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Specification logics

Logics for specifying correctness properties.
We’ll look at:

Basic logics and bisimilarity

Fixed points and logic

CTL

Model checking



Finitary Hennessy-Milner Logic

Assertions:

A ∶∶ = T ∣ F ∣ A0 ∧A1 ∣ A0 ∨A1 ∣ ¬A ∣ ⟨λ⟩A ∣ ⟨−⟩A

Satisfaction: s ⊧ A

s ⊧ T always
s ⊧ F never

s ⊧ A0 ∧A1 if s ⊧ A0 and s ⊧ A1

s ⊧ A0 ∨A1 if s ⊧ A0 or s ⊧ A1

s ⊧ ¬A if not s ⊧ A

s ⊧ ⟨λ⟩A if there exists s ′ s.t. s
λÐ→ s ′ and s ′ ⊧ A

s ⊧ ⟨−⟩A if there exist s ′, λ s.t. s
λÐ→ s ′ and s ′ ⊧ A

Derived assertions

[λ]A ≡ ¬⟨λ⟩¬A [−]A ≡ ¬⟨−⟩¬A

s ⊧ [λ]A iff for all s ′ s.t. s
λÐ→ s ′ have s ′ ⊧ A
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Examples

s

t

u

v

a

a

b ? s ⊧ ⟨a⟩T ?

? s ⊧ [a]T ?

? u ⊧ [−]F ?

? s ⊧ ⟨a⟩⟨b⟩T ?

? s ⊧ [a]⟨b⟩T ?



Examples

Generally:

⟨a⟩T
[a]F
⟨−⟩F
⟨−⟩T
[−]T
[−]F

Give a transition system with initial state satisfying:

⟨−⟩[a]F ∧ [a] < a > T



(Strong) bisimilarity and logic

A non-finitary Hennessy-Milner logic allows an infinite conjunction

A ∶∶ =⋀
i∈I

Ai ∣ ¬A ∣ ⟨λ⟩A

with semantics
s ⊧ ⋀

i∈A

Ai iff s ⊧ Ai for all i ∈ I

Define

p ≍ q iff for all assertions A of H-M logic
p ⊧ A iff q ⊧ A

Theorem

≍ = ∼

This gives a way to demonstrate non-bisimilarity of states



Fixed points and model checking

The finitary H-M logic doesn’t allow properties such as

the process never deadlocks

We can add particular extensions (such as always, never) to the logic
(CTL)

Alternatively, what about defining sets of states ‘recursively’? The
set of states X that can always do some action satisfies:

X = ⟨−⟩T ∧ [−]X

A fixed point equation: X = φ(X )
But such equations can have many solutions. . .
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Fixed point equations

In general, an equation of the form X = φ(X ) can have many
solutions for X .

Fixed points are important: they represent steady or consistent
states

Range of different fixed point theorems applicable in different
contexts e.g.

Theorem (1-dimensional Brouwer’s fixed point theorem)

Any continuous function f ∶ [0,1]→ [0,1] has at least one fixed point

(used e.g. in proof of existence of Nash equilibria)

We’ll be interested in fixed points of functions on the powerset
lattice ↝ Knaster-Tarski fixed point theorem and least and greatest
fixed points



Least and greatest fixed points on transition systems:
examples

a

b

In the above transition system, what are the least and greatest subsets of
states X ,Y and Z that satisfy:

X = X

Y = ⟨−⟩T ∧ [−]Y

Z = ¬Z



The powerset lattice

Given a set S, its powerset is

P(S) = {S ∣ S ⊆ S}

Taking the order on its elements to be inclusion, ⊆, this forms a
complete lattice

We are interested in fixed points of functions of the form

φ ∶ P(S)→ P(S)

φ is monotonic if S ⊆ S ′ implies φ(S) ⊆ φ(S ′)
a prefixed point of φ is a set X satisfying φ(X ) ⊆ X

a postfixed point of φ is a set X satisfying X ⊆ φ(X )
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Knaster-Tarski fixed point theorem for minimum fixed
points

Theorem

For monotonic φ ∶ P(S)→ P(S), define

m =⋂{X ⊆ S ∣ φ(X ) ⊆ X}.

Then m is a fixed point of φ and, furthermore, is the least prefixed point:

1 m = φ(m)
2 φ(X ) ⊆ X implies m ⊆ X

m is conventionally written
µX .φ(X )

Used for inductive definitions: syntax, operational semantics, rule-based
programs, model checking



Knaster-Tarski fixed point theorem for maximum fixed
points

Theorem

For monotonic φ ∶ P(S)→ P(S), define

M =⋃{X ⊆ S ∣ X ⊆ φ(X )}.

Then M is a fixed point of φ and, furthermore, is the greatest postfixed
point.

1 M = φ(M)
2 X ⊆ φ(X ) implies X ⊆ M

M is conventionally written

νX .φ(X )

Used for co-inductive definitions, bisimulation, model checking



(Strong) bisimilarity as a maximum fixed point [§5.2 p68]

Bisimilarity can be viewed as a fixed point ↝ model checking algorithms.

Given a relation R (on CCS processes or states of transition systems)
define:

p φ(R) q

iff

1 ∀α,p′. p
αÐ→ p′ Ô⇒

∃q′. q
αÐ→ q′ & p′ R q′

2 ∀α,q′. q
αÐ→ q′ Ô⇒

∃p′. p
αÐ→ p′ & p′ R q′

Lemma

R ⊆ φ(R) iff R is a (strong) bisimulation.

Hence, by Knaster-Tarski fixed point theorem for maximum fixed points:

Theorem
Bisimilarity is the greatest fixed point of φ.



Theorem
Bisimilarity is the greatest fixed point of φ.

Proof.

∼ = ⋃{R ∣ R is a bisimulation} (1)

= ⋃{R ∣ R ⊆ φ(R)} (2)

= νX .φ(X ) (3)

(1) is by definition of ∼
(2) is by Lemma
(3) is by Knaster-Tarski for maximum fixed points: note that φ is
monotonic

Question: How is this different from the least fixed point of φ?
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