

Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

Functions on types

In PLC, La (M) is an anonymous notation for the function F
mapping each type t to the value of M[t/a] (of some particular
type).

F t denotes the result of applying such a function to a type.

Computation in PLC involves beta-reduction for such functions on
types

(La (M)) t ! M[t/a]

as well as the usual form of beta-reduction from l-calculus

(lx : t (M
1

)) M
2

! M
1

[M
2

/x]

Dependent Functions

Given a set A and a family of sets Ba indexed by the elements a of
A, we get a set

’a2A Ba , {F 2 A � S
a2A Ba | 8(a, b) 2 F (b 2 Ba)}

of dependent functions. Each F 2 ’a2A Ba is a single-valued and
total relation that associates to each a 2 A an element in Ba
(usually written F a).

For example if A = N and for each n 2 N, Bn = {0, 1}n � {0, 1}, then
’n2N Bn consists of functions mapping each number n to an n-ary
Boolean operation.

Dependent Functions

Given a set A and a family of sets Ba indexed by the elements a of
A, we get a set

’a2A Ba , {F 2 A � S
a2A Ba | 8(a, b) 2 F (b 2 Ba)}

of dependent functions. Each F 2 ’a2A Ba is a single-valued and
total relation that associates to each a 2 A an element in Ba
(usually written F a).

For example if A = N and for each n 2 N, Bn = {0, 1}n � {0, 1}, then
’n2N Bn consists of functions mapping each number n to an n-ary
Boolean operation.

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x � 1)(f true))
andalso (taut(x � 1)(f false))

Defining types n AryBoolOp for each natural number n 2 N

(
0 AryBoolOp , bool
(n + 1)AryBoolOp , bool � (n AryBoolOp)

then taut n has type (n AryBoolOp)� bool, i.e. the result type
of the function taut depends upon the value of its argument.

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x � 1)(f true))
andalso (taut(x � 1)(f false))

Defining types n AryBoolOp for each natural number n 2 N

(
0 AryBoolOp , bool
(n + 1)AryBoolOp , bool � (n AryBoolOp)

then taut n has type (n AryBoolOp)� bool, i.e. the result type
of the function taut depends upon the value of its argument.

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x � 1)(f true))
andalso (taut(x � 1)(f false))

Defining types n AryBoolOp for each natural number n 2 N

(
0 AryBoolOp , bool
(n + 1)AryBoolOp , bool � (n AryBoolOp)

then taut n has type (n AryBoolOp)� bool, i.e. the result type
of the function taut depends upon the value of its argument.

The tautology checker in Agda

data Bool : Set where
true : Bool
false : Bool

and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

data Nat : Set where
zero : Nat
succ : Nat -> Nat

_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp

taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)

The tautology checker in Agda

data Bool : Set where
true : Bool
false : Bool

and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

data Nat : Set where
zero : Nat
succ : Nat -> Nat

_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp

taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)

Dependent function types Px : t (t0)

G, x : t ` M : t0

G ` lx : t (M) : Px : t (t0)
if x /2 dom(G)

G ` M : Px : t (t0) G ` M0
: t

G ` M M0
: t0[M0

/x]

t0 may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in t0 are bound in Px : t (t0).)

Dependent function types Px : t (t0)

G, x : t ` M : t0

G ` lx : t (M) : Px : t (t0)
if x /2 dom(G)

G ` M : Px : t (t0) G ` M0
: t

G ` M M0
: t0[M0

/x]

t0 may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in t0 are bound in Px : t (t0).)

Dependent function types Px : t (t0)

G, x : t ` M : t0

G ` lx : t (M) : Px : t (t0)
if x /2 dom(G)

G ` M : Px : t (t0) G ` M0
: t

G ` M M0
: t0[M0

/x]

t0 may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in t0 are bound in Px : t (t0).)

Conversion typing rule

Dependent type systems usually feature a rule of the form

G ` M : t
G ` M : t0 if t ⇡ t0

where t ⇡ t0 is some relation of equality between types
(e.g. inductively defined in some way).

For example one would expect (1 + 1) AryBoolOp ⇡ 2 AryBoolOp.

For decidability of type-checking, one needs ⇡ to be a decidable
relation between type expressions.

Conversion typing rule

Dependent type systems usually feature a rule of the form

G ` M : t
G ` M : t0 if t ⇡ t0

where t ⇡ t0 is some relation of equality between types
(e.g. inductively defined in some way).

For example one would expect (1 + 1) AryBoolOp ⇡ 2 AryBoolOp.

For decidability of type-checking, one needs ⇡ to be a decidable
relation between type expressions.

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

t ::= x variable
| s sort
| Px : t (t) dependent function type
| lx : t (t) function abstraction
| t t function application

where x ranges over a countably infinite set Var of variables and s ranges over

a disjoint set Sort of sort symbols – constants that denote various universes (=

types whose elements denote types of various sorts) [kind is a commonly used

synonym for sort]. lx : t (t0) and Px : t (t0) both bind free occurrences of x
in the pseudo-term t0.

t[t0/x] denotes result of capture-avoiding substitution of t0 for all
free occurrences of x in t.
t � t , Px : t (t0) where x /2 fv(t0).

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

t ::= x variable
| s sort
| Px : t (t) dependent function type
| lx : t (t) function abstraction
| t t function application

where x ranges over a countably infinite set Var of variables and s ranges over

a disjoint set Sort of sort symbols – constants that denote various universes (=

types whose elements denote types of various sorts) [kind is a commonly used

synonym for sort]. lx : t (t0) and Px : t (t0) both bind free occurrences of x
in the pseudo-term t0.

t[t0/x] denotes result of capture-avoiding substitution of t0 for all
free occurrences of x in t.
t � t , Px : t (t0) where x /2 fv(t0).

Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

t ::= x variable
| s sort
| Px : t (t) dependent function type
| lx : t (t) function abstraction
| t t function application

where x ranges over a countably infinite set Var of variables and s ranges over

a disjoint set Sort of sort symbols – constants that denote various universes (=

types whose elements denote types of various sorts) [kind is a commonly used

synonym for sort]. lx : t (t0) and Px : t (t0) both bind free occurrences of x
in the pseudo-term t0.

t[t0/x] denotes result of capture-avoiding substitution of t0 for all
free occurrences of x in t.
t � t , Px : t (t0) where x /2 fv(t0).

Pure Type Systems – beta-conversion

I beta-reduction of pseudo-terms: t ! t0 means t0 can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct. There is only one form of redex-reduct pair:

(lx : t (t
1

)) t
2

! t
1

[t
2

/x]

I As usual, !⇤ denotes the reflexive-transitive closure of !.

I beta-conversion of pseudo-terms: =b is the
reflexive-symmetric-transitive closure of ! (i.e. the smallest
equivalence relation containing !).

Pure Type Systems – beta-conversion

I beta-reduction of pseudo-terms: t ! t0 means t0 can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct. There is only one form of redex-reduct pair:

(lx : t (t
1

)) t
2

! t
1

[t
2

/x]

I As usual, !⇤ denotes the reflexive-transitive closure of !.
I beta-conversion of pseudo-terms: =b is the

reflexive-symmetric-transitive closure of ! (i.e. the smallest
equivalence relation containing !).

Pure Type Systems – typing judgements

take the form
G ` t : t0

where t, t0 are pseudo-terms and G is a context, a form of typing
environment given by the grammar

G ::= ⇧ | G, x : t

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs,
with the empty list denoted ⇧, the head of the list on the right and
list-cons denoted by _, _. Unlike previous type systems in this course, the
order in which typing declarations x : t occur in a context is important.)

A typing judgement is derivable if it is in the set inductively
generated by the rules on the next slide, which are parameterised
by a given specification S = (S ,A,R).

Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a
specification S = (S ,A,R) where:

I S ✓ Sort

Elements s 2 S denote the di�erent universes of types in this PTS.
I A ✓ Sort ⇥ Sort

Elements (s
1

, s
2

) 2 A are called axioms. They determine the
typing relation between universes in this PTS.

I R ✓ Sort ⇥ Sort ⇥ Sort

Elements (s
1

, s
2

, s
3

) 2 R are called rules. They determine which
kinds of dependent function can be formed and in which universes
they live.

The PTS with specification S will be denoted lS .

Pure Type Systems – specifications

The typing rules for a particular PTS are parameterised by a
specification S = (S ,A,R) where:

I S ✓ Sort

Elements s 2 S denote the di�erent universes of types in this PTS.
I A ✓ Sort ⇥ Sort

Elements (s
1

, s
2

) 2 A are called axioms. They determine the
typing relation between universes in this PTS.

I R ✓ Sort ⇥ Sort ⇥ Sort

Elements (s
1

, s
2

, s
3

) 2 R are called rules. They determine which
kinds of dependent function can be formed and in which universes
they live.

The PTS with specification S will be denoted lS .

Pure Type Systems – typing judgements

take the form
G ` t : t0

where t, t0 are pseudo-terms and G is a context, a form of typing
environment given by the grammar

G ::= ⇧ | G, x : t

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs,
with the empty list denoted ⇧, the head of the list on the right and
list-cons denoted by _, _. Unlike previous type systems in this course, the
order in which typing declarations x : t occur in a context is important.)
A typing judgement is derivable if it is in the set inductively
generated by the rules on the next slide, which are parameterised
by a given specification S = (S ,A,R).

Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)

Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)

Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)

Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)

Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)

Example PTS typing derivations

(axiom) ⇧ ` ⇤ : ⇤
(axiom) ⇧ ` ⇤ : ⇤ (axiom) ⇧ ` ⇤ : ⇤(weaken) ⇧, x : ⇤ ` ⇤ : ⇤

(prod) ⇧ ` ⇤� ⇤ : ⇤

(axiom) ⇧ ` ⇤ : ⇤(start) ⇧, x : ⇤ ` x : ⇤
...

⇧ ` ⇤� ⇤ : ⇤
(abs) ⇧ ` lx : ⇤ (x) : ⇤� ⇤

Here we assume that the PTS specification S = (S ,A,R) has ⇤ 2 S ,
⇤ 2 S , (⇤,⇤) 2 A and (⇤,⇤,⇤) 2 R.
(Recall that ⇤� ⇤ , Px : ⇤ (⇤).)

