
CST 2015-16 Part II Types – Exercise Sheet

ML Polymorphism

Exercise 1. Prove the following typings hold for the Mini-ML type system:

(i) { } ` lx1 (lx2 (x1)) : 8a1, a2 (a1 � (a2 � a1))

(ii) { } ` lx (x :: nil) : 8a (a � a list)

(iii) { } ` lx (case x of nil ) true | x1 :: x2 ) false) : 8a (a list � bool)

(iv) { } ` let f = lx1 (lx2 (x1)) in f f : 8a1, a2, a3 (a1 � (a2 � (a3 � a2)))

Exercise 2. Which of the following are valid instances of the specialisation relation between
ML type schemes and types?

(i) 8a1, a2(a1 ! a2) � (a1 ! a1) ! a1

(ii) 8a1(a1 ! a2) � (a1 ! a1) ! a1

(iii) 8a1(a1 ! a2) � (a2 ! a2) ! a2

(iv) 8a1(a1 ! a1) � (a1 ! a1) ! a2

Exercise 3. Show that if { } ` M : t is provable from the Mini-ML typing rules, then M must be
closed, i.e. have no free variables. [Hint: use rule induction for the rules on Slides 16–18 to show
that the provable typing judgements, G ` M : t, all have the property that fv(M) ✓ dom(G).]

Exercise 4. Consider the following Mini-ML typing problems (Slide 26).

(i) x : 8{b}(b ! a) ` x (x nil) : ?

(ii) x : 8{a}(b ! a) ` x (x nil) : ?

(iii) x : 8{b}(b ! alist) ` x :: (x nil) : ?

(iv) x : 8{a}(b ! alist) ` x :: (x nil) : ?

For each typing problem, either give a solution together with a proof of typing, or show that
no solution exists.

Exercise 5. Complete the definition of pt on Slide 31 and in Figure 3 with clauses for nil, cons,
and case-expressions.

Polymorphic Reference Types

Exercise 6. Show that if

M , let f = (lx (x)) ly (y) in ( f true) :: ( f nil)

then in Mini-ML { } ` M : t is provable for some t, but that in Midi-ML with the value-
restricted rule (letv), it is not provable for any t.

Exercise 7. Which of the following typing judgements are provable in the Midi-ML type sys-
tem with the value-restricted rule (letv)?

(i) { } ` let r = ref lx (x) in (!r)(r := ly (true)) : unit

(ii) { } ` let r = ref lx (x) in (!r)(r := ly (())) : unit

(iii) { } ` let f = lx (ref x) in f f : s (for some type scheme s)



Polymorphic Lambda Calculus

Exercise 8. Consider the ML type system modified as in Example 7, that is, with polymorphic
types and with (var �) replaced by the rules on Slide 43. Show that

{ } ` l f (( f true) :: ( f nil)) : pi

holds in this type system, where

p1 , (8a (a � a))� bool list

p2 , (8a1 (a1 � 8a2 (a2)))� bool list

Exercise 9. For each of the following PLC typing judgements, are there PLC types t1, . . . , t5
that make the judgements provable?

(i) { } ` lx : 8a (a) (Lb (x b)) : t1

(ii) { } ` La (lx : a (Lb (x b))) : t2

(iii) { } ` lx : t3 (La (x (a � a) (x a))) : t3 � 8b (b)

(iv) { } ` lx : t4 (La (x (a � a) (x a))) : t4 � 8a (a � a)

(v) { } ` La (lx : t5 (x (a � a) (x a))) : 8a (a � a)

Exercise 10. In PLC, defining the expression let x = M1 : t in M2 to be an abbreviation for
(lx : t (M2)) M1, show that the typing rule

G ` M1 : t1 G, x : t1 ` M2 : t2

G ` (let x = M1 : t1 in M2) : t2
if x /2 dom(G)

is admissible—in the sense that the conclusion is provable if the hypotheses are.

Exercise 11. The erasure, erase(M), of a PLC expression M is the expression of the untyped
lambda calculus obtained by deleting all type information from M:

erase(x) , x

erase(lx : t (M)) , lx (erase(M))

erase(M1 M2) , erase(M1) erase(M2)

erase(La (M)) , erase(M)

erase(M t) , erase(M).

(i) Find PLC expressions M1 and M2 satisfying erase(M1) = lx (x) = erase(M2) such that
` M1 : 8a (a � a) and ` M2 : 8a1 (a1 � 8a2 (a1)) are provable PLC typings.

(ii) We saw in Example 12 that there is a closed PLC expression M of type 8a (a) � 8a (a)
satisfying erase(M) = l f ( f f ). Find some other closed, typeable PLC expressions with
this property.

(iii) [For this part you will need to recall from the CST Part IB Computation Theory course some
properties of beta reduction of expressions in the untyped lambda calculus.] A theorem
of Girard says that if { } ` M : t is provable in the PLC type system, then erase(M) is
strongly normalisable in the untyped lambda calculus, i.e. there are no infinite chains
of beta-reductions starting from erase(M). Assuming this result, exhibit an expression of
the untyped lambda calculus which is not equal to erase(M) for any closed, typeable PLC
expression M.



Exercise 12. Define a1 ⇤ a2 , 8a ((a1 � a2 � a)� a). Show that there are PLC expressions Pair,
fst, and snd satisfying:

{ } ` Pair : 8a1, a2 (a1 � a2 � (a1 ⇤ a2)) (16)
{ } ` fst : 8a1, a2 ((a1 ⇤ a2)� a1) (17)
{ } ` snd : 8a1, a2 ((a1 ⇤ a2)� a2) (18)
fst a1 a2(Pair a1 a2 x1 x2) =b x1 (19)

snd a1 a2(Pair a1 a2 x1 x2) =b x2. (20)

Exercise 13. Suppose that t is a PLC type with a single free type variable, a. Suppose also that
T is a closed PLC expression satisfying a (weak) ‘functoriality’ property:

{ } ` T : 8a1, a2 ((a1 � a2)� (t[a1/a]� t[a2/a])).

Define i to be the closed PLC type

i , 8a ((t � a)� a).

Show how to define PLC expressions R and I satisfying

{ } ` R : 8a ((t � a)� i � a) (21)
{ } ` I : t[i/a]� i (22)
(R b f )(I x) !⇤ f (T i b (R b f ) x). (23)

(Category-theoretic background: altogether these properties say that (i, I) is a weak initial t-
algebra: given any t-algebra (b, f : t[b/a] � b), we get R b f : i � b making the square of
functions

t[i/a] I //

T i b (R b f )
✏✏

i

R b f
✏✏

t[b/a]
f
// b

commute up to beta reduction.) [Hint: you will need to use R in the definition of I.]

Dependent Types

Exercise 14. The translation from PLC to the PTS l2 given on Slide 77 sends the PLC type
8a (a � a) to the pseudo-term Pa : ⇤ (Px : a (a)) and the PLC term La (lx : a (x)) to the
pseudo-term la : ⇤ (lx : a (x)). Verify that the judgement

⇧ ` la : ⇤ (lx : a (x)) : Pa : ⇤ (Px : a (a))

is provable in l2. Indicate clearly where the proof uses the axiom (⇤,⇤) and the rules (⇤, ⇤, ⇤)
and (⇤, ⇤, ⇤). (If you do not use them all, you are doing something wrong.)

Exercise 15. Give an example of pseudo-terms M and A in the PTS lw satisfying ⇧ ` M : A
for which the proof of typing makes use of the PTS rule (conv) (Slide 73).

Exercise 16. By analogy with the encoding of existential types in PLC (Slide 63), define pseudo-
terms exists, pack and unpack in the PTS lw satisfying

⇧ ` exists : (⇤� ⇤)� ⇤ (24)
⇧ ` pack : PT : ⇤� ⇤ (Pa : ⇤ (T a � exists T)) (25)
⇧ ` unpack : PT : ⇤� ⇤ (exists T � Pb : ⇤ ((Pa : ⇤ (T a � b))� b)) (26)
unpack T (pack T a x) b f !⇤ f a x (27)



Propositions as Types

Exercise 17. Conjunction (conj) and bi-implication (bimp) can be defined in the Calculus of
Constructions lC in the same way as they are in 2IPC (Slide 91):

conj , lp, q : Prop (Pr : Prop ((p � q � r)� r)) (28)
⇧ ` conj : Prop � Prop � Prop
bimp , lp, q : Prop (conj (p � q) (q � p)) (29)
⇧ ` bimp : Prop � Prop � Prop

Bi-implication is used in the definition of Leibniz equality on Slide 96, where P x $ P y stands
for bimp (P x) (P y):

EqA , lx, y : A (PP : A � Prop (P x $ P y)) (30)
G ` EqA : A � A � Prop if G ` A : Set

Show that the simpler definition

Eq0A , lx, y : A (PP : A � Prop (P x � P y))

gives a logically equivalent notion of equality by constructing pseudo-terms F, G satisfying

G ` F : Px, y : A (EqA x y � Eq0A x y)
G ` G : Px, y : A (Eq0A x y � EqA x y)

(assuming G ` A : Set). [Hint for G: given x, y : A, f : PP : A � Prop (P x � P y) and P :
A � Prop, we can get a function P y � P x by applying f to lz : A (P z � P x) and lp : P x (p).]

Exercise 18. In lC extended with inductively defined identity propositions (Slide 102) con-
struct proofs that equality is symmetric and transitive

G ` symmA : Px, y : A (IdA,xy � IdA,yx) (31)
G ` transA : Px, y : A (IdA,xy � Pz : A (IdA,yz � IdA,xz)) (32)

(where G ` A : s).

Exercise 19. In lC extended with an inductive type of natural numbers (Slide 100) and induc-
tive identity propositions (Slide 102), give a pseudo-term P satisfying

⇧ ` P : Px : Nat (Id
Nat,x(add zero x)) (33)

where
add , lx : Nat (elimNat(y. Nat) x (ly : Nat (succ))) (34)

[Hint: try to convert the Agda proof on Slide 103, which uses Agda’s pattern-matching facili-
ties, into a proof using the eliminators elimNat and J.]


