
System Fw as a Pure Type System: lw

PTS specification w = (Sw,Aw,Rw):

Sw , {⇤,⇤}
A , {(⇤,⇤)}
R , {(⇤,⇤,⇤), (⇤,⇤,⇤), (⇤,⇤,⇤)}

As in l2, sort ⇤ is a universe of types; but in lw, the rule (prod) for
(⇤,⇤,⇤) means that ⇧ ` t : ⇤ holds for all the ‘simple types’ over the
ground type ⇤ – the ts generated by the grammar t ::= ⇤ | t � t
Hence rule (prod) for (⇤,⇤,⇤) now gives many more legal pseudo-terms
of type ⇤ in lw compared with l2 (PLC), such as

⇧ ` (PT : ⇤� ⇤ (Pa : ⇤ (a � T a))) : ⇤
⇧ ` (PT : ⇤� ⇤ (Pa, b : ⇤ ((a � T b)� T a � T b))) : ⇤

System Fw as a Pure Type System: lw

PTS specification w = (Sw,Aw,Rw):

Sw , {⇤,⇤}
A , {(⇤,⇤)}
R , {(⇤,⇤,⇤), (⇤,⇤,⇤), (⇤,⇤,⇤)}

As in l2, sort ⇤ is a universe of types; but in lw, the rule (prod) for
(⇤,⇤,⇤) means that ⇧ ` t : ⇤ holds for all the ‘simple types’ over the
ground type ⇤ – the ts generated by the grammar t ::= ⇤ | t � t

Hence rule (prod) for (⇤,⇤,⇤) now gives many more legal pseudo-terms
of type ⇤ in lw compared with l2 (PLC), such as

⇧ ` (PT : ⇤� ⇤ (Pa : ⇤ (a � T a))) : ⇤
⇧ ` (PT : ⇤� ⇤ (Pa, b : ⇤ ((a � T b)� T a � T b))) : ⇤

System Fw as a Pure Type System: lw

PTS specification w = (Sw,Aw,Rw):

Sw , {⇤,⇤}
A , {(⇤,⇤)}
R , {(⇤,⇤,⇤), (⇤,⇤,⇤), (⇤,⇤,⇤)}

As in l2, sort ⇤ is a universe of types; but in lw, the rule (prod) for
(⇤,⇤,⇤) means that ⇧ ` t : ⇤ holds for all the ‘simple types’ over the
ground type ⇤ – the ts generated by the grammar t ::= ⇤ | t � t

Hence rule (prod) for (⇤,⇤,⇤) now gives many more legal pseudo-terms
of type ⇤ in lw compared with l2 (PLC), such as

⇧ ` (PT : ⇤� ⇤ (Pa : ⇤ (a � T a))) : ⇤
⇧ ` (PT : ⇤� ⇤ (Pa, b : ⇤ ((a � T b)� T a � T b))) : ⇤

System Fw as a Pure Type System: lw

PTS specification w = (Sw,Aw,Rw):

Sw , {⇤,⇤}
A , {(⇤,⇤)}
R , {(⇤,⇤,⇤), (⇤,⇤,⇤), (⇤,⇤,⇤)}

As in l2, sort ⇤ is a universe of types; but in lw, the rule (prod) for
(⇤,⇤,⇤) means that ⇧ ` t : ⇤ holds for all the ‘simple types’ over the
ground type ⇤ – the ts generated by the grammar t ::= ⇤ | t � t
Hence rule (prod) for (⇤,⇤,⇤) now gives many more legal pseudo-terms
of type ⇤ in lw compared with l2 (PLC), such as

⇧ ` (PT : ⇤� ⇤ (Pa : ⇤ (a � T a))) : ⇤
⇧ ` (PT : ⇤� ⇤ (Pa, b : ⇤ ((a � T b)� T a � T b))) : ⇤

Examples of lw type constructions
I Product types (cf. the PLC representation of product types):

P , la, b : ⇤ (Pg : ⇤ ((a � g)� (b � g)� g))

⇧ ` P : ⇤� ⇤� ⇤

I Monad transformer for state (using a type ⇧ ` S : ⇤ for
states):

M , lT : ⇤� ⇤ (la : ⇤ (S � T(P a S)))
⇧ ` M : (⇤� ⇤)� ⇤� ⇤

I Existential types (cf. the PLC representation of existential
types):

9 , lT : ⇤� ⇤ (Pb : ⇤ ((Pa : ⇤ (T a � b))� b))

⇧ ` 9 : (⇤� ⇤)� ⇤

Examples of lw type constructions
I Product types (cf. the PLC representation of product types):

P , la, b : ⇤ (Pg : ⇤ ((a � g)� (b � g)� g))

⇧ ` P : ⇤� ⇤� ⇤

I Monad transformer for state (using a type ⇧ ` S : ⇤ for
states):

M , lT : ⇤� ⇤ (la : ⇤ (S � T(P a S)))
⇧ ` M : (⇤� ⇤)� ⇤� ⇤

I Existential types (cf. the PLC representation of existential
types):

9 , lT : ⇤� ⇤ (Pb : ⇤ ((Pa : ⇤ (T a � b))� b))

⇧ ` 9 : (⇤� ⇤)� ⇤

Type-checking for Fw

Fact (Girard): System Fw is strongly normalizing in the sense that
for any legal pseudo-term t, there is no infinite chain of
beta-reductions t ! t

1

! t
2

! · · · .

As as corollary we have that the type-checking and typeability
problems for Fw are decidable.

Type-checking for Fw

Fact (Girard): System Fw is strongly normalizing in the sense that
for any legal pseudo-term t, there is no infinite chain of
beta-reductions t ! t

1

! t
2

! · · · .

As as corollary we have that the type-checking and typeability
problems for Fw are decidable.

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Constructive interpretation of logic

I
Implication: a proof of j� y is a construction that
transforms proofs of j into proofs of y.

I
Negation: a proof of ¬j is a construction that from any
(hypothetical) proof of j produces a contradiction (= proof of
falsity ?)

I
Disjunction: a proof of j_ y is an object that manifestly is
either a proof of j, or a proof of y.

I
For all: a proof of 8x (j(x)) is a construction that
transforms the objects a over which x ranges into proofs of
j(a).

I
There exists: a proof of 9 x (j(x)) is given by a pair
consisting of an object a and a proof of j(a).

The Law of Excluded Middle (LEM) 8p (p _¬p) is a classical
tautology (has truth-value true), but is rejected by constructivists.

Constructive interpretation of logic

I
Implication: a proof of j� y is a construction that
transforms proofs of j into proofs of y.

I
Negation: a proof of ¬j is a construction that from any
(hypothetical) proof of j produces a contradiction (= proof of
falsity ?)

I
Disjunction: a proof of j_ y is an object that manifestly is
either a proof of j, or a proof of y.

I
For all: a proof of 8x (j(x)) is a construction that
transforms the objects a over which x ranges into proofs of
j(a).

I
There exists: a proof of 9 x (j(x)) is given by a pair
consisting of an object a and a proof of j(a).

The Law of Excluded Middle (LEM) 8p (p _¬p) is a classical
tautology (has truth-value true), but is rejected by constructivists.

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either p2

p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =

p
2, since p

2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a =

p
2 and b =

p
2

p
2, since then

ba
= (

p
2

p
2)

p
2

=

p
2

p
2.

p
2

=

p
2

2

= 2.

QED

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either p2

p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =

p
2, since p

2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a =

p
2 and b =

p
2

p
2, since then

ba
= (

p
2

p
2)

p
2

=

p
2

p
2.

p
2

=

p
2

2

= 2.

QED

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either p2

p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =

p
2, since p

2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a =

p
2 and b =

p
2

p
2, since then

ba
= (

p
2

p
2)

p
2

=

p
2

p
2.

p
2

=

p
2

2

= 2.

QED

Example of a non-constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof. Either p2

p
2 is rational, or it is not (LEM!).

If it is, we can take a = b =

p
2, since p

2 is irrational by a
well-known theorem attributed to Euclid.

If it is not, we can take a =

p
2 and b =

p
2

p
2, since then

ba
= (

p
2

p
2)

p
2

=

p
2

p
2.

p
2

=

p
2

2

= 2.

QED

Example of a constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof.

p
2 is irrational by a well-known constructive proof

attributed to Euclid.

2 log

2

3 is irrational, by an easy constructive proof (exercise).

So we can take a = 2 log

2

3 and b =

p
2, for which we have that

ba
= (

p
2)2 log

2

3

= (
p

2

2)log

2

3

= 2

log

2

3

= 3 is rational.

QED

Example of a constructive proof

Theorem. There exist two irrational numbers a and b such that
ba is rational.

Proof.

p
2 is irrational by a well-known constructive proof

attributed to Euclid.

2 log

2

3 is irrational, by an easy constructive proof (exercise).

So we can take a = 2 log

2

3 and b =

p
2, for which we have that

ba
= (

p
2)2 log

2

3

= (
p

2

2)log

2

3

= 2

log

2

3

= 3 is rational.

QED

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: f ::= p | f � f | 8p (f) where p ranges
over an infinite set of propositional variables.

2IPC sequents: F ` f where F is a finite multiset (= unordered
list) of 2IPC propositions and f is a 2IPC proposition.

F ` f is provable if it is in the set of sequents inductively
generated by:

(Id) F ` f if f 2 F

F, f ` f0
(�I)

F ` f � f0
F ` f � f0 F ` f

(�E)
G ` f0

F ` f
(8I) if p /2 fv(F)

F ` 8p (f)

F ` 8p (f)
(8E)

F ` f[f0
/p]

Second-order intuitionistic
propositional calculus (2IPC)

2IPC propositions: f ::= p | f � f | 8p (f) where p ranges
over an infinite set of propositional variables.

2IPC sequents: F ` f where F is a finite multiset (= unordered
list) of 2IPC propositions and f is a 2IPC proposition.

F ` f is provable if it is in the set of sequents inductively
generated by:

(Id) F ` f if f 2 F

F, f ` f0
(�I)

F ` f � f0
F ` f � f0 F ` f

(�E)
G ` f0

F ` f
(8I) if p /2 fv(F)

F ` 8p (f)

F ` 8p (f)
(8E)

F ` f[f0
/p]

Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)

I Conjunction f ^ y , 8p ((f � y � p)� p)
(where p /2 fv(f, y))

I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where
p /2 fv(f, y))

I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.

Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)
I Conjunction f ^ y , 8p ((f � y � p)� p)

(where p /2 fv(f, y))

I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where
p /2 fv(f, y))

I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.

Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)
I Conjunction f ^ y , 8p ((f � y � p)� p)

(where p /2 fv(f, y))
I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where

p /2 fv(f, y))

I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.

Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)
I Conjunction f ^ y , 8p ((f � y � p)� p)

(where p /2 fv(f, y))
I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where

p /2 fv(f, y))
I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.

Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)
I Conjunction f ^ y , 8p ((f � y � p)� p)

(where p /2 fv(f, y))
I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where

p /2 fv(f, y))
I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.

A 2IPC proof

Writing p ^ q as an abbreviation for 8r ((p � q � r)� r), the
sequent

{} ` 8p (8q ((p ^ q)� p))

is provable in 2IPC:

(Id) {p ^ q, p, q} ` p
(�I) {p ^ q, p} ` q � p
(�I) {p ^ q} ` p � q � p

(Id) {p ^ q} ` 8r ((p � q � r)� r)
(8E) {p ^ q} ` (p � q � q)� q

(�E) {p ^ q} ` p
(�I) {} ` (p ^ q)� p

(8I) {} ` 8q ((p ^ q)� p)
(8I) {} ` 8p (8q ((p ^ q)� p))

A 2IPC proof

Writing p ^ q as an abbreviation for 8r ((p � q � r)� r), the
sequent

{} ` 8p (8q ((p ^ q)� p))

is provable in 2IPC:

(Id) {p ^ q, p, q} ` p
(�I) {p ^ q, p} ` q � p
(�I) {p ^ q} ` p � q � p

(Id) {p ^ q} ` 8r ((p � q � r)� r)
(8E) {p ^ q} ` (p � q � q)� q

(�E) {p ^ q} ` p
(�I) {} ` (p ^ q)� p

(8I) {} ` 8q ((p ^ q)� p)
(8I) {} ` 8p (8q ((p ^ q)� p))

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Mapping 2IPC proofs to PLC expressions

(Id) F, f ` f 7! (id) x : F, x : f ` x : f

(�I)
F, f ` f0

F ` f � f0 7! (fn)
x : F, x : f ` M : f0

x : F ` lx : f (M) : f � f0

(�E)

F ` f � f0

F ` f

F ` f0 7! (app)

x : F ` M
1

: f � f0

x : F ` M
2

: f

x : F ` M
1

M
2

: f0

(8I)
F ` f

F ` 8p (f)
7! (gen)

x : F ` M : f

x : F ` Lp (M) : 8p (f)

(8E)
F ` 8p (f)

F ` f[f0
/p]

7! (spec)
x : F ` M : 8p (f)

x : F ` M f0
: f[f0

/p]

The proof of the 2IPC sequent

{} ` 8p (8q ((p ^ q)� p))

given before is transformed by the mapping of 2IPC proofs to PLC
expressions to

{} ` Lp, q (lz : p ^ q (z p (lx : p, y : q (x))))
: 8p (8q ((p ^ q)� p))

with typing derivation:
(id) {z : p ^ q, x : p, y : q} ` x : p

(fn) {z : p ^ q, x : p} ` ly : q (x) : q � p
(fn) {z : p ^ q} ` lx : p, y : q (x) : p � q � p

(id) {z : p ^ q} ` z : 8r ((p � q � r)� r)
(spec) {z : p ^ q} ` z p : (p � q � p)� p

(app) {z : p ^ q} ` z p (lx : p, y : q (x)) : p
(fn) {} ` lz : p ^ q (z p (lx : p, y : q (x))) : (p ^ q)� p

(gen) {} ` Lq (lz : p ^ q (z p (lx : p, y : q (x)))) : 8q ((p ^ q)� p)
(gen) {} ` Lp, q (lz : p ^ q (z p (lx : p, y : q (x)))) : 8p, q ((p ^ q)� p)

Curry-Howard correspondence

Logic $ Type system

propositions f $ types t

proofs p $ expressions M

‘p is a proof of f’ $ ‘M is an expression of type t’

simplification of proofs $ reduction of expressions

E.g.

2IPC $ PLC

Proof simplification$ Expression reduction

...
F, f ` y

(�I)
F ` f � y

...
F ` f

(�E)
F ` y

7!

...
x : F, x : f ` M : y

x : F ` lx : f (M) : f � y

...
x : F ` N : f

x : F ` (lx : f (M)) N : y

simplify proof
????y

????y beta-reduce expression

...
F, f ` y

...
F ` f

(cut)
F ` y

 [
...

x : F, x : f ` M : y

...
x : F ` N : f

(subst)
x : F ` M[N/x] : y

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

Proof simplification$ Expression reduction

...
F, f ` y

(�I)
F ` f � y

...
F ` f

(�E)
F ` y

7!

...
x : F, x : f ` M : y

x : F ` lx : f (M) : f � y

...
x : F ` N : f

x : F ` (lx : f (M)) N : y

simplify proof
????y

????y beta-reduce expression

...
F, f ` y

...
F ` f

(cut)
F ` y

 [

...
x : F, x : f ` M : y

...
x : F ` N : f

(subst)
x : F ` M[N/x] : y

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

Proof simplification$ Expression reduction

...
F, f ` y

(�I)
F ` f � y

...
F ` f

(�E)
F ` y

7!

...
x : F, x : f ` M : y

x : F ` lx : f (M) : f � y

...
x : F ` N : f

x : F ` (lx : f (M)) N : y

simplify proof
????y

????y beta-reduce expression

...
F, f ` y

...
F ` f

(cut)
F ` y

 [
...

x : F, x : f ` M : y

...
x : F ` N : f

(subst)
x : F ` M[N/x] : y

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

Proof simplification$ Expression reduction

...
F, f ` y

(�I)
F ` f � y

...
F ` f

(�E)
F ` y

7!

...
x : F, x : f ` M : y

x : F ` lx : f (M) : f � y

...
x : F ` N : f

x : F ` (lx : f (M)) N : y

simplify proof
????y

????y beta-reduce expression

...
F, f ` y

...
F ` f

(cut)
F ` y

 [
...

x : F, x : f ` M : y

...
x : F ` N : f

(subst)
x : F ` M[N/x] : y

The rule (subst) for PLC is admissible: if its hypotheses are valid PLC
typing judgements, then so is its conclusion.

Hence, the rule (cut) is admissible for 2IPC.

Type-inference versus proof search

Type-inference: given G and M, is there a type t such that
G ` M : t?
(For PLC/2IPC this is decidable.)

Proof-search: given G and f, is there a proof term M such that
G ` M : f?
(For PLC/2IPC this is undecidable.)

Type-inference versus proof search

Type-inference: given G and M, is there a type t such that
G ` M : t?
(For PLC/2IPC this is decidable.)

Proof-search: given G and f, is there a proof term M such that
G ` M : f?
(For PLC/2IPC this is undecidable.)

