

OpenCL platforms and drivers Programming OpenCL To run OpenCL code you need: OpenCL natively offers C99 API Platform 1 (e.g. NVIDIA Driver Generic ICD loader But there is also a standard OpenCL C++ API wrapper ICD Loader (opencl.dll) Platform 2 (e.g. AMD Driver) Included in the OS Strongly recommended – reduces the amount of code Installable Client Driver Platform 3 (e.g. Intel Driver) Programming OpenCL is similar to programming shaders From Nvidia, Intel, etc. in OpenGL > This applies to Windows and Linux, only one platform on Mac Host code runs on CPU and invokes kernels To develop OpenCL code you need: Þ Kernels are written in C-like programming language > SDK from one of the vendors In many respects similar to GLSL Nvidia – CUDA Toolkit Kernels are passed to API as strings Intel OpenCL SDK Karnels are usually stored in text files AMD App SDK

Example: Step 3 - Create Buffers and copy memory
Create Create Create Queue Memory Copy
<pre>// create buffers on the device cl:iBuffer buffer_A(context, CL_NEM_READ_WRITE, sizeof(int) * 10); cl:iBuffer buffer_B(context, CL_NEM_READ_WRITE, sizeof(int) * 10); cl:iBuffer buffer_C(context, CL_NEM_READ_WRITE, sizeof(int) * 10); int A[] = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9); int B[] = (0, 1, 2, 3, 4, 2, 0, 1, 2, 0); //create queue to which we will push commands for the device. cl::CommanQueue queue(context, default_device);</pre>
<pre>//write arrays A and B to the device queue.enqueueWriteBuffer(buffer_A, CL_TRUE, 0, sizeof(int) * 10, A); queue.enqueueWriteBuffer(buffer_B, CL_TRUE, 0, sizeof(int) * 10, B);</pre>
>

OpenCL resources

- https://www.khronos.org/registry/OpenCL/
- Reference cards
 - Google: "OpenCL API Reference Card"
- Reductions
 - http://developer.amd.com/resources/articles-whitepapers/opencl-optimizationcase-study-simple-reductions/
- OpenCL Courses
 - OpenCL 1.2 University Kit
 - Perhaad Mistry & Dana Schaa, Northeastern Univ Computer Architecture Research Lab, with Ben Gaster, AMD © 2011
 http://developer.amd.com/partners/university-programs/
 - OpenCL 2.0 University Kit
 - Zhongliang Chen and Yash Ukidave, Northeastern University Computer Architecture Research Lab with Perhaad Mistry and Dana Schaa, AMD © 2015