25/02/2017

Parallem programming in OpenCL

Advanced Graphics

Rafal Mantiuk

Computer Laboratory, University of Cambridge

Single Program Multiple Data (SPMD)

» Consider the following vector addition example

Serial program:
et FArardr ar ar ar gr Jrar arard
the entire task N

5 A drdrar ar ar Jr ar arar i

¢ EArArar arar Jr ar dr drarira
Multiple copies of the same program execute on different data in parallel
for(i=03){ for(i=4:7){ for(i=8:11){
SPMD program: Cli]=A[i]+B[i] \ Clil=A[i]+B[i] \ Cli]=A[i]+B[i]

multiple copies of the

same program run on /_:

different chunks of the

data i FArarararar Jr ararararari
¢ EOEArararar ar Jrargrarar3j

From: OpenCL 1.2 University Kit

Parallel Software — SPMD

» In the vector addition example, each chunk of data could
be executed as an independent thread
» On modern CPUs, the overhead of creating threads is so
high that the chunks need to be large
In practice, usually a few threads (about as many as the number
of CPU cores) and each is given a large amount of work to do
» For GPU programming, there is low overhead for thread
creation, so we can create one thread per loop iteration

From: OpenCL 1.2 University Kit -

Parallel Software — SPMD

. = loop iteration
Single-threaded (CPU)
// there are N elements Time
for(i = 0; 1 < N; i++)
C[i] = A[i] + B[i]

Multi-threaded (CPU)

// tid is the thread id T0 Fo g o gfs

// P is the number of cores Ti1/4 's 6 |7

for(i = 0; i < tid*N/P; i++) T2|/8 '9 ‘10 11
C[i] = A[i] + B[i] T3 12 13 14 15

Massively Multi-threaded (GPU)

To
// tid is the thread id T1
cltid] = A[tid] + B[tid] T2
T3
£
15 Sl

From: OpenCL 1.2 University Kit -

Parallel programming frameworks

» These are some of more relevant frameworks for
creating parallelized code

OpenACC

WIS

OpenCL cpenct

» OpenCL is a framework for writing parallelized code for
CPUs, GPUs, DSPs, FPGAs and other processors

» Initially developed by Apple, now supported by AMD, IBM,
Qualcomm, Intel and Nvidia (reluctanctly)
» Versions
Latest: OpenCL 2.2
OpenCL C++ kernel language
SPIR-V as intermediate representation for kernels
I Vulcan uses the same Standard Portable Intermediate Representation
AMD, Intel
Mostly supported: OpenCL |.2
Nvidia, OSX

™ o1l s fals e 7 s 0o a0l sl

http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/

25/02/2017

OpenCL platforms and drivers

» To run OpenCL code you need:
Generic ICD loader
TeB Tonder o
Included in the OS it K (eg i e

Installable Client Driver ad

| (e.g. NVIDIADriver]

From Nyvidia, Intel, etc.

This applies to Windows and Linux, only one platform on Mac

» To develop OpenCL code you need:
SDK from one of the vendors
Nvidia — CUDA Toolkit
Intel OpenCL SDK
AMD App SDK

Programming OpenCL

» OpenCL natively offers C99 API
» But there is also a standard OpenCL C++ APl wrapper
Strongly recommended — reduces the amount of code
» Programming OpenCL is similar to programming shaders
in OpenGL
Host code runs on CPU and invokes kernels
Kernels are written in C-like programming language
In many respects similar to GLSL
Kernels are passed to API as strings
Karnels are usually stored in text files

Example: Step 1 - Select device

Getall Select Getall Select
Platforms Platform Devices Device
11 platform: rivers)

<cl:: > all_platforns;
:1:get(8all_platforms);
i {

" No platforms found. Check OpenCL installation

default_platform = all_platforms(e];
cout << "Using platform: " << default_platform.getInfo<CL_PLATFORN_NAME>() << "\n";

ault platfors

default_platform.getDevices (CL_DEVICE_TYPE_ALL, &all_devices);
if (all_devices.size() ==

std::cout << " Mo devices found. Check OpenCL installationl\n";
exit(1);
cl::Device default_device = all_devices[e];

std::cout << "Using " << default_device.getInfocCL_DEVICE_NAME>() << "\n";

Example: Step 2 - Build program

Create Load sources Create Build
context (usually from files) Program Program

cl::Context context({ default_device });

€l::Progras: :Sources sources;

nel calculates for each element C=A+B
ring kernel_code =
kernel woid simpl

onst int* A, _global comst int* B, _global int* C) {"

sources.push_back({ kernel_code.c_str(), kernel_code.length() });

cl::Progras progras(context, sources);
trey {
program.build([default_device });

catch (cl::Error arr) {
std:icout << " Error bullding: " <<
progras. getBuildInfocCL_PROGRAM_BUILD_LOG> (default_device) <<
exit(1);

}

Example: Step 3 - Create Buffers and
copy memory

Create Create Enqueue
Buffers Queue Memory Copy

/ ereate buffers on the device

cl::Buffer buffer_A(context, CL_MEM_READ_WRITE, sizeof(int) * 10);
cl::Buffer buffer B(context, CL_MEM_READ_WRITE, sizeof(int) * 18);
cl::Buffer buffer_C(context, CL_MEM_READ_WRITE, sizeof(int) * 18);

int Al

0 8,
int B{] 2

18,1,2,3,4,56,7,809]);
{e1,291,2,0,1,2 8}

eate queue to which we will push commands for the device.
1::CommandQueue queve(context, default_device);

furite arrays A and B to the device
queve . enqueveliriteBuffer(buffer_A, CL_TRUE, 8, sizeof(int) * 18, A);
queue . enqueuebiriteBuffer(buffer B, CL_TRUE, @, sizeof(int) * 19, B);

Example: Step 4 - Execute Kernel and
retrieve the results

Create Set Kernel Enqueue Enqueue
Kernel Arguments Kernel memory copy

ble_add");

cli:Kernel kernel(program, “si

kernel.setarg(0, buffer_A);
kernel.setArg(1, buffer_B);
kernel.setArg(2, buffer C);
queue. enqueueNDRangeKernel (kernel, cl::NullRange, cl::NDRange(10), cl::NullRange);

int c[10];

read result C from the device to arra
queue. enqueueReadBuffer(buffer_C, CL_TRUE, 8, sizeof(int) * 10, C);
queue. finish();

std::cout << " result: \n";
for (int i = 0; i < 10; i++){ Our Kernel was
std::cout << C[i] << " *; [wernel void sinple_aa

}
std::cout << std::endl;

namx - ger gimman sa()
C[4ngex]-A [Lndex] +B[£ndex]

25/02/2017

OpenCL API Class Diagram

Platform — Nvidia CUDA
Device — GeForce 780

Platform |1

__+| Command Queve |3+ Event

Platform model

» The host is whatever the OpenCL library runs on
Usually x86 CPUs for both NVIDIA and AMD

' ::’g"”m = collection of [| » Devices are processors that the library can talk to
rnels * +
B Iy devi CPUs, GPUs, DSPs and generic accelerators
4 uffer / Image — device 1 1 0.1
fler | imogs r R . » For AMD
memory Device 1D 1, Context [V
» Sampler — how to — — All CPUs are combined into a single device (each core is a compute unit
1 .
interpolate values for :T } and processing element)
Image Program | N":;’;gt;l(‘;;‘ . Each GPU is a separate device
» Command Queue — put a T i Sampler
sequence of operations * Processing [
there Kernel L e
. Buffer | Image |t
» Event — to notify that | 1
)] i Compie Davice
something has been done .
From: OpenCLAPI 1.2 Reference Card 14
Execution model Memory model
» Each kernel executes on ID, 2D or 3D array (NDRange) > Host memory OpencL Device
. . Usually CPU memory, device does Privale = e —
» The array is split into work-groups not have access to that memory Rz || =2, el | [)
» Work items (threads) in each work-group share some local » Global memory [__global] _ _
memory Device memory, for storing large ok lem | Work ffem ||| Werk llem]| Work Rom
» Kernel can querry i L] - daca
get_global_id(dim) g vy, ¥y » Constant memory [__constant] Local Mamory Local Memory
get_group_id(dim) » Local memory [__local] LEEED Workgroup
get_local_id(dim) Fast, accessible to all work-items
» Work items are not (threads) within a workgroup GlobaliConstant Memory
g e, . .
bound to any memory » Private memory [__private]
. workitam worm Accessible to a single work-item
entity R, (thread) T
(unlike GLSL shaders) 1 5
Hast

NoRarge 529 G,

Memory objects

cl:Image | DBuffer

cl::Memory

cl:Image

[cl::BufferGL] [cl::BuﬂerRenderGL] [cl:Image| D] [cl:lmage2D] [cl:lmage2D]

This diagram is incomplete — there are more memory objects

» Buffer
ArrayBuffer in OpenGL
Accessed directly via C pointers
» Image
Texture in OpenGL
Access via texture look-up function
Can interpolate values, clamp, etc.

Programming model

» Data parallel programming

Each NDRange element is assigned to a work-item (thread)
» Task-parallel programming

Multiple different kernels can be executed in parallel

Each kernel can use vector-types of the device (float4, etc.)

» Command queue
queue.enqueueWriteBuffer(buffer_A, CL_TRUE, @, sizeof(int)*1@, A);

CL_TRUE - Execute in-order
CL_FALSE — Execute out-of-order

Provides means to both synchronize kernels and execute them in parallel

25/02/2017

Big Picture Thread Mapping

» By using different mappings, the same thread can be
assigned to access different data elements

The examples below show three different possible mappings of
| threads to data (assuming the thread id is used to access an

element) int group_size =
0 get_local_size(0) *
< T get_local_size(1);
int tid =
get_group_id(1) *
get_num_groups (0) *
i Outof int tid = int tid = group_size +
Order |[{] Onder Mapping get_global_id(1) * get_global_id(0) * get_group_id(0) *
Queve [}]{ Queue get_global_size(0) + get_global_size(1) + group_size +
get_global_id(0) ; get_global_id(1); get_local id(1) *
GPU - - - - get_local_size(0) +

2 B W @ B B get_local_id(0)
. ThreadIDs 4 5|6 7 B ENE o ffa s

y 8| 9|01 " 4F AR AF AR 4F

12 13 14 15 o 7 s oo Fafs

o, 20 e T - : 1] 4 14|16

19 20 From: OpenCL 1.2 University Kit *assuming 2x2 groups

Thread Mapping Thread Mapping

» Consider a serial matrix multiplication algorithm » Thread mapping |: with an MxN index space, the kernel would be:
Mapping for C
for (i1 =0; il < M; il++) int 1x = get_global_id(0): W 2 D B
for(i2=0; i2< N;i2++) get_global id (1) W BB &
for (3=0; i3< P; i3+4) <P i344) = ol
Clil](i2] += Alil][i3]+B[i3](i2]; Clex]lty] += Alx][i3]J«Bli3][ty |: s 7 s
» This algorithm is suited for output data decomposition
We will create NM threads » Thread mapping 2: with an NxM index space, the kernel would be:
Effectively removing the outer two loops int tx = getglobalid (0} ;vlapfing ;or c3
Each thread will perform P calculations int ty = get.global.id (1); T
. . . for(i3=0; i3<P;i3++4)
The inner loop will remain as part of the kernel Cliy J[1x] += Alty I[i3]+B[i3][1x I: 182 193 ﬁ i:,
» Should the index space be MxN or NxM?)

» Both mappings produce functionally equivalent versions of the program

21 From: OpenCL 1.2 Universiy Kit 22 From: OpenCL 1.2 University K
Thread Mapping Thread Mapping
» This figure shows the execution of the two thread mappings » The discrepancy in execution times between the
on NVIDIA GeForce 285 and 8800 GPUs mappings is due to data accesses on the global memory
= ' bus
agping | on . -
o 4| Mmemimze = / Assuming row-major data, data in a row (i.e., elements in
E .l / adjacent columns) are stored sequentially in memory
¢ b To ensure coalesced accesses, consecutive threads in the same
- . // | wavefront should be mapped to columns (the second
a el dimension) of the matrices
- : " This will give coalesced accesses in Matrices B and C

768 1024 1280

Sizm of o chmension i For Matrix A, the iterator i3 determines the access pattern for row-
» Notice that mapping 2 is far superior in performance for both major data, so thread mapping does not affect it
GPUs
23 From: OpenCL 1.2 University Kit 24 From: OpenCL 1.2 Universiy Kit

http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/
http://developer.amd.com/partners/university-programs/

25/02/2017

Reduction

GPU offers very good float reduce_sum(float* input, int length)
performance for tasks
in which the results are
stored independently
Process N data items
and store in N memory }
location

float accumulator = input[e];
for(int i = 1; i < length; i++)

accumulator += input[i];
return accumulator;

But many common operations require reducing N values into | or few values

sum, min, max, prod, min, histogram, ...

Those operations require an efficient implementation of reduction

The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

Reduction tree for the min operation

__kernel q

To5d reduce(__global floats buffer, » bar‘r‘ler‘. ensures that all threads
(work units) in the local group

reach that point before execution

continue

local float* scratch,
__const int length,
global float* result) {

int global_index = get_global_id(e);

int local_index = get_local_id(e);

// Load data into local memory

if (global_index < length) {
scratch[local_index] = buffer[global_index];

} else {

scratch[local_index] = INFINITY;

» Each iteration of the for loop
computes next level of the
reduction pyramid

barrier(CLK_LOCAL_MEM_FENCE); Local memory
for(int offset = get_local_size(®) / 2;
offset > 8; offset >>= 1) {
if (local_index < offset) {
float other = scratch[local_index + offset];
float mine = scratch[local_index];
scratch[local_index] = (mine < other) ? mine :
other;

Parallel Reduction
Tree for Commutative
Operator

barrier(CLK_LOCAL_MEM_FENCE);

if (local_index == @) { SIMD Utilization for

heeps esfartic papers/opencl dy-simple-reductions/ result[get_group_id(8)] = scratch[0]; Reduction Trea
}
Multistage reduction Two-stage reduction
! Stage 1 Different colours denote differant threads

» The local memory is usually
limited (e.g. 50kB), which
restricts the maximum size of
the array that can be processed

» Therefore, for large arrays need
to be processed in multiple
stages

The result of a local memory

reduction is stored in the array
and then this array is reduced

Global memary
[1]2]3]4]s[e]7]e[1]2[3]4]s6]7[8]1]2[3]4][5]6][7[8]

Local memory __kernel

Void reduce(__global float* buffer,
local float* scratch,
__const int length,
global float* result) {

Stage 2

int global_index = get_global_id(e);
float accumulator = INFINITY;
// Loop sequentially over chunks of input
vector
while (global_index < length) {
float element = buffer[global_index];
accunulator = (accumulator < element) ?
accumulator : element;
global_index += get_global_size(0);

» First stage: serial reduction by
N concurrent threads

» Second stage: parallel reduction
H // Perform parallel reduction
in local memory [The same code as in the previous example]

}

Reduction performance CPU/GPU

Reduction Performance on GPU

— Commutatve

Reduction Performance on CPU

1o0en1

i W !
i i :
3 oo ot § e
- — Vectorized
1006405 ~ 1006408

Site sm

» Different reduction algorithm may be optimal for CPU and GPU
» This can also vary from one GPU to another

The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/

Better way?

» Halide - a language for image processing and
computational photography

Code written in a high-level language, then translated to
x86/SSE, ARM, CUDA, OpenCL

The optimization strategy defined separately as a schedule
Auto-tune software can test thousands of schedules and
choose the one that is the best for a particular platform
Automatically find the best trade-offs
for a particular platform e Jocally
Designed for image processing but
similar languages created for other
purposes

S\ 7

parallelism

http://halide-lang.org/

OpenCL resources

» https://www.khronos.org/registry/OpenCL/

» Reference cards
Google:“OpenCL API Reference Card”

» Reductions
http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-
case-study-simple-reductions/

» OpenCL Courses
OpenCL 1.2 University Kit

Perhaad Mistry & Dana Schaa, Northeastern Univ Computer Architecture
Research Lab, with Ben Gaster, AMD © 2011

OpenCL 2.0 University Kit

Zhongliang Chen and Yash Ukidave, Northeastern University Computer Architecture
Research Lab with Perhaad Mistry and Dana Schaa, AMD © 2015

25/02/2017

http://developer.amd.com/partners/university-programs/

