III. Linear Programming

Thomas Sauerwald

Easter 2017

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Introduction

Linear Programming (informal definition) -

- maximize or minimize an objective, given limited resources and competing constraint
- constraints are specified as (in)equalities

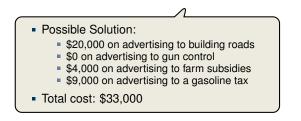
Example: Political Advertising -

- Imagine you are a politician trying to win an election
- Your district has three different types of areas: Urban, suburban and rural, each with, respectively, 100,000, 200,000 and 50,000 registered voters
- Aim: at least half of the registered voters in each of the three regions should vote for you
- Possible Actions: Advertise on one of the primary issues which are (i) building more roads, (ii) gun control, (iii) farm subsidies and (iv) a gasoline tax dedicated to improve public transit.

Political Advertising Continued

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.



What is the best possible strategy?

Towards a Linear Program

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

The effects of policies on voters. Each entry describes the number of thousands of voters who could be won (lost) over by spending \$1,000 on advertising support of a policy on a particular issue.

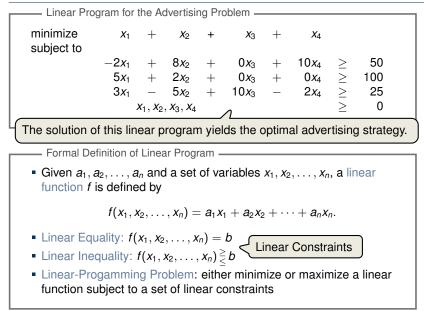
- x_1 = number of thousands of dollars spent on advertising on building roads
- x_2 = number of thousands of dollars spent on advertising on gun control
- x_3 = number of thousands of dollars spent on advertising on farm subsidies
- x_4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

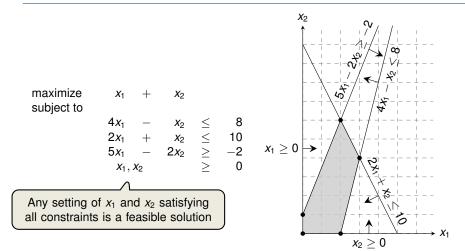
- $-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50$
- $5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100$
- $3x_1 5x_2 + 10x_3 2x_4 \ge 25$

Objective: Minimize $x_1 + x_2 + x_3 + x_4$

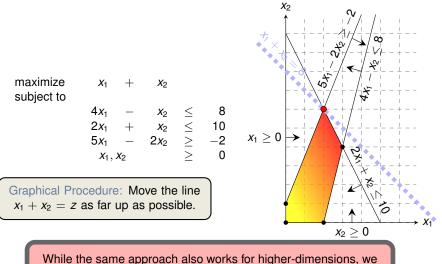
The Linear Program



A Small(er) Example



A Small(er) Example



need to take a more systematic and algebraic procedure.

Introduction

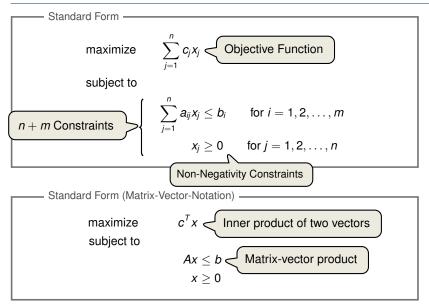
Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Standard and Slack Forms



- 1. The objective might be a minimization rather than maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

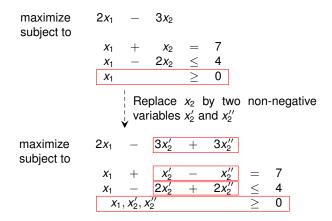
Equivalence: a correspondence (not necessarily a bijection) between solutions so that their objective values are identical.

When switching from maximization to minimization, sign of objective value changes.

1. The objective might be a minimization rather than maximization.

minimize	$-2x_{1}$	+	3 <i>x</i> ₂		
subject to					
-	<i>X</i> ₁	+	<i>X</i> ₂	=	7
	<i>X</i> ₁	_	$2x_2$	\leq	4
	<i>X</i> ₁		x ₂ 2x ₂	\geq	0
	Ň	Ne V	gate o	bject	ive function
maximize	$2x_1$	_	3 <i>x</i> ₂		
subject to					
	<i>x</i> ₁	+	x ₂ 2x ₂	=	7
	<i>x</i> ₁	_	2 <i>x</i> ₂	\leq	4
	<i>x</i> ₁			\geq	0

2. There might be variables without nonnegativity constraints.



3. There might be equality constraints.

maximize $2x_1$ $3x_2'$ $3x_{2}''$ +_ subject to $+ x'_2 \\ - 2x'_2$ $- x_2'' + 2x_2''$ *X*1 7 4 0 = ≤ ≥ X_1 x_1, x_2', x_2'' Replace each equality by two inequalities. maximize $3x_2'$ $2x_1$ + $3x_{2}''$ subject to $\begin{array}{ccc} \leq & 7\\ \geq & 7\\ \leq & 4\\ \geq & 0 \end{array}$ X_1 *X*1 *X*1 x_1, x_2', x_2''

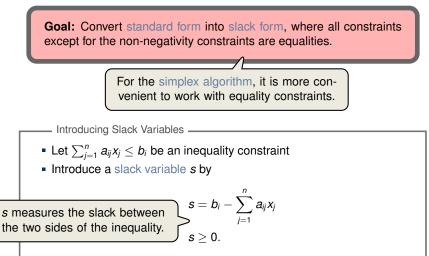
4. There might be inequality constraints (with \geq instead of \leq).

maximize subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ '	+	3 <i>x</i> ₂ "		
	<i>x</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	<i>X</i> 1	+	x_2'	_	x''	2	7
	<i>X</i> 1	_	$2x_{2}^{'}$	+	$2x_{2}^{''}$	\leq	4
	<i>X</i> ₁	, x 2, x	<" -		_	\geq	0
		V ₩	egate i	respe	ective in	nequa	lities.
maximize subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ "		
	<i>x</i> ₁	+	x_2'	_	<i>x</i> ₂ ''	\leq	7
	$-x_1$	_	<i>x</i> ₂ '	+	<i>x</i> 2″	\leq	-7
	<i>X</i> 1	-	2 <i>x</i> ₂ '	+	2 <i>x</i> ₂ "	\leq	4
	<i>x</i> ₁	$, x_{2}', x_{2}'$	x_{2}''			\geq	0

Rename variable names (for consistency).											
maximize	2 <i>x</i> 1	_	$\sqrt{3x_2}$	+	3 <i>x</i> 3						
subject to											
	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> 3	\leq	7				
	$-x_{1}$	—	<i>X</i> 2	+	<i>X</i> 3	\leq	-7				
	<i>X</i> ₁	_	$2x_{2}$	+	$2x_3$	\leq	4				
	<i>X</i> ₁	$, x_2, x_2$	K 3			\geq	0				

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)



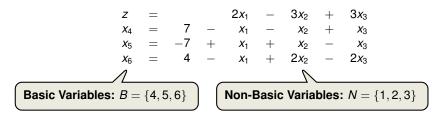
Denote slack variable of the *i*th inequality by x_{n+i}

Converting Standard Form into Slack Form (2/3)

maximize subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	<	7	,	
	$-x_1$	_		+	<i>X</i> 3	<	-7	,	
	<i>x</i> ₁	_	$2x_{2}$		$2x_3$	<	4	L	
	-	1, x 2, 2		1	0		C		
			1						
			- İ I	ntrod	luce sl	lack v	/ariat	oles	
			. ↓						
maximize				2	$2x_1$	_ ;	$3x_2$	+	3 <i>x</i> ₃
subject to					•				- 0
,	X 4	=	7.	_	<i>X</i> ₁	_	X 2	+	<i>X</i> 3
	X 5	= -	-7 -	+	<i>X</i> ₁	+	X_2	_	<i>X</i> 3
	<i>x</i> ₆	=	4 -	_	-		$2x_{2}^{-}$	_	$2x_3$
		, <i>x</i> ₂ , <i>x</i>	x_3, x_4, x_4	x ₅ , x ₆	-	\geq	Ō		0

maximize subject to					2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃			
	<i>X</i> ₄	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3			
	<i>X</i> 5	=	-7	+	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3			
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	$2x_{3}$			
		x_1, x_2	$, x_3, x_4$	4, X 5,	<i>X</i> 6	\geq	0					
	Use variable z to denote objective function and omit the nonnegativity constraints.											
	Ζ	=			2 <i>x</i> 1	-	3 <i>x</i> 2	+	3 <i>x</i> 3			
	<i>X</i> 4	=	7	—	<i>X</i> 1	—	<i>X</i> ₂	+	<i>X</i> 3			
	<i>X</i> 5	=	-7	+	<i>x</i> ₁	+	<i>x</i> ₂	—	<i>X</i> 3			
	<i>X</i> 6	=	4	_	<i>x</i> ₁	+	$2x_{2}$	_	$2x_{3}$			
This)							

Basic and Non-Basic Variables



Slack Form (Formal Definition) -

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} & z = v + \sum_{j \in N} c_j x_j \ & x_i = b_i - \sum_{j \in N} a_{ij} x_j & ext{ for } i \in B, \end{aligned}$$

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

Slack Form (Example)

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

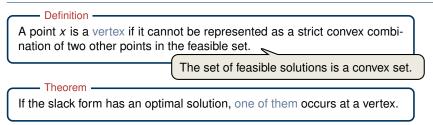
$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Slack Form Notation
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$v = 28$$

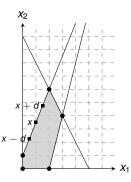
The Structure of Optimal Solutions



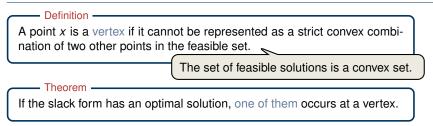
Proof:

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 1: There exists j with $d_j < 0$
 - Increase λ from 0 to λ' until a new entry of x + λd becomes zero
 - $x + \lambda' d$ feasible, since $A(x + \lambda' d) = Ax = b$ and $x + \lambda' d \ge 0$

$$c^{T}(x + \lambda^{T}d) = c^{T}x + c^{T}\lambda^{\prime}d \geq c^{T}x$$

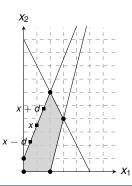


The Structure of Optimal Solutions



Proof:

- Let *x* be an optimal solution which is not a vertex $\Rightarrow \exists$ vector *d* so that x d and x + d are feasible
- Since A(x + d) = b and $Ax = b \Rightarrow Ad = 0$
- W.I.o.g. assume $c^T d \ge 0$ (otherwise replace d by -d)
- Consider $x + \lambda d$ as a function of $\lambda \ge 0$
- Case 2: For all $j, d_j \ge 0$
 - $x + \lambda d$ is feasible for all $\lambda \ge 0$: $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$
 - If $\lambda \to \infty$, then $c^T(x + \lambda d) \to \infty$
 - \Rightarrow This contradicts the assumption that there exists an optimal solution.



Introduction

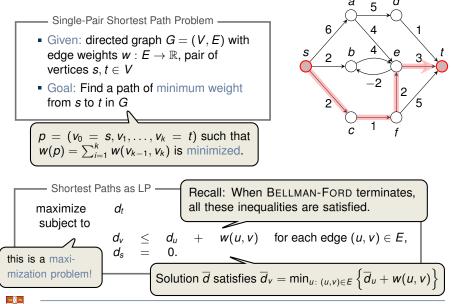
Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

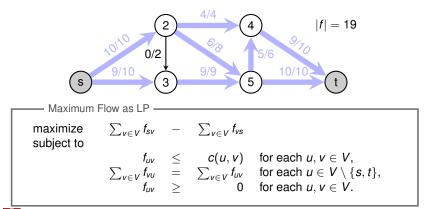
Shortest Paths



Maximum Flow

- Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation



Minimum-Cost Flow

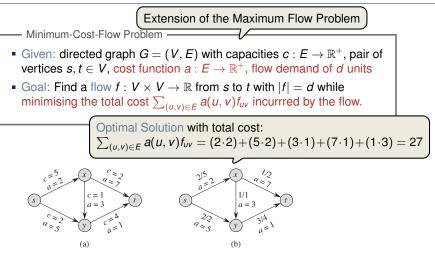


Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Minimum Cost Flow as LPminimize
subject to $\sum_{(u,v)\in E} a(u,v)f_{uv}$ $f_{uv} \leq c(u,v)$ for each $u,v \in V$,
 $\sum_{v \in V} f_{vu} - \sum_{v \in V} f_{uv} = 0$ for each $u \in V \setminus \{s,t\}$,
 $\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} = d$,
 $f_{uv} \geq 0$ for each $u,v \in V$.

Real power of Linear Programming comes from the ability to solve **new problems**!

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm _____

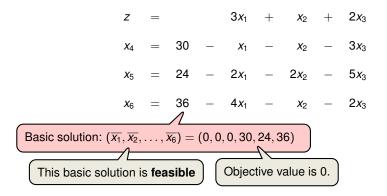
- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

 $3x_1 + x_2 + 2x_3$

maximize subject to



Increasing the value of x_1 would increase the objective value. Ζ $3x_1$ $+ X_2 +$ $2x_3$ 30 $3x_3$ X_4 — X₁ X_2 $- 2x_1$ $2x_2$ $5x_3$ 24 X5 _ 36 $- 4x_1 -$ *X*₂ $2x_3$ *X*6 = The third constraint is the tightest and limits how much we can increase x_1 . Switch roles of x_1 and x_6 : Solving for x₁ yields: $x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$. Substitute this into x₁ in the other three equations

Inc	Increasing the value of x_3 would increase the objective v									
z	=	27	+	<u>x2</u> 4	+	$\frac{X_3}{2}$	_	$\frac{3x_{6}}{4}$		
<i>X</i> ₁	=	9	_	$\frac{x_2}{4}$	_	$\frac{x_{3}}{2}$	_	$\frac{x_6}{4}$		
<i>X</i> 4	=	21	_	$\frac{3x_2}{4}$	_	<u>5x₃</u> 2	+	$\frac{X_6}{4}$		
<i>X</i> 5	=	6	_	<u>3x2</u> 2	_	4 <i>x</i> ₃	+	$\frac{x_6}{2}$		
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27										

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{5x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$
hird constraint is the tightest and limits how much we can increase x_3 .
$$Switch roles of x_3 and x_5:$$

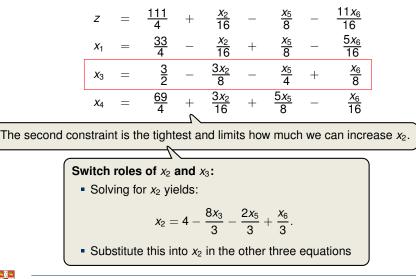
$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

$$substitute this into x_3 in the other three equations$$

The t

Increasing the value of x_2 would increase the objective value.										
	7	_	111		<u>X2</u> 16		x 5		11 <i>x</i> 6	
					<u>x</u> 2 16					
	<i>x</i> ₃	=	<u>3</u> 2	_	$\frac{3x_2}{8}$	_	$\frac{x_{5}}{4}$	+	$\frac{x_6}{8}$	
	<i>X</i> 4	=	<u>69</u> 4	+	<u>3x2</u> 16	+	$\frac{5x_5}{8}$	_	<u>x₆</u> 16	
Basic solution: $(\overline{x_1}$	$, \overline{x_2}, .$, x 6	$(\frac{33}{4}) = (\frac{33}{4})$	$\frac{3}{2}, 0, \frac{3}{2}$	$, \frac{69}{4}, 0,$	0) wi	th obje	ctive	value 111/4 =	= 27.75

Extended Example: Iteration 3



Extended Example: Iteration 4

All coefficients are negative, and hence this basic solution is optimal!

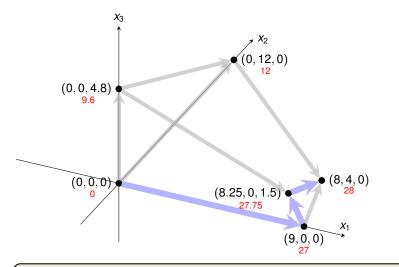
$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

Extended Example: Visualization of SIMPLEX



Exercise: How many basic solutions (including non-feasible ones) are there?

Extended Example: Alternative Runs (1/2)

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃
<i>x</i> ₄	=	30	_	<i>x</i> ₁	-	<i>x</i> ₂	-	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	-	5 <i>x</i> ₃
<i>x</i> ₆	=	36	_	4 <i>x</i> ₁	-	<i>x</i> ₂	-	2 <i>x</i> ₃
				y Sw	itch ro	les of x	and	X5
z	=	12	+	2 <i>x</i> ₁	-	$\frac{x_3}{2}$	-	$\frac{x_{5}}{2}$
<i>x</i> ₂	=	12	_	<i>x</i> ₁	_	$\frac{5x_{3}}{2}$	_	$\frac{x_{5}}{2}$
<i>x</i> ₄	=	18	_	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	$\frac{x_{5}}{2}$
<i>x</i> ₆	=	24	-	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$
				v Sw	itch ro	les of x	and	<i>x</i> ₆
z	=	28	-	$\frac{x_3}{6}$	_	$\frac{x_5}{6}$	_	$\frac{2x_6}{3}$
<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_5}{6}$	-	$\frac{x_{6}}{3}$
<i>x</i> ₂	=	4	-	$\frac{8x_{3}}{3}$	-	$\frac{2x_5}{3}$	+	$\frac{x_6}{3}$
<i>x</i> ₄	=	18	_	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$		

Extended Example: Alternative Runs (2/2)

				Ζ	=			3 <i>x</i> ₁	+	<i>X</i> 2	. +	2	x 3				
				<i>x</i> ₄	=	30	_	<i>x</i> ₁	_	<i>X</i> ₂	. –	- 3.	x 3				
				<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	_	2 <i>x</i> ₂	. –	- 5.	x 3				
				<i>x</i> ₆	=	36	-	4 <i>x</i> ₁	—	<i>X</i> 2	. –	2.	x 3				
								¦ Swi ¥	itch ro	oles o	f x ₃ ar	nd <i>x</i> 5					
				z	=	<u>48</u> 5	+	<u>11)</u> 5	κ <u>1</u>	+	$\frac{x_2}{5}$	-	2	2 <i>x</i> 5 5			
				<i>x</i> ₄	=	<u>78</u> 5	+	2	κ ₁ 5	+	$\frac{x_2}{5}$	+	3	5 5			
				<i>x</i> 3	=	<u>24</u> 5	-	2) 5		-	$\frac{2x_2}{5}$	-		$\frac{x_5}{5}$			
				<i>x</i> ₆	=	<u>132</u> 5	-	<u>16)</u> 5	<u>к</u> 1	-	$\frac{x_2}{5}$	+	2	$\frac{2x_3}{5}$			
	Sw	itch r	oles of	x₁ an	d x ₆					!	Switch	roles	of x	2 and	<i>x</i> 3		
=	<u>111</u> 4	+	$\frac{x_2}{16}$	-	$\frac{x_5}{8}$	-	11 <i>x</i> 6 16		z	=	28	-	$\frac{x_3}{6}$	-	$\frac{x_{5}}{6}$	-	$\frac{2x_{6}}{3}$
=	$\frac{33}{4}$	-	$\frac{x_2}{16}$	+	<u>x</u> 5 8	-	5 <i>x</i> 6 16		<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_5}{6}$	-	$\frac{x_6}{3}$
=	<u>3</u> 2	-	$\frac{3x_2}{8}$	-	$\frac{x_{5}}{4}$	+	$\frac{x_{6}}{8}$		<i>x</i> ₂	=	4	-	8 <i>x</i> 3 3	-	$\frac{2x_5}{3}$	+	$\frac{x_6}{3}$
=	<u>69</u> 4	+	$\frac{3x_2}{16}$	+	$\frac{5x_5}{8}$	-	<u>x₆</u> 16		<i>x</i> ₄	=	18	_	$\frac{x_3}{2}$	+	$\frac{x_5}{2}$		

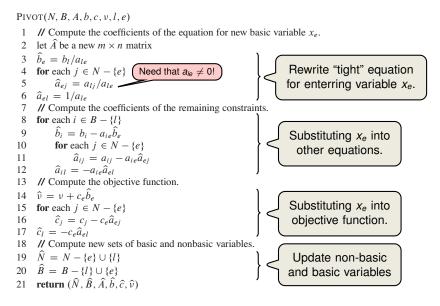
Ζ

X1

 X_3

XΔ

The Pivot Step Formally



Effect of the Pivot Step

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \widehat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \widehat{b}_e = b_l/a_{le}$.

3. After the substituting in the other constraints, we have

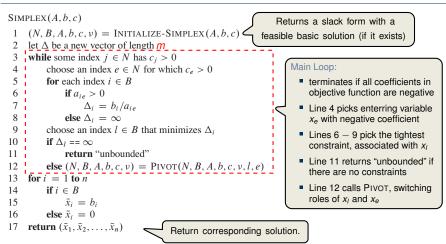
$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX



The formal procedure SIMPLEX

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = INITIALIZE-SIMPLEX(A, b, c)
 2
     let \Delta be a new vector of length m
 3
     while some index j \in N has c_i > 0
          choose an index e \in N for which c_e > 0
 4
 5
          for each index i \in B
               if a_{ie} > 0
 6
 7
                    \Delta_i = b_i / a_{ie}
 8
               else \Delta_i = \infty
 9
          choose an index l \in B that minimizes \Delta_i
          if \Delta_l == \infty
10
               return "unbounded"
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,

Lemma 29.2 -----

3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$\downarrow \text{Pivot with } x_1 \text{ entering and } x_4 \text{ leaving}$$

$$z = 8 + x_3 - x_4$$

$$x_1 = 8 - x_2 - x_3$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving}$$

$$\downarrow \text{Pivot } x_1 = 8 - x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4$$

$$x_3 = x_2 - x_4$$

are

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Introduction

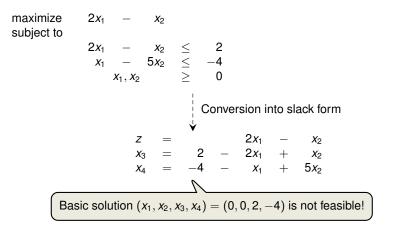
Standard and Slack Forms

Formulating Problems as Linear Programs

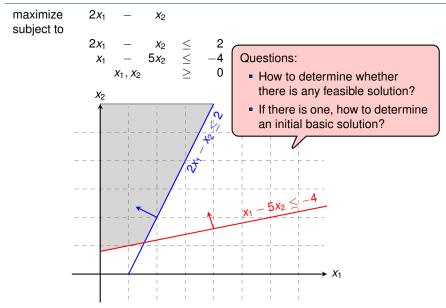
Simplex Algorithm

Finding an Initial Solution

Finding an Initial Solution



Geometric Illustration



Formulating an Auxiliary Linear Program

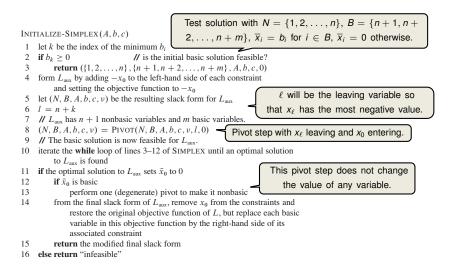
maximize subject to	$\sum_{j=1}^{n}$	$C_j X_j$						
		$\sum_{j=1}^{n} a_{ij} x_j x_j$	\leq	b _i 0	for $i = 1, 2,, m$, for $j = 1, 2,, n$			
		¦ F ♥	ormu	lating	g an Auxiliary Linear Program			
maximize subject to	$-x_0$							
		$\sum_{i=1}^{n} a_{ii} x_i - x_0$	\leq	bi	for $i = 1, 2,, m$,			
		$\Sigma_{j=1}$, X_j	\geq	0	for $i = 1, 2,, m$, for $j = 0, 1,, n$			
Lemma 29.11								
Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.								

Proof.

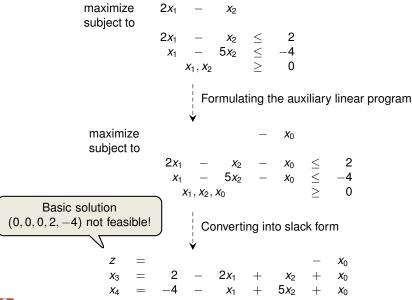
- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - x
 ₀ = 0 combined with x
 is a feasible solution to L_{aux} with objective value 0.
 Since x
 ₀ ≥ 0 and the objective is to maximize -x
 ₀, this is optimal for L_{aux}
- "⇐": Suppose that the optimal objective value of *L*aux is 0

• Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

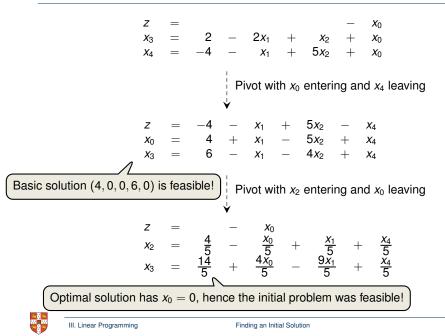
INITIALIZE-SIMPLEX



Example of INITIALIZE-SIMPLEX (1/3)



Example of INITIALIZE-SIMPLEX (2/3)



Example of INITIALIZE-SIMPLEX (3/3)

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$\begin{cases} \text{Set } x_{0} = 0 \text{ and express objective function} \\ \text{by non-basic variables} \end{cases}$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{4}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

 Theorem 29.13 (Fundamental Theorem of Linear Programming)

 Any linear program *L*, given in standard form, either

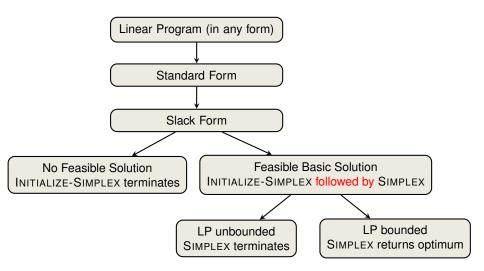
 1. has an optimal solution with a finite objective value,

 2. is infeasible, or

 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)



Linear Programming and Simplex: Summary and Outlook

Linear Programming -

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

