

Functions on types

In PLC, $\Lambda \alpha (M)$ is an anonymous notation for the function F mapping each type τ to the value of $M[\tau/\alpha]$ (of some particular type).

Dependently typed Functions on types

In PLC, $\Lambda \alpha$ (M) is an anonymous notation for the function F mapping each type τ to the value of $M[\tau/\alpha]$ (of some particular type). if $Na(m): \forall a(z'),$ then for each argument z, the type of MEZ(2) is z'[z(2],- it depends on the argument zSo Va(r') is a type of "dependently-typed" functions

Dependent Functions

Given a set A and a family of sets B_a indexed by the elements a of A, we get a set

 $\prod_{a\in A} B_a \triangleq \{F \in A \to \bigcup_{a\in A} B_a \mid \forall (a,b) \in F \ (b\in B_a)\}$

of *dependent functions*. Each $F \in \prod_{a \in A} B_a$ is a single-valued and total relation that associates to each $a \in A$ an element in B_a (usually written F a).

Dependent Functions

Given a set A and a family of sets B_a indexed by the elements a of A, we get a set

 $\prod_{a\in A} B_a \triangleq \{F \in A \to \bigcup_{a\in A} B_a \mid \forall (a,b) \in F \ (b\in B_a)\}$

of *dependent functions*. Each $F \in \prod_{a \in A} B_a$ is a single-valued and total relation that associates to each $a \in A$ an element in B_a (usually written F a).

For example if $A = \mathbb{N}$ and for each $n \in \mathbb{N}$, $B_n = \{0, 1\}^n \to \{0, 1\}$, then $\prod_{n \in \mathbb{N}} B_n$ consists of functions mapping each number n to an n-ary Boolean operation.

A tautology checker

fun taut x f = if x = 0 then f else (taut(x-1)(f true))andalso (taut(x-1)(f false))

A tautology checker

fun taut
$$x f = if x = 0$$
 then f else
 $(taut(x-1)(f true))$
andalso $(taut(x-1)(f false))$

Defining types $n \operatorname{AryBoolOp}$ for each natural number $n \in \mathbb{N}$

 $\begin{cases} 0 AryBoolOp & \triangleq bool \\ (n+1) AryBoolOp & \triangleq bool \rightarrow (n AryBoolOp) \end{cases}$

A tautology checker

fun taut
$$x f = if x = 0$$
 then f else
 $(taut(x-1)(f true))$
andalso $(taut(x-1)(f false))$

Defining types $n \operatorname{AryBoolOp}$ for each natural number $n \in \mathbb{N}$

 $\begin{cases} 0 AryBoolOp & \triangleq bool \\ (n+1) AryBoolOp & \triangleq bool \rightarrow (n AryBoolOp) \end{cases}$

then *taut n* has type $(nAryBoolOp) \rightarrow bool$, i.e. the result type of the function *taut* depends upon the value of its argument.

The tautology checker in Agda

```
data Bool : Set where
 true : Bool
 false : Bool
and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false
data Nat : Set where
 zero : Nat
 succ : Nat -> Nat
_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp
taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)
```

The tautology checker in Agda

```
data Bool : Set where
                                   a Simply typed
 true : Bool
  false : Bool
and : Bool -> Bool -> Bool
true
     and true = true
true and false = false
false and = false
data Nat : Set where
  zero : Nat
  succ : Nat -> Nat
                                               a dependently
typed function
_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp
taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero
             f = f
taut (succ x) f = taut x (f true) and taut x (f false)
```

Dependent function types $\Pi x : \tau (\tau')$ τ' may 'depend' on x, i.e. have free occurrences of x. (Free occurrences of x in τ' are bound in $\Pi x : \tau(\tau')$.)

Dependent function types $\Pi x : \tau (\tau')$

$$\frac{\Gamma, x: \tau \vdash M: \tau'}{\Gamma \vdash \lambda x: \tau(M): \Pi x: \tau(\tau')} \quad \text{if } x \notin dom(\Gamma)$$

Dependent function types $\Pi x : \tau (\tau')$

$$\frac{\Gamma, x: \tau \vdash M: \tau'}{\Gamma \vdash \lambda x: \tau(M): \Pi x: \tau(\tau')} \quad \text{if } x \notin dom(\Gamma)$$

$$\frac{\Gamma \vdash M : \Pi x : \tau (\tau') \quad \Gamma \vdash M' : \tau}{\Gamma \vdash M M' : \tau' [M'/x]}$$

Conversion typing rule

Dependent type systems usually feature a rule of the form

$$rac{\Gammadash M: au}{\Gammadash M: au'} \quad ext{if } aupprox au'$$

where $\tau \approx \tau'$ is some relation of *equality between types* (e.g. inductively defined in some way).

For example one would expect (1 + 1) AryBoolOp ≈ 2 AryBoolOp.

Conversion typing rule

Dependent type systems usually feature a rule of the form

$$\frac{\Gamma \vdash M : \tau}{\Gamma \vdash M : \tau'} \quad \text{if } \tau \approx \tau'$$

where $\tau \approx \tau'$ is some relation of *equality between types* (e.g. inductively defined in some way).

For example one would expect (1 + 1) AryBoolOp ≈ 2 AryBoolOp.

For decidability of type-checking, one needs \approx to be a decidable relation between type expressions.

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of *pseudo-terms*:

where x ranges over a countably infinite set Var of variables and s ranges over a disjoint set Sort of sort symbols – constants that denote various universes (= types whose elements denote types of various sorts) [kind is a commonly used synonym for sort]. $\lambda x : t(t')$ and $\Pi x : t(t')$ both bind free occurrences of x in the pseudo-term t'.

E.g. if S is a sort for types

$$\lambda x: s(\lambda y: x(y))$$
 is like PLC term $\Lambda \alpha(\lambda y: \alpha(y))$

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of *pseudo-terms*:

where x ranges over a countably infinite set Var of variables and s ranges over a disjoint set Sort of sort symbols – constants that denote various universes (= types whose elements denote types of various sorts) [kind is a commonly used synonym for sort]. $\lambda x : t(t')$ and $\Pi x : t(t')$ both bind free occurrences of x in the pseudo-term t'.

t[t'/x] denotes result of capture-avoiding substitution of t' for all free occurrences of x in t.

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of *pseudo-terms*:

where x ranges over a countably infinite set Var of variables and s ranges over a disjoint set **Sort** of *sort symbols* – constants that denote various universes (= types whose elements denote types of various sorts) [kind is a commonly used synonym for sort]. $\lambda x : t(t')$ and $\Pi x : t(t')$ both bind free occurrences of x in the pseudo-term t'. pe) functions cial case of dependently-ty

 $\triangleq \Pi x : t(t') \text{ where } x \notin fv(t').$

Pure Type Systems – beta-conversion

► beta-reduction of pseudo-terms: t → t' means t' can be obtained from t (up to alpha-conversion, of course) by replacing a subexpression which is a redex by its corresponding reduct. There is only one form of redex-reduct pair:

 $(\lambda x:t(t_1)) t_2 \to t_1[t_2/x]$

• As usual, \rightarrow^* denotes the reflexive-transitive closure of \rightarrow .

Pure Type Systems – beta-conversion

► beta-reduction of pseudo-terms: t → t' means t' can be obtained from t (up to alpha-conversion, of course) by replacing a subexpression which is a redex by its corresponding reduct. There is only one form of redex-reduct pair:

 $(\lambda x:t(t_1)) t_2 \to t_1[t_2/x]$

- As usual, \rightarrow^* denotes the reflexive-transitive closure of \rightarrow .
- ► beta-conversion of pseudo-terms: =_β is the reflexive-symmetric-transitive closure of → (i.e. the smallest equivalence relation containing →).

Pure Type Systems – typing judgements

take the form

$$\Gamma \vdash t: t'$$

where t, t' are pseudo-terms and Γ is a *context*, a form of typing environment given by the grammar

 $\Gamma ::= \diamond \mid \Gamma, x : t$

(Thus contexts are finite ordered lists of (variable, pseudo-term)-pairs, with the empty list denoted \diamond , the head of the list on the right and list-cons denoted by __, __. Unlike previous type systems in this course, *the order in which typing declarations* x : t occur in a context is important.)

Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a *specification* S = (S, A, R) where:

• $S \subseteq Sort$

Elements $s \in S$ denote the different universes of types in this PTS.

• $\mathcal{A} \subseteq \operatorname{Sort} \times \operatorname{Sort}$

Elements $(s_1, s_2) \in \mathcal{A}$ are called *axioms*. They determine the typing relation between universes in this PTS.

• $\mathcal{R} \subseteq$ Sort \times Sort \times Sort

Elements $(s_1, s_2, s_3) \in \mathcal{R}$ are called rules. They determine which kinds of dependent function can be formed and in which universes they live.

Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a *specification* S = (S, A, R) where:

• $S \subseteq Sort$

Elements $s \in S$ denote the different universes of types in this PTS.

• $\mathcal{A} \subseteq \mathbf{Sort} \times \mathbf{Sort}$

Elements $(s_1, s_2) \in \mathcal{A}$ are called *axioms*. They determine the typing relation between universes in this PTS.

• $\mathcal{R} \subseteq$ Sort \times Sort \times Sort

Elements $(s_1, s_2, s_3) \in \mathcal{R}$ are called rules. They determine which kinds of dependent function can be formed and in which universes they live.

The PTS with specification **S** will be denoted λ **S**.

Pure Type Systems – typing judgements

take the form

$$\Gamma \vdash t: t'$$

where t, t' are pseudo-terms and Γ is a *context*, a form of typing environment given by the grammar

 $\Gamma ::= \diamond \mid \Gamma, x : t$

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs, with the empty list denoted \diamond , the head of the list on the right and list-cons denoted by __, __. Unlike previous type systems in this course, *the order in which typing declarations* x : t occur in a context is important.) A typing judgement is *derivable* if it is in the set inductively generated by the rules on the next slide, which are parameterised by a given specification S = (S, A, R).

Pure Type Systems – typing rules
(axiom)
$$\xrightarrow[\diamond \vdash s_1 : s_2]{}$$
 if $(s_1, s_2) \in \mathcal{A}$

Pure Type Systems – typing rules

$$(axiom) \xrightarrow{\diamond \vdash s_1 : s_2} \text{ if } (s_1, s_2) \in \mathcal{A}$$

$$(start) \xrightarrow{\Gamma \vdash A : s}_{\Gamma, x : A \vdash x : A} \text{ if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{\Gamma \vdash M : A} \xrightarrow{\Gamma \vdash B : s}_{\Gamma, x : B \vdash M : A} \text{ if } x \notin dom(\Gamma)$$

Pure Type Systems – typing rules

$$(axiom) \xrightarrow[]{} \forall \vdash s_{1} : s_{2} \quad \text{if } (s_{1}, s_{2}) \in \mathcal{A}$$

$$(start) \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \quad \text{if } x \notin dom(\Gamma)$$

$$(weaken) \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma, x : B \vdash M : A} \quad \text{if } x \notin dom(\Gamma)$$

$$(conv) \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \quad \text{if } A =_{\beta} B$$

Pure Type Systems – typing rules

$$(axiom) \xrightarrow[]{} \Leftrightarrow \vdash s_{1} : s_{2} \quad \text{if } (s_{1}, s_{2}) \in \mathcal{A}$$

$$(start) \xrightarrow[]{} \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \quad \text{if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow[]{} \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma, x : B \vdash M : A} \quad \text{if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow[]{} \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \quad \text{if } A =_{\beta} B$$

$$(prod) \xrightarrow[]{} \frac{\Gamma \vdash A : s_{1} \quad \Gamma, x : A \vdash B : s_{2}}{\Gamma \vdash \Pi x : A (B) : s_{3}} \quad \text{if } (s_{1}, s_{2}, s_{3}) \in \mathcal{R}$$

Pure Type Systems – typing rules

$$(axiom) \xrightarrow{\langle b \vdash s_{1} : s_{2} \rangle} \text{ if } (s_{1}, s_{2}) \in \mathcal{A}$$

$$(start) \xrightarrow{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \text{ if } x \notin dom(\Gamma)$$

$$(weaken) \xrightarrow{\Gamma \vdash M : A} \xrightarrow{\Gamma \vdash B : s}{\Gamma, x : B \vdash M : A} \text{ if } x \notin dom(\Gamma)$$

$$(conv) \xrightarrow{\Gamma \vdash M : A} \xrightarrow{\Gamma \vdash B : s}{\Gamma \vdash M : B} \text{ if } A =_{\beta} B$$

$$(prod) \xrightarrow{\Gamma \vdash A : s_{1}} \xrightarrow{\Gamma, x : A \vdash B : s_{2}}{\Gamma \vdash \Pi x : A (B) : s_{3}} \text{ if } (s_{1}, s_{2}, s_{3}) \in \mathcal{R}$$

$$(abs) \xrightarrow{\Gamma, x : A \vdash M : B} \xrightarrow{\Gamma \vdash \Pi x : A (B)} \underset{\Gamma \vdash A : x A (M) : \Pi x : A (B)}{\Gamma \vdash M : R}$$

$$(app) \xrightarrow{\Gamma \vdash M : \Pi x : A (B)} \xrightarrow{\Gamma \vdash N : A} \underset{\Gamma \vdash M : B[N/x]}{(A, B, M, N \text{ range over pseudoterms, } s, s_{1}, s_{2}, s_{3} \text{ over sort symbols})$$

Example PTS typing derivations

$$(axiom) \xrightarrow[\diamond \vdash *: \Box]{} (start) \xrightarrow[\diamond, x:* \vdash x:*]{} (abs) \xrightarrow[\diamond \vdash \lambda x:* (x):* \to *]{} \vdots$$

Here we assume that the PTS specification S = (S, A, R) has $* \in S$, $\Box \in S$, $(*, \Box) \in A$ and $(\Box, \Box, \Box) \in R$. (Recall that $* \to * \triangleq \Pi x : * (*)$.)