

Two examples involving self-application

M , let f = lx
1

(lx
2

(x
1

)) in f f

M0 , (l f (f f)) lx
1

(lx
2

(x
1

))

Are M and M0 typeable in the Mini-ML type system?

Constraints generated while inferring a type for
let f = lx

1

(lx
2

(x
1

)) in f f

A = ftv(t
2

) (C0)

t
2

= t
3

� t
4

(C1)

t
4

= t
5

� t
6

(C2)

8{ } (t
3

) � t
6

, i.e. t
3

= t
6

(C3)

t
7

= t
8

� t
1

(C4)

8A (t
2

) � t
7

(C5)

8A (t
2

) � t
8

(C6)

Two examples involving self-application

M , let f = lx
1

(lx
2

(x
1

)) in f f

M0 , (l f (f f)) lx
1

(lx
2

(x
1

))

Are M and M0 typeable in the Mini-ML type system?

Two examples involving self-application

M , let f = lx
1

(lx
2

(x
1

)) in f f

M0 , (l f (f f)) lx
1

(lx
2

(x
1

))

Are M and M0 typeable in the Mini-ML type system?

Principal type schemes for closed expressions

A type scheme 8A (t) is the principal type scheme of a

closed Mini-ML expression M if

(a) ` M : 8A (t)

(b) for any other type scheme 8A0 (t0),
if ` M : 8A0 (t0), then 8A (t) � t0

Principal type schemes for closed expressions

A type scheme 8A (t) is the principal type scheme of a

closed Mini-ML expression M if

(a) ` M : 8A (t)

(b) for any other type scheme 8A0 (t0),
if ` M : 8A0 (t0), then 8A (t) � t0

Principal type schemes for closed expressions

A type scheme 8A (t) is the principal type scheme of a

closed Mini-ML expression M if

(a) ` M : 8A (t)

(b) for any other type scheme 8A0 (t0),
if ` M : 8A0 (t0), then 8A (t) � t0

Principal type schemes for closed expressions

A type scheme 8A (t) is the principal type scheme of a

closed Mini-ML expression M if

(a) ` M : 8A (t)

(b) for any other type scheme 8A0 (t0),
if ` M : 8A0 (t0), then 8A (t) � t0

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
` M : s holds for some type scheme s), then there is a principal
type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML
expression M as input, decides whether or not it is typeable and
returns a principal type scheme if it is.

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e.
` M : s holds for some type scheme s), then there is a principal
type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML
expression M as input, decides whether or not it is typeable and
returns a principal type scheme if it is.

An ML expression with
a principal type scheme
hundreds of pages long

let pair = lx (ly (lz (z x y))) in
let x

1

= ly (pair y y) in
let x

2

= ly (x
1

(x
1

y)) in
let x

3

= ly (x
2

(x
2

y)) in
let x

4

= ly (x
3

(x
3

y)) in
let x

5

= ly (x
4

(x
4

y)) in
x

5

(ly (y))

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with

(a) S(t
1

) = S(t
2

).
Moreover, if they are unifiable, mgu(t

1

, t
2

) returns the most
general unifier—an S satisfying both (a) and
(b) for all S0 2 Sub, if S0(t

1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with
(a) S(t

1

) = S(t
2

).

Moreover, if they are unifiable, mgu(t
1

, t
2

) returns the most
general unifier—an S satisfying both (a) and
(b) for all S0 2 Sub, if S0(t

1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with
(a) S(t

1

) = S(t
2

).
Moreover, if they are unifiable, mgu(t

1

, t
2

) returns the most
general unifier—an S satisfying both (a) and

(b) for all S0 2 Sub, if S0(t
1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with
(a) S(t

1

) = S(t
2

).
Moreover, if they are unifiable, mgu(t

1

, t
2

) returns the most
general unifier—an S satisfying both (a) and
(b) for all S0 2 Sub, if S0(t

1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with
(a) S(t

1

) = S(t
2

).
Moreover, if they are unifiable, mgu(t

1

, t
2

) returns the most
general unifier—an S satisfying both (a) and
(b) for all S0 2 Sub, if S0(t

1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Unification of ML types

There is an algorithm mgu which when input two Mini-ML types
t

1

and t
2

decides whether t
1

and t
2

are unifiable, i.e. whether
there exists a type-substitution S 2 Sub with
(a) S(t

1

) = S(t
2

).
Moreover, if they are unifiable, mgu(t

1

, t
2

) returns the most
general unifier—an S satisfying both (a) and
(b) for all S0 2 Sub, if S0(t

1

) = S0(t
2

), then S0
= TS for some

T 2 Sub

(any other substitution S0 can be factored through
S, by specialising S with T)

By convention mgu(t
1

, t
2

) = FAIL if (and only if) t
1

and t
2

are not
unifiable.

Principal type schemes for open expressions

A solution for the typing problem G ` M : ? is a pair (S, s)
consisting of a type substitution S and a type scheme s satisfying

S G ` M : s

(where S G = {x
1

: S s
1

, . . . , xn : S sn}, if G = {x
1

: s
1

, . . . , xn : sn}).

Such a solution is principal if given any other, (S0
, s0), there is

some T 2 Sub with TS = S0 and T(s) � s0.

(For type schemes s and s0, with s0
= 8A0 (t0) say, we define

s � s0 to mean A0 \ ftv(s) = {} and s � t0.)

Principal type schemes for open expressions

A solution for the typing problem G ` M : ? is a pair (S, s)
consisting of a type substitution S and a type scheme s satisfying

S G ` M : s

(where S G = {x
1

: S s
1

, . . . , xn : S sn}, if G = {x
1

: s
1

, . . . , xn : sn}).

Such a solution is principal if given any other, (S0
, s0), there is

some T 2 Sub with TS = S0 and T(s) � s0.

(For type schemes s and s0, with s0
= 8A0 (t0) say, we define

s � s0 to mean A0 \ ftv(s) = {} and s � t0.)

Principal type schemes for open expressions

A solution for the typing problem G ` M : ? is a pair (S, s)
consisting of a type substitution S and a type scheme s satisfying

S G ` M : s

(where S G = {x
1

: S s
1

, . . . , xn : S sn}, if G = {x
1

: s
1

, . . . , xn : sn}).

Such a solution is principal if given any other, (S0
, s0), there is

some T 2 Sub with TS = S0 and T(s) � s0.

(For type schemes s and s0, with s0
= 8A0 (t0) say, we define

s � s0 to mean A0 \ ftv(s) = {} and s � t0.)

Principal type schemes for open expressions

A solution for the typing problem G ` M : ? is a pair (S, s)
consisting of a type substitution S and a type scheme s satisfying

S G ` M : s

(where S G = {x
1

: S s
1

, . . . , xn : S sn}, if G = {x
1

: s
1

, . . . , xn : sn}).

Such a solution is principal if given any other, (S0
, s0), there is

some T 2 Sub with TS = S0 and T(s) � s0.

(For type schemes s and s0, with s0
= 8A0 (t0) say, we define

s � s0 to mean A0 \ ftv(s) = {} and s � t0.)

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:

I S
1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:
I S

1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:
I S

1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:
I S

1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:
I S

1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Example typing problem and solutions

Typing problem

x : 8a (b � (g � a)) ` x true : ?

has solutions:
I S

1

= {b 7! bool}, s
1

= 8a (g � a)

I S
2

= {b 7! bool, g 7! a}, s
2

= 8a0 (a � a0)

I S
3

= {b 7! bool, g 7! a}, s
3

= 8a0 (a � (a0 � a0))

I S
4

= {b 7! bool, g 7! bool}, s
3

= 8{ } (bool � bool)

Both (S
1

, s
1

) and (S
2

, s
2

) are in fact principal solutions.

Properties of the Mini-ML typing relation
with respect to substitution

and type scheme specialisation

I If G ` M : s, then for any type substitution S 2 Sub

SG ` M : Ss

I If G ` M : s and s � s0, then

G ` M : s0

Properties of the Mini-ML typing relation
with respect to substitution

and type scheme specialisation

I If G ` M : s, then for any type substitution S 2 Sub

SG ` M : Ss

I If G ` M : s and s � s0, then

G ` M : s0

Requirements for a
principal typing algorithm, pt

pt operates on typing problems G ` M : ? (consisting of a typing
environment G and a Mini-ML expression M).

It returns either a pair (S, t) consisting of a type substitution
S 2 Sub and a Mini-ML type t, or the exception FAIL.

I If G ` M : ? has a solution (cf. Slide 28), then pt(G ` M : ?)
returns (S, t) for some S and t;
moreover, setting A = (ftv(t)� ftv(S G)), then
(S,8A (t)) is a principal solution for the problem G ` M : ?.

I If G ` M : ? has no solution, then pt(G ` M : ?) returns
FAIL.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems G ` M : ? (consisting of a typing
environment G and a Mini-ML expression M).

It returns either a pair (S, t) consisting of a type substitution
S 2 Sub and a Mini-ML type t, or the exception FAIL.

I If G ` M : ? has a solution (cf. Slide 28), then pt(G ` M : ?)
returns (S, t) for some S and t;
moreover, setting A = (ftv(t)� ftv(S G)), then
(S,8A (t)) is a principal solution for the problem G ` M : ?.

I If G ` M : ? has no solution, then pt(G ` M : ?) returns
FAIL.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems G ` M : ? (consisting of a typing
environment G and a Mini-ML expression M).

It returns either a pair (S, t) consisting of a type substitution
S 2 Sub and a Mini-ML type t, or the exception FAIL.

I If G ` M : ? has a solution (cf. Slide 28), then pt(G ` M : ?)
returns (S, t) for some S and t;

moreover, setting A = (ftv(t)� ftv(S G)), then
(S,8A (t)) is a principal solution for the problem G ` M : ?.

I If G ` M : ? has no solution, then pt(G ` M : ?) returns
FAIL.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems G ` M : ? (consisting of a typing
environment G and a Mini-ML expression M).

It returns either a pair (S, t) consisting of a type substitution
S 2 Sub and a Mini-ML type t, or the exception FAIL.

I If G ` M : ? has a solution (cf. Slide 28), then pt(G ` M : ?)
returns (S, t) for some S and t;
moreover, setting A = (ftv(t)� ftv(S G)), then
(S,8A (t)) is a principal solution for the problem G ` M : ?.

I If G ` M : ? has no solution, then pt(G ` M : ?) returns
FAIL.

Requirements for a
principal typing algorithm, pt

pt operates on typing problems G ` M : ? (consisting of a typing
environment G and a Mini-ML expression M).

It returns either a pair (S, t) consisting of a type substitution
S 2 Sub and a Mini-ML type t, or the exception FAIL.

I If G ` M : ? has a solution (cf. Slide 28), then pt(G ` M : ?)
returns (S, t) for some S and t;
moreover, setting A = (ftv(t)� ftv(S G)), then
(S,8A (t)) is a principal solution for the problem G ` M : ?.

I If G ` M : ? has no solution, then pt(G ` M : ?) returns
FAIL.

How the principal typing algorithm pt works

pt(G ` M : ?) = (S, t) | FAIL

I Call pt recursively following the structure of M and guided by
the typing rules, bottom-up.

I Thread substitutions sequentially and compose them together
when returning from a recursive call.

I When types need to agree to satisfy a typing rule, use mgu
(and pt returns FAIL only if mgu does).

I When types are unknown, generate a fresh type variable.

Some of the clauses in a definition of pt

Function abstractions: pt(G ` lx (M) : ?) ,
let a = fresh in

let (S, t) = pt(G, x : a ` M : ?) in (S, S(a)�t)

Function applications: pt(G ` M
1

M
2

: ?) ,
let (S

1

, t
1

) = pt(G ` M
1

: ?) in

let (S
2

, t
2

) = pt(S
1

G ` M
2

: ?) in

let a = fresh in

let S
3

= mgu(S
2

t
1

, t
2

� a) in (S
3

S
2

S
1

, S
3

(a))

Some of the clauses in a definition of pt

Function abstractions: pt(G ` lx (M) : ?) ,
let a = fresh in

let (S, t) = pt(G, x : a ` M : ?) in (S, S(a)�t)

Function applications: pt(G ` M
1

M
2

: ?) ,
let (S

1

, t
1

) = pt(G ` M
1

: ?) in

let (S
2

, t
2

) = pt(S
1

G ` M
2

: ?) in

let a = fresh in

let S
3

= mgu(S
2

t
1

, t
2

� a) in (S
3

S
2

S
1

, S
3

(a))

Mini-ML type system, III

(fn)
G, x : t

1

` M : t
2

G ` lx (M) : t
1

� t
2

if x /2 dom(G)

(app)
G ` M : t

1

� t
2

G ` N : t
1

G ` M N : t
2

(let)

G ` M
1

: t
G, x : 8A (t) ` M

2

: t0

G ` (let x = M
1

in M
2

) : t0 if x /2 dom(G) and
A = ftv(t)� ftv(G)

Definition. We write G ` M : 8A (t) to mean G ` M : t is
derivable from the Mini-ML typing rules and that
A = ftv(t)� ftv(G).

(So (let) is equivalent to

G ` M
1

: s G, x : s ` M
2

: t0

G ` (let x = M
1

in M
2

) : t0 if x /2 dom(G).)

