
Vertices for medical school graduates, vertices for hospitals offering residency training, and edges for each application the
medic has made to a hospital.

•

Vertices for Yelp users, vertices for restaurants, and edges labelled with weights to indicate the user's rating of the restaurant.
(We could derive further graphs from this by "hiding" one set of vertices, e.g. to produce a graph with vertices for restaurants,
and edges between restaurants that have been rated by the same users.)

•

A bipartite graph is one in which the vertices are split into two sets, and all the edges have one end in one set and the other end in the
other set. We'll assume the graph is undirected. For example

bipartite graph of Yelp reviews derived graph of restaurants

A matching in a bipartite graph is a selection of some or all of graph's edges, such that no vertex is connected to more than one edge
in this selection. For example, kidney transplant donors and recipients, with edges to indicate compatibility. A maximum matching is
one with the largest possible number of selected edges. There may be several maximum matchings.

transplant compatibility graph a maximum matching a maximum matching

Application: Internet routing
The silicon in the heart of an Internet router has the job of forwarding packets from inputs to outputs. Every clock tick, it can take at
most one packet from each input, and it can send at most one packet to each output---in other words, it selects a matching from
inputs to outputs. It turns out to be useful to weight the edges by the number of packets waiting to be sent, and to pick a matching
with the highest possible total weight.

an internet switch drawn as a bipartite graph

5.11. Matchings

 Graphs part 2 Page 1

Application: taxi scheduling
A company like Uber has to match taxis to passengers. When there are passengers who have made requests, which taxis should they
get? The greedy strategy "pick the nearest available taxi as soon as a request is made" might lead to shortages on the edge of the
network, or to imbalanced workloads among drivers. A different strategy is "once a minute, draw an edge from each passenger to the
ten nearest available vehicles, and look for a maximum matching". In this as in many other applications, matchings are computed over
and over again, and a bad choice will have knock-on effects.

Application: deadlock analysis
A concurrent program is one with several simultaneous threads of execution (as opposed to the sequential algorithms we have studied
so far). If there is a variable that is shared by several threads, this can lead to problems: one thread might be in the midd le of updating
a variable's value when another thread tries to read it. We can prevent these collisions using locks: a thread requests a lock on a
variable, then it reads or writes that variable, then it releases the lock. If one thread has the lock and another thread requests it, the
second thread is blocked until the first thread releases it. A concurrent program can run into deadlock, when each of a group of
threads is waiting for some other thread in that group to release a lock. Deadlock is notoriously hard to reason about, and many
programmers superstitiously avoid concurrency.

In this bipartite graph view of a concurrent system, one can prove the following. For any subset I of threads, create a subgraph
consisting of these threads and the locks that may be requested by at least two threads in I, and draw edges between threads and the
locks they might request. Call I a blocking set if this subgraph has a maximum matching involving all the resources. If the concurrent
system has no blocking sets, then it cannot deadlock.

can't deadlock might deadlock

Implementation
An good way to find a maximum matching is to turn it into what looks like a harder problem, the maximum flow problem. Read
Section 5.12 now. The translation is as follows.

A bipartite graph
➞

A flow problem: add a source with edges to each left-hand vertex; add a sink with edges
from each right-hand vertex; turn the original edges into directed edges from left to right;

give all edges capacity 1.

 Graphs part 2 Page 2

Analysis
Theorem 1 in Section 5.12 tells us that the max flow algorithm terminates, and produces a flow that is integer on all edges. Since the
capacities are all 1, the flow must be 0 or 1 on all edges. We can straightforwardly translate it into a matching: just select all the edges
from the original graph that got flow=1. The capacity contraints on the extra edges we added ensure that this selection is a matching.

Theorem. The matching obtained in this way is a maximum matching.

 Graphs part 2 Page 3

To describe a transportation network, we can use a directed graph with edge weights: vertices for the junctions, edges for th e
roads or railway links or water pipes or electrical cables, whatever it may be that is being transported. An interesting question
is: how much stuff can be carried by this network?

Let's suppose there is a single source vertex s producing stuff, and a single sink vertex t to which stuff is to be transported.
(It's easy to generalise to multiple sources and sinks, rather harder to generalise to multiple types of stuff.) Let each edge u→v
have a capacity c(u→v) ≥ 0.

A flow is a set of edge weights f(u→v) with 0 ≤ f(u→v) ≤ c(u→v) on every edge, such that at all vertices v, other than the
source s and the sink t, flow is "conserved" i.e. as much stuff comes in as goes out:

What flow will transport the largest amount of stuff from source to sink?

Applications
We've already seen how a matching problem can be turned into a flow problem (and then solved!). Now here is a pair of flow
problems that inspired the algorithm we'll describe shortly.

The Russian applied mathematician A.N.Tolstoy was the first to formalize the flow problem. He was interested in the problem
of shipping cement, salt, etc. over the rail network. Formally, he posed the problem "Given a graph with edge capacities, and a
list of source vertices and their supply capacities, and a list of destination vertices and their demands, find a flow that m eets
the demands."

From "Methods of finding the minimal total
kilometrage in cargo-transportation planning in
space", A.N.Tolstoy, 1930.

In this illustration, the circles mark sources and
destinations for cargo, from Omsk in the north to
Tashkent in the south.

The US military was also interested in flow networks during the cold war. If the Soviets were to attempt a land invasion of
Western Europe through East Germany, they'd need to transport fuel to the front line. Given their rail network, and the
locations and capacities of fuel refineries, how much could they transport? More importantly, which rail links should the US
Air Force strike and how much would this impair the Soviet transport capacity?

5.12. Ford-Fulkerson algorithm

 Graphs part 2 Page 4

"Fundamentals of a method for evaluating rail net
capacities", T.E. Harris and F.S. Ross, 1955.

A report by the RAND Corporation for the US Air
Force, declassified by the Pentagon in 1999.

General idea

Start with just the source s, S={s}.1.
Repeatedly, look at the neighbours of S and add any to which we could increase flow. In mathematical notation, we
look for v∈S, w∉S and f(v→w) < c(v→w), and add any such w to S.

2.

If S grows to include the sink t, then pick out a path from source to sink along which we can add capacity. We'll call this
an augmenting path. Add as much flow along this path as it allows, and go back to step 2.

3.

If S does not include the sink, we're done.4.

An obvious place to start is with a simple greedy algorithm. We'll build up a set S of vertices to which we could send more
flow.

S = all nodes

S = all nodes

add 10 along this path:

 Graphs part 2 Page 5

S = two nodes, algorithm is done.

add 2 along this path:

Look for v∈S, w∉S and either f(v→w) < c(v→w) or f(v→w) > 0, and add any such w to S.2.

This greedy algorithm found a flow of size 12, then it finished. But we can easily see a flow of size 17 (10 on the top path, 7 on
the bottom path). It turns out there is a very simple modification to step 2, to allow the algorithm to reassign flows, which
enables it to find the maximum.

S = {s}, algorithm is done.

add 7 along this path:

Problem statement
The value of a flow is the net flow out of the source. Given a weighted directed graph g with a source s and a sink t, find a
flow from s to t with maximum value (also called a maximum flow).

Note: it's easy to prove that that the net flow out of the source must be equal to the net flow into the sink:

 Graphs part 2 Page 6

Algorithm

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

def ford_fulkerson(g, s, t):
 # let f be a flow, initially empty
 for u→v in g.edges:
 f(u→v) = 0
 while True:
 S = Set([s]) # the set of vertices to which we can increase flow
 while there are vertices v∈S and u∉S with f(v→u)<c(v→u) or f(u→v)>0:
 S.add(u)
 if t not in S: break
 pick any path p from s to t made up of vertex pairs (v,u) discovered in line 7

 # write p as s = v0, v1, v2, ... , vk = t
 δ = ∞ # amount by which we'll augment the flow
 for each edge (vi,vi+1) along p:
 if vi→vi+1 is an edge of g:
 δ = min(c(vi→vi+1) - f(vi→vi+1), δ)
 else:
 δ = min(f(vi+1→vi), δ)
 # assert: δ > 0
 for each edge (vi,vi+1) along p:
 if vi→vi+1 is an edge of g:
 f(vi→vi+1) = f(vi→vi+1) + δ
 else:
 f(vi+1→vi) = f(vi+1→vi) - δ
 # assert: f is still a flow (according to definition at top of this section)

ford_fulkerson

This pseudocode doesn't tell us how to choose the path in line 10. One sensible idea is "pick the shortest path", and this
version is called the Edmonds-Karp algorithm. Another sensible idea is "pick the path that makes δ as large as possible", also
due to Edmonds and Karp.

Analysis of running time
The assertions on lines 18 and 24 are both simple to verify.

Be scared of the while loop in line 5: how can we be sure it will terminate? In fact the example sheet asks you to step through
the algorithm for a simple graph with irrational capacities where the algorithm does not terminate. On the other hand:

 Graphs part 2 Page 7

Theorem 1. If all capacities are integers then the algorithm terminates, and the resulting flow on each edge is an integer.

Proof. Initially, the flow on each edge is 0, i.e. integer. At each execution of lines 12--17, we start with integer capacities and
integer flow sizes, so we end up with δ a positive integer. Therefore the total flow has increased by an integer after lines
19--23. The value of the flow can never exceed the sum of all capacities, so the algorithm must terminate.
QED.

Now let's analyse running time, under the assumption that capacities are integer. We execute the while loop at most f* times,
where f* is the value of maximum flow. Lines 12--23 involve some operations per edge of the augmenting path, which is O(V)
since the path is of length ≤ V. The logic involving the set S can actually be accomplished using a stack and a per-vertex
attribute v.is_in_S, and so lines 6--8 can be accomplished in running time O(E), the time it takes to scan the edges of the
graph. Therefore the total running time is O(E V f*).

It is unsatisfactory that the running time we found depends on the values in the input data (via f*) rather than just the size of
the data. This is unfortunately a common feature of many optimization algorithms, and of machine learning algorithms.

The Edmonds-Karp version of the algorithm can be shown to have running time O(E2 V).

Analysis of correctness: the max-flow min-cut theorem
A cut is a partition of the graph's vertices into two sets, V = S ∪ Sc, with s ∈ S and t ∈ Sc. The algorithm looks for a cut, and if it
breaks at line 9 it has found one. The capacity of a cut is the sum of edge capacities from S to Sc,

a cut of capacity 19

Lemma. For any flow and any cut, the value of the flow is ≤ the capacity of the cut.

Theorem 2. If the algorithm terminates, then the value of the flow it has found is equal to the size of the cut found in lines
6--8.

Thus, if the algorithm terminates then it must have found a maximum flow---since by the lemma no other flow could have
value greater than the capacity of the cut found in lines 6--8. We'll call this the bottleneck cut. The RAND report shows a
bottleneck cut, and suggests it's the natural target for an air strike.

 Graphs part 2 Page 8

 Graphs part 2 Page 9

Facebook
Facebook sees the world as a graph of objects and associations, their social graph:

Facebook represents this internally with classic database tables:

id otype attributes

105 USER {name: Alice}

244 USER {name: Bob}

379 USER {name: Cathy}

471 USER {name: David}

534 LOCATION {name: Golden Gate Bridge,
loc: (38.90,-77.04)}

632 CHECKIN

771 COMMENT {text: Wish we were there!}

from_id to_id edge_type

105 244 FRIEND

105 379 FRIEND

105 632 AUTHORED

244 105 FRIEND

244 379 FRIEND

244 632 TAGGED_AT

⋮ ⋮ ⋮

Backups! Years of bitter experience have gone into today's databases, and they are very good and
reliable for mundane tasks like backing up your data. The data is too big to fit in memory, and database
tables are a straightforward way to store it on disk.

•

Database tables can be indexed on many keys. If I have a query like "Find all edges to or from user 379
with timestamp no older than 24 hours", and if the edges table has indexes for columns from_id and
to_id and timestamp, then the query can be answered quickly. In an adjacency list representation,
we'd just have to trawl through all the edges.

•

Why not use an adjacency list? Some possible reasons:

When you visit your home page, Facebook runs many queries on its social graph to populate the page. It needs
to ensure that the common queries run very quickly, and so it has put considerable effort into indexing and
caching.

Twitter also has a huge graph, with vertices for tweets and users, and edges for @mentions and follows. Like
Facebook, it has optimized its graph database to give rapid answers to "broad but shallow" queries on the
graph, such as "Who is following both the tweeter and the @mentioned user?"

TAO: Facebook's Distributed Data Store for the Social Graph (Bronson et al.) Usenix 2013.

5.13. Big graphs

 Graphs part 2 Page 10

TAO: Facebook's Distributed Data Store for the Social Graph (Bronson et al.) Usenix 2013.
https://dev.twitter.com/rest/public/search

Google, Spark
Google first came to fame because they had a better search engine than anyone else. The key idea, by Brin and
Page when they were PhD students at Stanford, was this: a webpage is likely to be "good" if other "good"
webpages link to it. They built a search engine which ranked results not just by how well they matched the
search terms, but also by the "goodness" of the pages. They use the word PageRank rather than goodness, and
the equation they used to define it is

where δ=0.85 is put in as a "dampening factor" that ensures the equations have a well-behaved unique
solution.

How do we solve an equation like this, on a giant graph with one vertex for every webpage? Google said in
2013 that it indexes more than 30 trillion unique webpages, so the graph needs a cluster of machines to store
it, and the computation has to be run on the cluster.

A popular platform for distributed computation (as of writing these notes in 2017) is called Spark. It has a
library that is tailor-made for distributed computation over graphs, and friendly tutorials.

http://spark.apache.org/docs/latest/graphx-programming-guide.html#pagerank

neo4j
Late night conversations often devolve into questions like "What was that movie about submarines with the
actor who was in that movie with that other actor that played the lead in Gone With the Wind?" This question
can be thought of as searching for a subgraph with certain properties, in a graph with vertices for actors,
movies, topics, etc.

Graph databases are databases that are specialized for storing graphs and for answering this sort of subgraph
query. When the Panama Papers dataset was leaked, uncovering a complex network of offshore trusts, the
journalists who got hold of it used a graph database called neo4j to help them understand it.

We don't yet know if it's possible to build a general-purpose graph database that works well on more than a
single machine, which is why Facebook and Google have their own custom solutions.

https://offshoreleaks.icij.org/pages/database

 Graphs part 2 Page 11

https://dev.twitter.com/rest/public/search
http://spark.apache.org/docs/latest/graphx-programming-guide.html#pagerank
https://offshoreleaks.icij.org/pages/database

