|Genome|)	for	
each	Pattern.

• Has	runtime	O(|Patterns|	*	|Genome|)	for	a	
collection	of	Patterns.

Exact	Pattern	Matching

• Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?

• Single	Pattern	Matching	Problem:
– Input: A	string	Pattern and	a	string	Genome.
– Output: All	positions	in	Genomewhere	Pattern
appears	as	a	substring.

Exact	Pattern	Matching

• Focus	on	a	simple	question:	where	do	the	
reads	match	the	reference	genome	exactly?

• Multiple Pattern	Matching	Problem:
– Input: A	collection	of	strings	Patterns and	a	string	
Genome.

– Output: All	positions	in	Genomewhere	a	string	
from	Patterns appears	as	a	substring.

A	Brute	Force	Approach

• We	can	simply	iterate	a	brute	force	approach	
method,	sliding	each	Pattern down	Genome.

• Note:	we	use	words	instead	of	DNA	strings	for	
convenience.

panamabananas
nana Pattern

Genome

Brute	Force	Is	Too	Slow

• The	runtime	of	the	brute	force	approach	is	too	
high!
– Single	Pattern:							O(|Genome|	*	|Pattern|)
– Multiple	Patterns:	O(|Genome|	*	|Patterns|)
– |Patterns|	=	combined	length	of	Patterns

Processing	Patterns	into	a	Trie

• Idea:	combine	reads	into	a	graph.	Each	
substring	of	the	genome	can	match	at	most	
one	read.		So	each	read	will	correspond	to	a	
unique	path	through	this	graph.

• The	resulting	graph	is	called	a	trie.

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

Root Patterns

banana
pan
and
nab
antenna
bandana
ananas
nana

Using	the	Trie for	Pattern	Matching

• TrieMatching:	Slide	the	trie down	the	
genome.

• At	each	position,	walk	down	the	trie and	see	if	
we	can	reach	a	leaf	by	matching	symbols.

• Analogy:	bus	stops

p a n a m a b a n a n a
s Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

Success!

• Runtime	of	Brute	Force:
– Total:	O(|Genome|*|Patterns|)

• Runtime	of	TrieMatching:	
– Trie Construction:	O(|Patterns|)
– Pattern	Matching:	O(|Genome|	*	|LongestPattern|)

Memory	Analysis	of	TrieMatching

• Son completely	forgot
about	memory!

• Our	trie:	30	edges,
|Patterns|	=	39

• Worst	case:	#	edges
=	O(|Patterns|)

Root

a

n

d

b

a

n

a

n

a

n

a

a

b

n

n

e

t

a

n

a

a

d

pn

a

n

s

a

n

a

Preprocessing	the	Genome

• What	if	instead	we	create	a	data	structure	
from	the	genome	itself?

• Split	Genome into	all	its	suffixes.		(Show	
matching	“banana”	by	finding	the	suffix	
“bananas”.)

• How	can	we	combine	these	suffixes	into	a	
data	structure?

• Let’s	use	a	trie!

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

The	Suffix	Trie and	Pattern	Matching

• For	each	Pattern,	see	if	Pattern can	be	spelled	
out	from	the	root	downward	in	the	suffix	trie.

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

5

3

1

7

9

6

11

2

8

10

0

12

4

p a n a m a b a n a n a
s $

Memory	Trouble	Once	Again

• Worst	case:	the	suffix	trie
holds	O(|Suffixes|)	nodes.

• For	a	Genome of	length	n,
|Suffixes|	=	n(n – 1)/2	=	O(n2)

panamabananas$
anamabananas$
namabananas$
amabananas$
mabananas$
abananas$
bananas$
ananas$
nanas$
anas$
nas$
as$
s$
$

Suffixes

Compressing	the	Trie

• This	doesn’t	mean	that	our	idea	was	bad!

• To	reduce	memory,	we	can	compress	each	
“nonbranching path”	of	the	tree	into	an	edge.

Root

n

a

a

n

a

b

s

m

n

a

a

p

$

a

n

a

a

n

a

s

a

$

m

a

a

n

b

n

a

a

n

a

s

$

m

a

a

n

b

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

a

b

m

n

a

a

n

a

s

$

n

a

a

n

a

s

$

b

a

s

$

n n

a

s

$

$

s

$

s

$

s
s

$

b

• This	data	structure	is	called	a	suffix	tree.

• For	any	Genome,	#	nodes	<	2|Genome|.
– #	leaves	=	|Genome|;
– #	internal	nodes	< |Genome|	– 1	

Roota

na

nas$

s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

Runtime	and	Memory	Analysis

• Runtime:
– O(|Genome|2)	to	construct	the	suffix	tree.
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.

• Memory:
– O(|Genome|2)	to	construct	the	suffix	tree.
– O(|Genome|)	to	store	the	suffix	tree.

Runtime	and	Memory	Analysis

• Runtime:
– O(|Genome|)	to	construct	the	suffix	tree	directly.
– O(|Genome|	+	|Patterns|)	to	find	pattern	matches.
– Total:	O(|Genome|	+	|Patterns|)

• Memory:
– O(|Genome|)	to	construct	the	suffix	tree	directly.
– O(|Genome|)	to	store	the	suffix	tree.
– Total:	O(|Genome|	+	|Patterns|)

We	are	Not	Finished	Yet

• I	am	happy	with	the	suffix	tree,	but	I	am	not	
completely	satisfied.
• Runtime:	O(|Genome|	+	|Patterns|)
• Memory:	O(|Genome|)

• However,	big-O	notation	ignores	constants!
• The	best	known	suffix	tree	implementations	
require	~	20	times	the	length	of	|Genome|.

• Can	we	reduce	this	constant	factor?

Genome	Compression

• Idea:	decrease	the	amount	of	memory	
required	to	hold	Genome.

• This	indicates	that	we	need	methods	of	
compressing a	large	genome,	which	is	
seemingly	a	separate	problem.

Idea	#1:	Run-Length	Encoding

• Run-length	encoding:	compresses	a	run	of	n
identical	symbols.

• Problem:	Genomes	don’t	have	lots	of	runs…

GGGGGGGGGGCCCCCCCCCCCAAAAAAATTTTTTTTTTTTTTTCCCCCG

10G11C7A15T5C1G

Genome

Run-length encoding

Converting	Repeats	to	Runs

• …but	they	do	have	lots	of	repeats!

Genome

Genome*

CompressedGenome*

Run-length encoding

Convert repeats to runsHow do we do this step?

The	Burrows-Wheeler	Transform

panamabananas$
$panamabananas
s$panamabanana

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

The	Burrows-Wheeler	Transform

panamabananas$
$panamabananas
s$panamabanana
as$panamabanan
nas$panamabana
anas$panamaban
nanas$panamaba
ananas$panamab
bananas$panama
abananas$panam
mabananas$pana
amabananas$pan
namabananas$pa
anamabananas$p

Form all cyclic rotations of
“panamabananas$”

p a

n

a

m

a

b
a

n

a

n

a

s

$

The	Burrows-Wheeler	Transform

panamabananas$
$panamabananas
s$panamabanana
as$panamabanan
nas$panamabana
anas$panamaban
nanas$panamaba
ananas$panamab
bananas$panama
abananas$panam
mabananas$pana
amabananas$pan
namabananas$pa
anamabananas$p

Form all cyclic rotations of
“panamabananas$”

Sort the strings
lexicographically
($ comes first)

$panamabananas
abananas$panam
amabananas$pan
anamabananas$p
ananas$panamab
anas$panamaban
as$panamabanan
bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

The	Burrows-Wheeler	Transform

panamabananas$
$panamabananas
s$panamabanana
as$panamabanan
nas$panamabana
anas$panamaban
nanas$panamaba
ananas$panamab
bananas$panama
abananas$panam
mabananas$pana
amabananas$pan
namabananas$pa
anamabananas$p

Form all cyclic rotations of
“panamabananas$”

Burrows-Wheeler
Transform:

Last column =
smnpbnnaaaaa$a

$panamabananas
abananas$panam
amabananas$pan
anamabananas$p
ananas$panamab
anas$panamaban
as$panamabanan
bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

BWT:	Converting	Repeats	to	Runs

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Convert repeats to runsBurrows-Wheeler Transform!

How	Can	We	Decompress?

Genome

BWT(Genome)

Compression(BWT(Genome))

Run-length encoding

Burrows-Wheeler Transform

EASY

IS IT POSSIBLE?

Reconstructing		banana

• We	now	know	2-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	2	columns	of	the	
matrix.

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$
na
na
ba
$b
an
an

$b
a$
an
an
ba
na
na

Sort2-mers

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We	now	know	3-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	3	columns	of	the	
matrix.

a$b
na$
nan
ban
$ba
ana
ana

3-mers Sort

$ba
a$b
ana
ana
ban
na$
nan

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We	now	know	4-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	4	columns	of	the	
matrix.

a$ba
na$b
nana
bana
$ban
ana$
anan

4-mers Sort

$ban
a$bb
anaa
anaa
bann
na$b
nana

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We	now	know	5-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	5	columns	of	the	
matrix.

a$ban
na$ba
nana$
banan
$bana
ana$b
anana

5-mers Sort

$bana
a$bbn
anaab
anaaa
bannn
na$ba
nana$

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We	now	know	6-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	6 columns	of	the	
matrix.

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

a$bana
na$ban
nana$b
banana
$banan
ana$ba
anana$

6-mers Sort

$banan
a$bbna
anaaba
anaaa$
bannna
na$ban
nana$b

• We	now	know	6-mer	composition	of	the	
circular	string	banana$

• Sorting	gives	us	the	first	6 columns	of	the	
matrix.

Reconstructing		banana

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

• We	now	know	the	entire	matrix!

• Taking	all	elements	in	the	first	row	(after	$)	
produces	banana.

More	Memory	Issues

• Reconstructing	Genome from	BWT(Genome)	
required	us	to	store	|Genome|	copies	of	
|Genome|.

• Can	we	invert	BWT	with	less	space?

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba

A	Strange	Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$panamabananas
abananas$panam
amabananas$pan
anamabananas$p
ananas$panamab
anas$panamaban
as$panamabanan
bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

A	Strange	Observation

p a

n

a

m

a

b
a

n

a

n

a

s

$$panamabananas
abananas$panam
amabananas$pan
anamabananas$p
ananas$panamab
anas$panamaban
as$panamabanan
bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

Is	It	True	in	General?

$panamabananas
1 abananas$panam
2 amabananas$pan
3 anamabananas$p
4 ananas$panamab
5 anas$panamaban
6 as$panamabanan

bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

bananas$panam
mabananas$pan
namabananas$p
nanas$panamab
nas$panamaban
s$panamabanan

These strings are sorted

Chop off a

Is	It	True	in	General?

$panamabananas
1 abananas$panam
2 amabananas$pan
3 anamabananas$p
4 ananas$panamab
5 anas$panamaban
6 as$panamabanan

bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

These strings are sorted

bananas$panam
mabananas$pan
namabananas$p
nanas$panamab
nas$panamaban
s$panamabanan

Still
sorted

Chop off a

Is	It	True	in	General?

$panamabananas
1 abananas$panam
2 amabananas$pan
3 anamabananas$p
4 ananas$panamab
5 anas$panamaban
6 as$panamabanan

bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
panamabananas$
s$panamabanana

These strings are sorted

bananas$panam
mabananas$pan
namabananas$p
nanas$panamab
nas$panamaban
s$panamabanan

Chop off a

Still
sorted

bananas$panama
mabananas$pana
namabananas$pa
nanas$panamaba
nas$panamabana
s$panamabanana

Add a
to end

Still
sorted

Ordering
doesn’t
change!

1
2
3
4
5

6

Is	It	True	in	General?

• First-Last	Property:	The	k-th
occurrence	of	symbol	in
FirstColumn and	the	k-th
occurrence	of	symbol	in
LastColumn correspond	to
the	same	position	of	symbol
in	Genome.	

$1panamabananas1
a1bananas$panam1
a2mabananas$pan1
a3namabananas$p1
a4nanas$panamab1
a5nas$panamaban2
a6s$panamabanan3
b1ananas$panama1
m1abananas$pana2
n1amabananas$pa3
n2anas$panamaba4
n3as$panamabana5
p1anamabananas$1
s1$panamabanana6

More	Efficient	BWT	Decompression

p a

n

a

m

a

b
a

n

a

n

a

s

$$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

More	Efficient	BWT	Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6
a

More	Efficient	BWT	Decompression

p a

n

a

m

a

b
a

n

n

a

s

$$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6
a

• Memory:	2|Genome|	=	O(|Genome|).

Recalling	Our	Goal

• Suffix	Tree	Pattern	Matching:
– Runtime:	O(|Genome|	+	|Patterns|)
– Memory:	O(|Genome|)
– Problem:	suffix	tree	takes	20	x	|Genome|	space

• Can	we	use	BWT(Genome)	as	our	data	
structure	instead?

Finding	Pattern	Matches	Using	BWT

• Searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Finding	Pattern	Matches	Using	BWT

• Searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Finding	Pattern	Matches	Using	BWT

• Searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Finding	Pattern	Matches	Using	BWT

• Searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Where	Are	the	Matches?

• Multiple	Pattern	Matching	Problem:
– Input: A	collection	of	strings	Patterns and	a	string	
Genome.

– Output: All	positions in	Genomewhere	one	of	
Patterns appears	as	a	substring.

• Where	are	the	positions?		BWT	has	not	
revealed	them.

Where	Are	the	Matches?

• Example:	We	know	that
ana occurs	3	times,	but
where?

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

panamabananas$

Using	the	Suffix	Array	to	Find	Matches

• Suffix	array:	holds	
starting	position	of	
each	suffix	beginning
a	row.

• Thus,	ana occurs	at	
positions	1,	7,	9 of	
panamabananas$.

$ 1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

13
5
3
1
7
9

11
6
4
2
8

10
0

12

The	Suffix	Array:	Memory	Once	Again

• Memory:	~	4	x	|Genome|.

Roota

na

nas$

s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]

The	Suffix	Array:	Memory	Once	Again

• Memory:	~	4	x	|Genome|.

Roota

na

nas$

s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]

The	Suffix	Array:	Memory	Once	Again

• Memory:	~	4	x	|Genome|.

Roota

na

nas$

s$

nas$

5
3

1 7 9

6

11

2 8 10

4 0

12

[13 5 3 1 7 9 11 6 4 2 8 10 0 12]

Reducing	Suffix	Array	Size
• We	don’t	want	to	have	to	store	all	of	the	suffix	
array;	can	we	store	only	part	of	it?		Show	how	
checkpointing can	be	used	to	store	1/100	the	
suffix	array.

A	Return	to	Constants

• Explain	that	using	a	checkpointed	array	
increases	runtime	by	a	constant	factor,	but	in	
practice	it	is	a	worthwhile	trade-off.

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3 p1
a4 b1
a5 n2
a6 n3
b1 a1
m1 a2
n1a a3
n2a a4
n3a a5
p1 $1
s1 a6

ana

$1 s1
a1 m1
a2 n1
a3na p1
a4na b1
a5na n2
a6 n3
b1 a1
m1 a2
n1 a3
n2 a4
n3 a5
p1 $1
s1 a6

ana
0

1

9

3

13

6
5

11

Returning	to	Our	Original	Problem

• We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.

• Approx.	Pattern	Matching	Problem:
– Input:	A	string	Pattern,	a	string	Genome,	and	an	
integer	d.

– Output: All	positions	in	Genome	where	Pattern
appears	as	a	substring	with	at	most	dmismatches.

Returning	to	Our	Original	Problem

• We	need	to	look	at	INEXACT	matching	in	order	
to	find	variants.

• Multiple Approx.	Pattern	Matching	Problem:
– Input:	A	collection of	strings	Patterns,	a	string	
Genome,	and	an	integer	d.

– Output: All	positions	in	Genome	where	a	string	
from	Patterns appears	as	a	substring	with	at	most	
dmismatches.

Method	1:	Seeding

• Say	that	Pattern appears	in	Genome with	1	
mismatch:

…ggcacactaggctcc…

Pattern

Genome

acttggct

Method	1:	Seeding

• Say	that	Pattern appears	in	Genome with	1	
mismatch:

• One	of	the	substrings	must	match!

…ggcacactaggctcc…

Pattern

Genome

acttggct

Method	1:	Seeding

• Theorem:	If	Pattern occurs	in	Genome	with	d
mismatches,	then	we	can	divide	Pattern into
d +	1	“equal”	pieces	and	find	at	least	one	exact	
match.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Method	1:	Seeding

• Say	we	are	looking	for	at	most	dmismatches.

• Divide	each	of	our	strings	into	d +	1	smaller	
pieces,	called	seeds.

• Check	if	each	Pattern has	a	seed	that	matches	
Genome exactly.

• If	so,	check	the	entire	Pattern against	Genome.

Method	2:	BWT	Saves	the	Day	Again

• Recall:	searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Now we extend
all strings with at
most 1 mismatch.

Mismatches

1
0
1
1
0
0

Method	2:	BWT	Saves	the	Day	Again

• Recall:	searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

One string
produces a
second mismatch
(the $), so we
discard it.

Mismatches

1
1
0
0
0
2

Method	2:	BWT	Saves	the	Day	Again

• Recall:	searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

In the end, we
have five 3-mers
with at most 1
mismatch.

Mismatches

1
1
0
0
0

Method	2:	BWT	Saves	the	Day	Again

• Recall:	searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

Method	2:	BWT	Saves	the	Day	Again

• Recall:	searching	for	ana in	panamabananas

$1panamabananas 1

a 1bananas$panam 1

a 2mabananas$pan 1

a 3namabananas$p 1

a 4nanas$panamab 1

a 5nas$panamaban 2

a 6s$panamabanan 3

b 1ananas$panama 1

m 1abananas$pana 2

n 1amabananas$pa 3

n 2anas$panamaba 4

n 3as$panamabana 5

p 1anamabananas$ 1

s 1$panamabanana 6

Suffix Array

5
3
1
7
9

In the end, we
have five 3-mers
with at most 1
mismatch.

Hidden	Markov	Models	
Outline

• From	a	Crooked	Casino	to	a	Hidden	Markov	Model
• Decoding	Problem
• The	Viterbi	Algorithm
• Profile	HMMs	for	Sequence	Alignment
• Classifying	proteins	with	profile	HMMs
• Viterbi	Learning
• Soft	Decoding	Problem	
• Baum-Welch	Learning		

A crooked dealer may use one of two identically
looking coins:

• The fair coin (F) gives heads with probability ½:
PrF(“Head”) = 1/2 PrF(“Tail”) = 1/2

• The biased coin (B) gives heads with probability ¾:
PrB(“Head”) = 3/4 PrB(“Tail”) = 1/4

Did the dealer use the fair or the biased coin if 63
out of 100 flips resulted in heads?

The Crooked Casino

Hint: 63 is closer to 75 than to 50!

What coin is more likely if 63 out of 100 flips
resulted in heads?

• Given a sequence of n flips with k “Heads”:
x = x1 x2 . . . xn

• The probability this sequence was generated by the fair coin:
Pr(x|F) = PrF(x1) *…* PrF(xn) = (1/2)n

• The probability that it was generated by the biased coin:
Pr(x|B) = PrB(x1) *…* PrB(xn) = (3/4)k	•	(1/4)n-k

Fair or Biased?

Equilibrium: P(x|F) = P(x|B)
(1/2)n = (3/4)k• (1/4)n-k → 2n = 3k → k - log23 • n → k ≈ 0.632•n

Even though 63 is closer to 75 than to 50,
fair coin is more likely to result in 63 heads!

Pr(x|F) > Pr(x|B) → fair is more likely
Pr(x|F) < Pr(x|B) → biased is more likely

• Now the dealer has both fair and biased coins and can
change between them at any time (without you
noticing) with probability 0.1.

Two Coins Up the Dealer Sleeve

After watching a sequence of flips, can you tell when the
dealer was using fair coin and when he was using biased
coin?

Reading the Dealer’s Mind

Casino Problem: Given a sequence of coin flips, determine
when the dealer used a fair coin and a biased coin.
• Input: A sequence x = x1 x2 . . . xn of flips made by coins F

(fair) and B (biased).
• Output: A sequence π = π1 π2 · · · πn, with each πi being

equal to either F or B and indicating that xi is the result of
flipping the fair or biased coin, respectively.

• Any	outcome	of	coin	tosses	could	have	been	generated	
by	any	combination	of	fair and	biased coins!
– HHHHH	could	be	generated	by	BBBBB,	FFFFF,	FBFBF,	
etc.

The	Problem	with	the	Casino	Problem	

We need to grade different scenarios:
BBBBB, FFFFF, FBFBF, etc.

differently, depending on how likely they are.

How can we explore and grade 2n possible
scenarios?

€

HHHTHTHHHT
BBBBB
FFFFF

Pr(x|F)/Pr(x|B) < 1

Pr(x|F)/Pr(x|B) > 1

Log-odds ratio of sequence x = log2 Pr(x|F) / Pr(x|B)
log2 (1/2) n / (3/4)k•(1/4)n-k = #Tosses - log23 * #Heads

Reading	the	Dealer’s	Mind
(one	window	at	a	time)

€

HHHTHTHHHT
BBBBB
FFFFF

Log-odds < 0

Log-odds > 0

Log-odds ratio
0

Log-odds ratio > 0

Fair coin more likely

Log-odds ratio < 0

Biased coin more likely

Log-odds ratio of sequence x = log2 Pr(x|F) / Pr(x|B)
= #Tosses - log23 * #Heads

Reading	the	Dealer’s	Mind
(one	window	at	a	time)

€

HHHTHTHHHT
BBBBB
FFFFF
FFFFF
FFFFF
BBBBB
FFFFF

What are the disadvantages of this approach?

Reading	the	Dealer’s	Mind

€

HHHTHTHHHT
BBBBB
FFFFF
FFFFF
FFFFF
BBBBB
FFFFF

?

Disadvantages	of	the	Sliding	Window	Approach

Different windows may classify the same coin flip differently!

The results depend on the window length. How to choose it?

• Different	species	have	widely	varying	GC-content	
(percentages	of	G+C	nucleotides	in	the	genome).

• Each	of	the	dinucleotidesCC,	CG,	GC,	and	GG	is	
expected	to	occur	in	the	human	genome	with	
frequency	0.23	*	0.23	=	5.29%.

Why	Are	CG Dinucleotides More	Rare	than	GC
Dinucleotides in	Genomic	Sequences?	

But the frequency of CG in the human genome is only 1%!

46% for gorilla and human 58% for platypus

Methylation

• The	resulting	methylated	cytosine	has	the	tendency	 to	
deaminate into	thymine.

• As	a	result	of	methylation,	CG is	the	least	frequent	
dinucleotide	 in	many	genomes.

Methylation: adds a methyl (CH3) group to the
cytosine nucleotide (often within a CG dinucleotide).

Looking	for	CG-islands

ATTTCTTCTCGTCGACGCTAATTTCTTGGAAATATCATTAT

In a first attempt to find genes, how would you
search for CG-islands?

Methylation is often suppressed around genes in
areas called CG-islands (CG appears frequently).

Looking	for	CG-islands

Log-odds ratio
0

Non-CG island more likely CG-island more likely

• Different windows may classify the same position in
the genome differently.

• It is not clear how to choose the length of the
window for detecting CG-islands.

• Does it make sense to choose the same window
length for all regions in the genome?

• Think	of	the	dealer	as	a	machine	with	k	
hidden	states	(F and	B)	that	proceeds	in	a	
sequence	of	steps.

• In	each	step,	it	emits	a	symbol	(H	or	T)	
while	being	in	one	of	its	hidden	states.	

• While	in	a	certain	state,	the	machine	
makes	two	decisions:
o Which	symbol will	I	emit?
o Which	hidden	state	will	I	move	to	

next?

Turning the Dealer into a Machine

H
T
H
H
T

• An	observer	can	see	the	emitted	symbols	of	an	HMM	
but	does	not	know	which	state	the	HMM	is	currently	
in.

• The	goal	is	to	infer	the	most	likely	sequence	of	
hidden	states	of	an	HMM	based	on	the	sequence	of	
emitted	symbols.

Why “Hidden”?

Σ:	an	alphabet of	emitted	symbols

States	:	a	set	of	hidden	states

Transition = (transitionl,k): a	|States|	×|States|	
matrix	of	transition	probabilities																(of	
changing	from	state	l to	state	k)

Emission= (emissionk(b)):	 a	|States|	× |∑|	
matrix	of	emission	probabilities (of	
emitting	symbol	b when	the	HMM	is	in	state	k)

H and T

F and B

F B
F 0.9 0.1
B 0.1 0.9

H T
F 0.50 0.50
B 0.75 0.25

Hidden Markov Model (HMM)

HMM Diagram

F B
F 0.9 0.1
B 0.1 0.9

Emission
H T

F 0.50 0.50
B 0.75 0.25

F B

Transition

• Pr(x,	π):	the	probability	that	an	HMM	follows	the	hidden	
path	π and emits	the	string	x	=	x1 x2 .	.	.	xn.	
x: T H T H H H T H T T H
π: F F F B B B B B F F F

∑ all possible emitted strings x ∑ all possible hidden paths π Pr(x, π) = 1

∑ all possible emitted strings x Pr(x|π) = 1

Hidden	Path

Hidden path: the sequence π = π1… πn of states that
the HMM passes through.

• Pr(x|π): the conditional probability that an HMM
emits the string x after following the hidden path π.

• Pr(x,	π):	the	probability	that	an	HMM	follows	the	
hidden	path	π	and	emits	the	string	x.	

• Pr(xi|πi)	– probability	that	xi	was	emitted	from	the	
state	πi (equal	to	emissionπi(xi)).	

• Pr(πi-1→πi)	– probability	that	the	HMM	moved	from	
πi-1→πi (equal	to	transitionπi,πi+1).

T H T H H H T H T T H
F F F B B B B B F F F
.9 .9 .1 .9 .9 .9 .9 .1 .9 .9

½ ½ ½ ¾ ¾ ¾ ¼ ¾ ½ ½ ½

x
π
Pr(πi-1→πi)
Pr(xi|πi)

.5

Pr(π) = Πi=1,n Pr(πi-1→πi) = Πi=1,n transitionπi-1,πi

Pr(x|π) = Πi=1,n Pr(xi|πi) = Πi=1,n emissionπi(xi)

Pr(x,	π)	=	???	Pr(x|π) *
Pr(π)

½
.9

½ ½ ¾
.9 .1

Computing	Probability	of	a	Hidden	Path	Pr(π)	
and	Conditional	Probability	of	an	Outcome	Pr(x|π)

Probability of an Outcome Given a Hidden Path Problem.
Compute the probability that an HMM will emit a given string
given its hidden path.
• Input: A string x=x1,…xn emitted by an HMM (∑, States,

Transition, Emission) and a hidden path π= π1,…, πn.
• Output: The conditional probability Pr(x|π) that x will be

emitted given that the HMM follows the hidden path π.

Probability of a Hidden Path Problem. Compute the probability of
an HMM’s hidden path.
• Input: A hidden path π in an HMM

(∑,States,Transition,Emission).
• Output: The probability of this path, Pr(π).

Decoding	Problem:	Find	an	optimal	hidden	path	in	an	
HMM	given	its	emitted	string.
• Input: A	string	x	= x1 .	.	.	xn emitted	by	an	HMM	 (∑,	
States,	Transition,	Emission).	

• Output: A	path	π	that	maximizes	the	probability	Pr(x,π)	
over	all	possible	paths	through	this	HMM.

Pr(x, π) = Pr(x|π) * Pr(π)
= Π i=1,n Pr(xi|πi) * Pr(πi-1→πi)
= Π i=1,n emissionπi (xi) * transitionπi-1,πi

Decoding	Problem

HMM diagramF B

1/10

1/10

9/10 9/10

Building	Manhattan	for	the	Crooked	Casino

FFFFFF

B B B B B B

x2x1 x3 x4 x5 xn

sourc
e

sink

HMM diagram

Building	Manhattan	for	the	Crooked	Casino

F B

1/10

1/10

9/10 9/10

FFFFF

B B B B B B

F B B B F F

F

HMM diagram

!!

Number of symbols emitted (n)

|States|

A A A A A A

B B B B B B

C C C C C C

A

B C

Building	Manhattan	for	Decoding	Problem

HMM diagram
A

B C

!!C C C C C C

B B B B B B

A A A A A A

|States|

Building	Manhattan	for	Decoding	Problem

Alignment	Manhattan	vs.	Decoding	Manhattan

Alignment
three valid	directions

Decoding
many valid directions

!!C C C C C C

B B B B B B

A A A A A A

weight(l, k, i-1)=emissionk(xi) * transitionl,k

i-1 i

l

k

Edge	Weights	in	the	HMM	Manhattan

Edge (l, k, i-1) from node (l, i-1) to node (k, i):
• transitioning from state l to state k (with probability transitionl,k)
• emitting symbol xi (with probability emissionk(xi)

F FFFF F

H H T T H H

weight1(B,B,1)=
emissionB(H) * transitionB,B =

0.75*0.9

weight(l,k,i-1) =emissionk(xi) * transitionl,k

0.50*0.1

0.75*0.1

0.5*0.9

F B
F 0.9 0.1
B 0.1 0.9

H T
F 0.50 0.50
B 0.75 0.25

transition

emission

1/2

1/2

1

1

Edge	Weights	for	the	Crooked	Casino

!!C C C C C C

B B B B B B

A A A A A A

Pr(x, π) = Π i=1,n emissionπi (xi) * transitionπi-1,πi
= Π i=1,n weight of the i-th edge in path π
= Π i=1,n weight(πi-1, πi, i-1)

Product	Weight	of	a	Hidden	Path

Why	Have	Biologists	Still	Not	Developed	an	HIV	Vaccine?	

• Classifying	HIV	Phenotypes	
• Gambling	with	Yakuza
• From	a	Crooked	Casino	to	a	Hidden	Markov	Model
• Decoding	Problem
• The	Viterbi	Algorithm

• Profile	HMMs	for	Sequence	Alignment
• Classifying	proteins	with	profile	HMMs
• Viterbi	Learning
• Soft	Decoding	Problem	
• Baum-Welch	Learning		

!!C C C C C C

B B B B B B

A A A A A A

scorek,i :	the	maximum	product	weight	among	all	
paths	from	source to	node	(k,	i):

Dynamic	Programming	for	Decoding	Problem

!!C C C C C C

B B B B B B

A A A A A A

i-1 i

k

scorek,i = max all states l {scorel,i-1· weight of edge from (l,i-1) to (k,i)}
= max all states l {scorel,i-1 · weight(l,k, i-1)}

• Recurrence:
scorek,	i =	max all	states l	{scorel,i-1 · weight(l,k,i-1)}

• Initialization:	
scoresource =	1

• The	maximum	product	weight	over	all	paths	from	source	to	
sink:	

scoresink = max all	states l		scorel,n

Recurrence	for	Viterbi	Algorithm	

Running	Time	of	the	Viterbi	Algorithm	

!!

Number of symbols emitted (n)

|States|

A A A A A A

B B B B B B

C C C C C C

A

B C

Running time ~ #edges in the Viterbi graph
~ O(|States|2 � n)

Running	Time	of	the	Viterbi	Algorithm	

Forbidden transition: an edge not represented in the
HMM diagram.

Running time ~ #edges in the Viterbi graph
~ O(#edges in the HMM diagram�n)

A B

D C !!

!!

A A A A A A

B B B B B B

C C

D D D D D D

C C C C

Since scorek,i may	become	small	(danger	of	underflow),	
biologists	prefer	to	work	with	logarithms	of	scores:

From	Product	of	Weights	to	Sum	of	Their	
Logarithms

This transformation substitutes weights of edges by their
logarithms:

product of weights → sum of weights

scorek, i = max all states l { scorel,i-1 · weight(l,k,i-1) }

log(scorek, i) = max all states l { log(scorel,i-1)+log(weight(l,k,i-1) }

Computing	Pr(π)	Versus	Computing	Pr(x)	

• Pr(x,	π):	the	probability	that	an	HMM	follows	the	hidden	
path	π and	emits	the	string	x	=	x1 x2 .	.	.	xn.	

x: T H T H H H T H T T H
π: F F F B B B B B F F F

.5 .9 .9 .1 .9 .9 .9 .9 .1 .9 .9

Pr(π) = ∑all possible emitted strings x Pr(x, π)=Πi=1,ntransitionπi-1,πi

Pr(x) = ∑ all possible hidden paths π Pr(x, π) =

scoresink=max all possible hidden paths π product weight of π

Pr(x) = ∑ all possible hidden paths π product weight of π

What	is	the	Most	Likely	Outcome	of	an	HMM?

• Outcome	Likelihood	Problem.		Find	the	probability	
that	an	HMM	emits	a	given	string.

• Input: A	string	x	=	x1 .	.	.	xn emitted	by	an	HMM	(∑,	
States,	Transition,	Emission).

• Output:	The	probability	Pr(x)	that	the	HMM	emits	x.

Can you solve the Outcome Likelihood Problem by
making a single change in the Viterbi recurrence

scorek, i = max all states l {scorel,i-1 · weight(l,k,i-1)} ?

• forwardk,i :	total product	weight	of	all	paths	to	(k,i):

forwardk,i = ∑ all	states l {forwardl,i-1		·	weight	of	(l,i-1)→(k,i)}
= ∑ all	states l {forwardl,i-1 · weight(l,	k,	i-1)}

Viterbi	Algorithm:	From	MAX to	∑

!!C C C C C C

B B B B B B

A A A A A A

i-1 i

k

• forwardk,i :	total product	weight	of	all	paths	to	(k,i):

scorek,i =max all	states l {	scorel,i-1 · weight(l,	k,	i-1)}

Viterbi	Algorithm:	From	MAX to	∑

!!C C C C C C

B B B B B B

A A A A A A

i-1 i

k

• Proteins	are	organized	into	protein	families	
represented	by	multiple	alignments.

• A distant	cousin	may	have	weak
pairwise similarities	with	family
members	failing	a	significance
test.

• However,	it	may	have	weak	similarities	with	many
family	members,	indicating	a	relationship.

Classifying	Proteins	into	Families

From	Alignment	to	Profile

Remove columns if the fraction of space symbols (“-”)
exceeds θ, the maximum fraction of insertions
threshold.

From	Alignment	to	Profile

From	Profile	to	HMM

HMM diagram

A D D A F F D F
1 * .25 * .75 * .20 * 1 * .20 * .75 * .60

M1 M2 M3 M4 M5 M6 M7 M8

A D D A F F D F F

How do we model insertions?

Toward a Profile HMM

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A D D A F F D F F

Toward a Profile HMM: Insertions

How do we model deletions?

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Toward a Profile HMM: Deletions

M1 M2 M3 M4 M5 M6 M7 M8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

How many edges are in this HMM diagram?

Toward a Profile HMM: Deletions

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Adding “Deletion States”

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A A F F D F

Adding “Deletion States”

Are any edges still missing in this HMM diagram?

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

Adding Edges Between Deletion/Insertion States

But what are Transition and Emission matrices?

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 ES

Profile HMM Problem: Construct a profile HMM from a
multiple alignment.
• Input: A multiple alignment Alignment and a threshold

θ (maximum fraction of insertions per column).
• Output: Transition and emission matrices of the profile

HMM HMM(Alignment,θ).

The Profile HMM is Ready to Use!
S
t
a
r
t

E
n
d

Hidden	Paths	Through	Profile	HMM	

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A! C! D! E! F! AC! A! D! F!

S E

A! F! D! A! C! C! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

Note: this is a hidden path in an HMM
diagram (not in a Viterbi graph).

Transition	Probabilities	of	Profile	HMM	

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A! C! D! E! F! AC! A! D! F!

S E

A! F! D! A! C! C! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

A! C! A! E! F! A! C!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

A! D! D! E! F! AA! A! D! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

transitionMatch(5),Insertion(5) = 3/4
transitionMatch(5),Match(6) = 1/4
transitionMatch(5),Deletion(6) = 0

4 transitions from M5 :

1 + 1 + 1 = 3 into I5
1 into M6
0 into D6

Emission	Probabilities	of	Profile	HMM	

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

A! C! D! E! F! AC! A! D! F!

S E

A! F! D! A! C! C! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

A! C! A! E! F! A! C!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

(-)

A! D! D! E! F! AA! A! D! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 S E

emissionMatch(2)(A) = 0
emissionMatch(2)(C) = 2/4
emissionMatch(2)(D) = 1/4
emissionMatch(2)(E) = 0
emissionMatch(2)(F) = 1/4

symbols emitted from M2:
C, F, C, D

Forbidden	Transitions

C H A P T E R 1

S I0 M1 D1 I1 M2 D2 I2 M3 D3 I3 M4 D4 I4 M5 D5 I5 M6 D6 I6 M7 D7 I7 M8 D8 I8 E

S 1

I0

M1 .8 .2

D1

I1

M2 1

D2

I2

M3 1

D3

I3 1

M4 .8 .2

D4

I4

M5 .25 .75

D5 .33 .67

I5 1

M6 .8 .2

D6

I6

M7 1

D7

I7 1

M8 1

D8

I8

E

4

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

Don’t forget pseudocounts:
HMM(Alignment,θ,σ)

Gray cells:
edges in the
HMM diagram.

Clear cells:
forbidden
transitions.

Why	Have	Biologists	Still	Not	Developed	an	HIV	Vaccine?	

• Classifying	HIV	Phenotypes	
• Gambling	with	Yakuza
• From	a	Crooked	Casino	to	a	Hidden	Markov	Model
• Decoding	Problem
• The	Viterbi	Algorithm
• Profile	HMMs	for	Sequence	Alignment
• Classifying	proteins	with	profile	HMMs

• Viterbi	Learning
• Soft	Decoding	Problem	
• Baum-Welch	Learning		

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

Aligning	a	Protein	Against	a	Profile	HMM	

Alignment

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8 E S

Protein ACAFDEAF

Aligning	a	Protein	Against	a	Profile	HMM	

Alignment

Protein

Apply Viterbi algorithm to find optimal hidden path!

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

ACAFDEAF

ACAFDEAF

Aligning	a	Protein	Against	a	Profile	HMM	

Alignment

Protein

Apply Viterbi algorithm to find optimal hidden path!

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

How many rows and columns does the Viterbi
graph of this profile HMM have?

Profile HMM
diagram

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

Profile HMM
diagram

What is wrong
with this Viterbi
graph?

Viterbi graph of
profile HMM:

#columns=
#visited states

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8 I8

A! (-) (-) E! F! D! D! C!F!

I0 I0

M1 M1

D1 D1

I1 I1

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

Viterbi graph of
profile HMM:

#columns=
#visited states

Profile HMM
diagram

By definition,
#columns =
#emitted symbols

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8 I8

A! (-) (-) E! F! D! D! C!F!

I0 I0

M1 M1

D1 D1

I1 I1

I0 I0 I0

I1

I2

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

D1

M2

D2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

Profile HMM
diagram

Vertical edges
enter “silent”
deletion states

Nearly correct
Viterbi graph of
profile HMM:

I0 I0

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

M1

I0

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

I4

M5

D5

I5

M6

D6

I6

M7

D7

I7

M8

D8

I8

D1

D2

D3

D4

D5

D6

D7

D8

!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

D6

A! E! F! F! D! C!

I8 S E

D!(-) (-)

Profile HMM
diagram

Adding 0-th
column that
contains only
silent states

Correct Viterbi
graph of profile

HMM:

Alignment	with	a	Profile	HMM

Sequence Alignment with Profile HMM Problem: Align
a new sequence to a family of aligned sequences using
a profile HMM.
• Input: A multiple alignment Alignment, a string Text,

a threshold θ (maximum fraction of insertions per
column), and a pseudocount σ.

• Output: An optimal hidden path emitting Text in the
profile HMM HMM(Alignment, θ, σ).

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

The choice of alignment path is
now based on varying transition
and emission probabilities!

M1

M2

I2

I2

M3

M4

D5
M6

D7
M8

A!

C!

A!

F!

D!

E!
(-)

A!
(-)

F!

si-1, j + score(vi, -)
si, j-1 + score(-,wj)
si-1, j-1+ score(vi,wj)

si, j = max

sI(j-1),i-1 * weight(I(j-1),M(j),i-1)
sD(j-1),i-1 * weight(D(j-1), M(j),i-1)
sM(j-1),i-1 * weight(M(j-1), M(j),i-1)

sM(j),i = max

Have I Wasted Your Time?

I	Have	Not	Wasted	Your	Time!	

Individual scoring parameters for
each edge in the alignment graph
capture subtle similarities that
evade traditional alignments.

M1

M2

I2

I2

M3

M4

D5
M6

D7
M8

A!

C!

A!

F!

D!

E!
(-)

A!
(-)

F!

sI(j-1),i-1 * weighti-1(I(j-1),M(j))
sD(j-1),i-1 * weighti-1(D(j-1), M(j))
sM(j-1),i-1* weighti-1(M(j-1), M(j))

sM(j),i = max

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

HMM	Parameter	Estimation
• Thus	far,	we	have	assumed	that	the	transition	
and	emission	probabilities	are	known.

• Imagine	that	you	only	know	that	the
crooked	dealer	is	using	two	coins	and	observe:	

What are the biases of the coins and how often the
dealer switches coins?

Can we develop an algorithm for parameter estimation
for an arbitrary HMM?

HHTHHHTHHHTTTTHTTTTH

HMM Parameter Estimation Problem: Find optimal
parameters explaining the emitted string and the hidden
path.
• Input: A string x = x1 . . . xn emitted by a k-state HMM

with unknown transition and emission probabilities
following a known hidden path π = π1 . . . πn.

• Output: Transition and Emission matrices that
maximize Pr(x, π) over all possible matrices of
transition and emission probabilities.

HHTHHHTHHHTTTTHTTTTH
BFFBFFFBBFFBFFBBBBFF

If	Dealer	Reveals	the	Hidden	Path...

• Tl,k:	#transitions	from	state	l to	state	k	in	path π.

HHTHHHTHHHTTTTHTTTTH
TB,F = 5

If	the	Hidden	Path	is	Known...

BFFBFFFBBFFBFFBBBBFF

transitionl,k=
#transitions from state l to state k / # all transitions from l

= Tl,k / #visits to state l

/9

• Tl,k:	#	transitions	from	state	l to	state	k	in	path π.
• Ek(b):	#	times	symbol	b is	emitted	when	path π	is	in	
state	k.

transitionl,k=
#transitions from state l to state k / # all transitions from l

= Tl,k / #visits to state l

emissionk(b) =
#times symbol b is emitted in state k / # all symbols emitted in state k

= Ek(b) / #visits to state l

HHTHHHTHHHTTTTHTTTH EF(T)=6

If	the	Hidden	Path	is	Known...

BFFBFFFBBFFBFFBBBFF TB,F = 5
éé éé éé

/11

HMM Parameter Learning Problem. Estimate the
parameters of an HMM explaining an emitted string.
• Input: A string x = x1 . . . xn emitted by a k-state

HMM with unknown transition and emission
probabilities.

• Output: Matrices Transition and Emission that
maximize Pr(x, π) over all possible transition and
emission matrices and over all hidden paths π.

When	BOTH	HiddenPath and	Parameters
Are	Unknown

Parametershidden path

Decoding
Problem

emitted
string

Start from arbitrary
choice of Parameters

Reconstructing	HiddenPathAND	Parameters

Parametershidden path

HMM Parameter
Estimation
Problem

emitted
string

Reconstructing	HiddenPathAND	Parameters

Parameters’hidden path

Iterate!

emitted
string

Viterbi Learning

• The	Viterbi	algorithm	gives	a	“yes”	or	“no”	answer	to	
the	question:	”Was	the	HMM	in	state	k	at	time	i given	
that	it	emitted	string	x?”

This question fails to account for how certain we are
in the “yes”/“no” answer. How can we change this
hard question into a soft one?

Changing	the	Question

What	Is	Pr(πi=k,	x)?

What is the probability that the dealer was using the Fair
coin at the 5th flip given that he generated a sequence of
flips HHTHTHHHTT?

Pr(πi=k,	x):	the	unconditional	probability	Pr(πi=k,	x)	that	a	
hidden	path	will	pass	through	state	k at	time	i and emit	x.

Pr(πi=k,	x):
Total	Product	Weight	of	All	Paths	Through

!!

k

i

∑ all possible states k, all possible paths x Pr(πi=k, x) = 1

Pr(πi=k, x) = ∑ all paths π with πi =k Pr(x, π)

k

Pr(πi=k,	x):	the	unconditional	probability	that	a	hidden	path	
will	pass	through	state	k at	time	i and emit	x.

What	Is	Pr(πi =k|x)?

What is the probability that the dealer will generate a
sequence of flips HHTHTHHHTT?
while using the Fair coin at the 5th flip?

Pr(πi =k|x): the	conditional	probability	that	the	HMM	was	in	
state	k at	time	i given that	it	emitted	string	x.

Pr(πi=k, x): the unconditional probability that a hidden path
will pass through state k at time i and emit x.

What is the probability that the dealer was using the Fair
coin at the 5th flip given that he generated a sequence of
flips HHTHTHHHTT?

Compare with:

!!

k

i
Pr(πi =k|x): the fraction of the product weight of paths
visiting over the weight of all paths:k

Pr(πi =k|x) = Pr(πi=k, x) / Pr(x)
= ∑ all paths π with πi =k Pr(x, π) / ∑ all paths π Pr(x, π)

What	Is	Pr(πi =k|x)?
Pr(πi =k|x): the conditional probability that the HMM was
in state k at time i given that it emitted string x.

Soft Decoding Problem: Find the probability that an
HMM was in a particular state at a particular
moment, given its output.
• Input: A string x = x1 . . . xn emitted by an HMM

(∑, States, Transition, Emission).
• Output: The conditional probability Pr(πi =k|x)

that the HMM was in state k at step i, given x.

Soft	Decoding	Problem

• Pr(πi=k,	x)	=	total	product	weights	of	all	paths	through	the	Viterbi	
graph	for	x that	pass	through	the	node	(k,	i).

• Each	such	path	is	formed	by	a	blue	subpath ending	in	the	node	 									
and	a	red	subpath starting	in	the	node	 							

!!

∑ product weights of all blue paths * ∑ product weights of all red paths

forwardk,
i

???*

!!

k

Viterbi
graph

with all
edges

reversed

i

Computing	Pr(πi=k,	x)

Pr(πi=k, x) =

k k

• Pr(πi=k,	x)	=	total	product	weights	of	all	paths	through	the	Viterbi	
graph	for	x that	pass	through	the	node	(k,	i).

• Each	such	path	is	formed	by	a	blue	subpath ending	in	the	node	 								
and	a	red	subpath starting	in	the	node	 					k k

!!

∑ product weights of all blue paths * ∑ product weights of all red paths

forwardk,
i

*

!!

backwardk,i

k

i

Computing	Pr(πi=k,	x)

Pr(πi=k, x) =

Viterbi
graph

with all
edges

reversed

• Since	the	reverse	edge	connecting	node	(l,	i+1) to	node	(k,	i)	in	
the	reversed	graph	has	weight	weight(k, l, i):	

backwardk,i =	∑ all	states	l backwardl,i+1	·	weight(k,	l,	i)

• Combining	 the	forward-backward	 algorithm	with	the	
solution	 to	the	Outcome	Likelihood	 Problem	yields

!!

k

i i+1
l

Forward-Backward	Algorithm

Forwardk,i * backwardk,i

forward(sink)
Pr(πi =k|x) = Pr(πi=k, x)/Pr(x) =

The	Conditional	Probability	Pr(πi=l,	πi+1=k|x)	that	the	
HMM	Passes	Through	an	Edge in	the	Viterbi	Graph

!!C C C C C C

B B B B B B

A A A A A A

l

k

i i+1

∑ weights of blue paths * weight of black edge * ∑ weights of red paths

forwardl,i * weight(l, k, i) * backwardk,i+1

forward(sink)
Pr(πi=l, πi+1=k|x) =

• Node	responsibility	matrix	Π* =	(Π*k,i):	

C H A P T E R 1

source I0 M1 I1 D1 M2 I2 D2 M3 I3 D3 M4 I4 D4 M5 I5 D5 M6 I6 D6 M7 I7 D7 M8 I8 D8 sink
source s 1+s s

I0 s s s
M1 s .8+s .2+s
I1 s s s
D1 s s s
M2 s 1+s s
I2 s s s
D2 s 1+s s
M3 s 1+s s
I3 s s s
D3 s 1+s s
M4 s .8+s .2+s
I4 s .s s
D4 s s s
M5 .25+s .75+s s
I5 .33+s .67+s s
D5 s 1+s s
M6 s .8+s .2+s
I6 s s s
D6 s s s
M7 s s 1+s
I7 s s s
D7 s s 1+s
M8 s 1+s
I8 s s
D8 s s

sink

T H T H H H T H T T H
F 0.636 0.593 0.600 0.533 0.515 0.544 0.627 0.633 0.692 0.686 0.609
B 0.364 0.407 0.400 0.467 0.485 0.456 0.373 0.367 0.308 0.314 0.391

4

!!

k

Node Responsibility	Matrix

Π*k,i = Pr(πi=k|x)

Node responsibility matrix for the crooked casino

• Edge	responsibility	matrix	

l

k

Edge Responsibility	Matrix

Π**l,k,i = Pr(πi = l, πi+1=k|x)

Edge responsibility matrix for the crooked casino

C H A P T E R 1

The probabilities Pr(pi = l, pi+1 = k|x) can be put into another |States|⇥ |States|⇥
(n � 1) responsibility matrix P⇤⇤, where P⇤⇤

l,k,i corresponds to an edge in the Viterbi
graph and is equal to Pr(pi = l, pi+1 = k|x) (Figure 1.26 (bottom)). For brevity, we use
P to collectively refer to the matrices P⇤ and P⇤⇤.

T H T H H H T H T T H
F 0.636 0.593 0.600 0.533 0.515 0.544 0.627 0.633 0.692 0.686 0.609
B 0.364 0.407 0.400 0.467 0.485 0.456 0.373 0.367 0.308 0.314 0.391

1 2 3 4 5 6 7 8 9 10
FF 0.562 0.548 0.507 0.473 0.478 0.523 0.582 0.608 0.643 0.588
FB 0.074 0.045 0.093 0.059 0.037 0.022 0.045 0.025 0.049 0.098
BF 0.031 0.053 0.025 0.042 0.066 0.104 0.051 0.084 0.043 0.022
BB 0.333 0.354 0.374 0.426 0.418 0.351 0.322 0.282 0.265 0.293

FIGURE 1.26 (Top) The responsibility matrix ⇧

⇤, where x = “THTHHHTHTTH” and
the emission/transition matrices Parameters are taken from the crooked dealer HMM
in Figure 1.5. ⇧⇤

k,i is equal to Pr(pi = k|x). (Bottom) The matrix ⇧

⇤⇤ , where ⇧

⇤⇤
l,k,i =

Pr(pi = l, pi+1 = k|x) for the same emitted string and emission/transition matrices.

Baum-Welch learning

The expectation maximization algorithm for parameter estimation, called Baum-Welch
learning, alternates between two steps. In the E-step, it estimates the responsibility
profile P given the current parameters:

(x, ?, Parameters) ! P

Then, in the M-step, it re-estimates the parameters from the responsibility profile:

(x, P, ?) ! Parameters

We have already implemented the E-step of the expectation maximization algorithm,
but the question remains how to design the M-step.

When we know the hidden path, the previously defined estimators for Parameters,
reproduced below, define optimal choices for a given hidden path p:

transitionl,k =
Tl,k

Âall states j Tl,j
emissionk(b) =

Ek(b)
Âall symbols c in the alphabet Ek(c)

.

52

• Re-estimating	the	responsibility	profile	Π given	the	
current	HMM	parameters	(the	E-step):	

• Re-estimating	the	HMM	parameters	given	the	current	
responsibility	profile	(the	M-step):

Baum-Welch	Learning

(emitted string, ?, Parameters) → Π

Baum-Welch learning alternates between two steps:

(emitted string, Π, ?) → Parameters

• We	have	defined	a	transformation	
(x,	π,	?)	→	Parameters

that	uses	estimators	Tl,k and	Ek(b)	based	on	a	path	π.

• We	now	want	to	define	a	transformation:	
(x,	Π, ?)	→	Parameters

but	the	path	is	unknown.

Idea: Use expected values Tl,k and Ek(b) over all
possible paths.

Using	a	Responsibility	Matrix	to	Compute	
Parameters

• Tl,k:	#transitions	from	state	l to	state	k	in	path π

Tl,k =	∑ i=1,n-1 Til,k

Redefining	Estimators	for	Parameters
(for	a	known	path	π)

1 if πi = l and πi+1 = k
0 otherwise

HHTHHHTHHHTTTTHTTTTH
BFFBFFFBBFFBFFBBBBFF TB, F = 5

Ti
B,F =10010000100100000100

Rewriting
estimators:

Ti
l,k={

• Tl,k:	#transitions	from	state	l to	state	k	in	path π
• Ek(b):	#times	b is	emitted	when	the	path π	is	in	state	k
• We	now	define

Tl,k =	∑ i=1,n-1 Til,

Redefining	Estimators	for	Parameters
(for	a	known	path	π)

1 if πi = l and πi+1 = k
0 otherwise

HHTHHHTHHHTTTTHTTTTH
BFFBFFFBBFFBFFBBBBFF

EF(T)=6
Ei

F(T) = 00100010001011000010

Rewriting
estimators:

Ti
l,k={ Ei

k(b)={

é éé ééé

1 if πi = k and xi = b
0 otherwise

Ek(b) = ∑ i=1,n Ei
k(b)

How would you redefine these estimators if π is unknown?

TB, F = 5
Ti

B,F =10010000100100000100

Redefining	the	Estimators	 Til,k and	Eik(b)
When	the	Path	is	Unknown

Ti
l,k=Pr(πi =l, πi+1 =k|x) Ei

k(b)={ Pr(πi =k|x) if xi = b
0 otherwise

Ti
l,k = Π**l,k,i Ei

k(b)={
Π*k,i if xi = b
0 otherwise

• Tl,k:	#transitions	from	state	l to	state	k	in	path π
• Ek(b):	#times	b is	emitted	when	the	path π	is	in	state	k
• We	now	define

Ti
l,k={ Ei

k(b)={1 if πi = l and πi+1 = k 1 if πi = k and xi = b
0 otherwise 0 otherwise

• Re-estimating	the	responsibility	profile	Π given	the	
current	HMM	parameters	(the	E-step):	

• Re-estimating	the	HMM	parameters	given	the	current	
responsibility	profile	(the	M-step):

Baum-Welch	Learning

(emitted string, ?, Parameters) → Π

Baum-Welch learning alternates between two steps:

(emitted string, Π, ?) → Parameters

• Compute	the	probability that	the	HMM	emits	
the	string	x under current	Parameters:	

Pr(emitted	string|Parameters)
– Compare	with	the	probability	for	previous	values	of	
Parameters	and	stop	if	the	difference	is	small.

– Stop	after	a	certain	number	of	iterations.

Stopping	Rules	for	the	Baum-Welch	Learning

Nature	uses	domains	as	building	
blocks,	shuffling	them	to	create	
multi-domain	proteins.

A multi-domain
protein

Nature	is	a	Tinkerer	and	Not	an	Inventor

Protein domain: a conserved part
of a protein that often can function
independently.

Goal: classify domains into families
even though sequence similarities
between domains from the same
family can be low.

ABCDEFGHKLMNP
ERGHKLNPABTD
KLSNPACDEFTH

1. Use	alignments	to	break	proteins	
into	domains.

2. Construct	alignment	of	domains	
from	a	given	family	(starting	from	
highly	similar	domains	whose	
attribution	to	a	family	is	non-
controversial).	

3. For	each	family,	construct	a	
profile	HMM	and	estimate	its	
parameters.

4. Align	the	new	sequence	against	
each	such	HMM	to	find	the	best	
fitting	HMM.

KLMNP
KL-NP
KLSNP

EFGH
ERGH
EFTH

ABCD
ABTD
AC-D

Searching	for	Protein	Domains	with	Profile	HMMs

A! C! D! E! (-) A! F!
!!

!!

D1

M1 M2 M3 M4 M5 M6 M7 M8

D2 D3 D4 D5 D6 D7 D8

I0 I1 I2 I3 I4 I5 I6 I7 I8

AF!

S E

(-)

Each	domain	family	in	Pfam has:
• Seed	alignment:	Initial	multiple	alignment	of	domains	
in	this	family.

• HMM:	Built	from	seed	alignment	for	new	searches.
• Full	alignment: Enlarged	multiple	alignment	generated	
by	aligning	new	domains	against	the	seed	HMM.

Pfam:	Profile	HMM	Database	

