Topics in Concurrency Lecture 10

Jonathan Hayman

5 February 2015

- Introduced in 1962 (though claimed to have been invented be 1939)
- Starting point: think of a transition system where a number of processes can be in a given state and then allow coordination
- Conditions: local components of state
- Events: transitions and coordination
- Allows study of concurrency of events, reasoning about causal dependency and how the action of one process might conflict with that of another
- The first of a range of models: event structures, Mazurkiewicz trace languages, asynchronous transition systems, ...
- Many variants with different algorithmic properties and expressivity

∞ -multisets

Multisets generalise sets by allow elements to occur some number of times. ∞ -multisets generalise further by allowing infinitely many occurrences.

$$\omega^{\infty} = \omega \cup \{\infty\}$$

Extend addition:

 $n + \infty = \infty$ for $n \in \omega^{\infty}$

Extend subtraction

 $\infty - n = \infty$ for $n \in \omega$

Extend order:

 $n \leq \infty$ for $n \in \omega^{\infty}$

An ∞ -multiset over a set X is a function

 $f:X\to\omega^\infty$

It is a multiset if $f: X \to \omega$.

- $f \leq g$ iff $\forall x \in X.f(x) \leq g(x)$
- f + g is the ∞ -multiset such that

$$\forall x \in X. \ (f+g)(x) = f(x) + g(x)$$

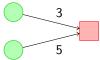
• For g a multiset such that $g \leq f$,

$$\forall x \in X. \ (f-g)(x) = f(x) - g(x)$$

General Petri nets

A general Petri net consists of

- a set of conditions P
- a set of events T
- a pre-condition map assigning to each event t a multiset of conditions •t



 a post-condition map assigning to each event t an ∞-multiset of conditions t[•]

 a capacity map Cap an ∞-multiset of conditions, assigning a capacity in ω[∞] to each condition

Dynamics

A marking is an $\infty\text{-multiset}\ \mathcal{M}$ such that

 $\mathcal{M} \leq \textit{Cap}$

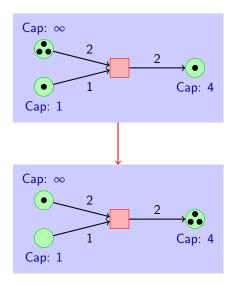
giving how many tokens are in each condition.

The token game:

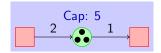
For $\mathcal{M}, \mathcal{M}'$ markings, t an event: $\mathcal{M} \xrightarrow{t} \mathcal{M}'$ iff ${}^{\bullet}t \leq \mathcal{M} \quad \& \quad \mathcal{M}' = \mathcal{M} - {}^{\bullet}t + t^{\bullet}$

An event t has concession (is enabled) at \mathcal{M} iff

•
$$t \leq \mathcal{M}$$
 & $\mathcal{M} - {}^{\bullet}t + t^{\bullet} \leq Cap$



Further examples



Basic Petri nets

Often don't need multisets and can just consider sets.

A basic net consists of

- a set of conditions B
- a set of events E
- a pre-condition map assigning a subset of conditions •e to any event e
- a post-condition map assigning a subset of conditions e[•] to any event e such that

 $e \cup e \neq \emptyset$

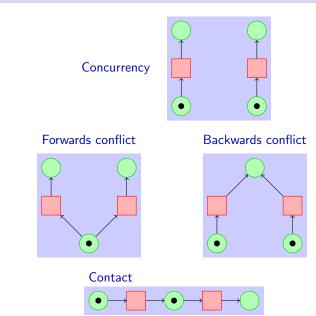
The capacity of any condition is implicitly taken to be 1:

 $\forall b \in B : Cap(b) = 1$

A marking \mathcal{M} is now a subset of conditions.

$$\mathcal{M} \xrightarrow{e} \mathcal{M}' \quad iff \qquad \stackrel{\bullet q \subseteq \mathcal{M}}{\And} \quad \stackrel{\&}{(\mathcal{M} \smallsetminus \bullet e) \cap e^{\bullet} = \varnothing} \\ \stackrel{\&}{\And} \quad \mathcal{M}' = (\mathcal{M} \smallsetminus \bullet e) \cup e^{\bullet}$$

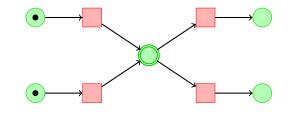
Concepts



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

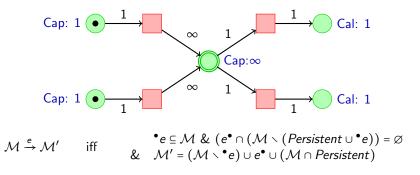
Useful for modelling broadcast messages



Between basic and general nets

conditions Can be introduced that when they hold persist thereafter

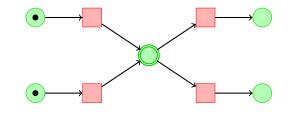
Useful for modelling broadcast messages



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

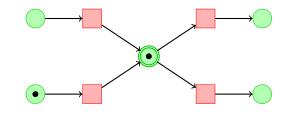
Useful for modelling broadcast messages



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

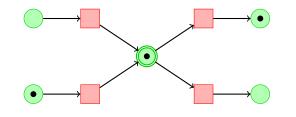
Useful for modelling broadcast messages



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

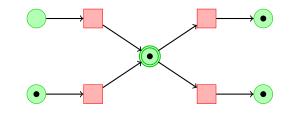
Useful for modelling broadcast messages



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

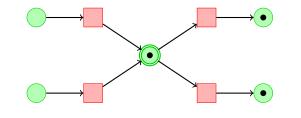
Useful for modelling broadcast messages



Between basic and general nets

conditions \bigcirc can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages



CCS operations on basic nets

- Nil process
- Prefixing
- *p* + *q*
- $p \parallel q$