Zero-Shot Learning by Convex Combination of Semantic Embeddings

Mohammad Norouzi , Tomas Mikolov, Samy Bengio, Yoram Singer, Jonathon Shlens, Andrea Frome, Greg S. Corrado and Jeffrey Dean

University of Toronto Google, Inc. ON, Canada Mountain View, CR, Nessented by: Youmna Farag

Zero-Shot Learning

- <u>Problem</u>: Annotating large number of object categories is challenging and expensive and needs updating over time to include new objects.
- <u>Zero-Shot Learning</u>: "The ability to correctly annotate images of previously unseen object categories"
- <u>Solution</u>: Mapping images into semantic embedding spaces. (trying to find relationships between object categories)

Semantic Embedding Approaches

- Attribute Based Approaches
 - –E.g. Binary attributes to encode presence or absence of attributes in object, such as materials, colors and object parts.
 - Disadvantages: Scalability issue, the need to annotate thousands of classes with thousands of attributes
- Unsupervised Neural Language Modeling
 - Learn a set of embedding vectors for words in a corpus, use that to embed class labels

Problem Statement

- Training datas $\mathcal{D}_0 \equiv \{(\mathbf{x}_i, y_i)\}_{i=1}^m$ $\mathbf{x}_i \in \mathbb{R}^p \ge$ is the fe $y_i \in \mathcal{Y}_0 \equiv \{1, \dots, n_0\}$ are training labels
- Test datase $\mathcal{D}_1 \equiv \{(\mathbf{x}_j', y_j')\}_{j=1}^{m'}$ $\{n_0+1,\ldots,n_0+n_1\}$

 $y'_j \in \mathcal{Y}_1 \equiv^2$ are test labels

- •
- Associate all labels with semantic embedding vector
- $s(y) \in \mathcal{S} \equiv \mathbb{R}^q$ SO $\{\mathbf{s}(y); y \in \mathcal{Y}_0 \cup \mathcal{Y}_1\}$
- y is similar to y' if s(y) is close to s(y')

Regression Model

- Map input features to semantic embedding vectors using a regre($\mathcal{X} \rightarrow \mathcal{S}$)nodel 1 instead of lear($\mathcal{X} \rightarrow \mathcal{Y}_0$)-way classifier
- Training set $\{(\mathbf{x}_i, s(y_i)); (\mathbf{x}_i, y_i) \in \mathcal{D}_0\}$
- Learn a regression function $\mathcal{S} \to \mathcal{S}$ Use k-nearest neighbor search in the semantic space to map the prediction in to a ranked list of labels in

Convex Combination of Semantic Embeddings

- Learn a classifier *po* to map training inputs to labels
- Output is a set of probabi $p_0(y \mid \mathbf{x})$ for class
- labels $\sum_{y=1}^{n_0} p_0(y \mid \mathbf{x}) = 1$. $\widehat{y}_0(\mathbf{x}, 1)$ is the most likely training label for image x:

 $\widehat{y}_0(\mathbf{x}, 1) \equiv \operatorname{argmax} p_0(y \mid \mathbf{x})$

- Similarly, $y \in \mathcal{Y}_0$ is the three three likely label
- Given to $\hat{y}_0(\mathbf{x}, t)$ dictions, predict a semantic embedding f(x) as the convex combination of the semantic $\{s(\widehat{y}_0(\mathbf{x},t))\}_{t=1}^T$ embedding by their probabilities

$$f(\mathbf{x}) = rac{1}{Z} \sum_{t=1}^{T} p(\widehat{y}_0(\mathbf{x},t) \mid \mathbf{x}) \cdot s(\widehat{y}_0(\mathbf{x},t)) \text{ where}_Z = \sum_{t=1}^{T} p(\widehat{y}_0(\mathbf{x},t) \mid \mathbf{x}))$$

Convex Combination of Semantic Embeddings • $f(\mathbf{x}) = \frac{1}{Z} \sum_{t=1}^{T} p(\widehat{y}_0(\mathbf{x},t) \mid \mathbf{x}) \cdot s(\widehat{y}_0(\mathbf{x},t))$

- Example: p0=(lion|x) = 0.6 and p0=(tiger|x) = 0.4, f(x) = 0.6. s(lion) + 0.4. s(tiger). Giving "liger", a hybrid between lion and tiger. $f(x) \approx s(\text{liger})$
- For prediction: find test labels with embeddings neare: $\widehat{y}_1(\mathbf{x}, 1) \equiv \underset{y' \in \mathcal{Y}_1}{\operatorname{argmax}} \cos(f(\mathbf{x}), s(y'))$ f image x is calcul: $y' \in \mathcal{Y}_1$ $\widehat{y}_1(\mathbf{x}, k)$
- is the label with the *kth* largest value of cosine similarity

Models

- Softmax Baseline (krizhevsky et al. 2012): deep convolutional neural network (CNN) to classify images from ImageNet. Can only predict the labels seen in training data.
- Deep Visual-Semantic Embedding (DeViSE) (Frome et al. 2013):
 - Use same CNN in krizhevsky et al.
 - Use skip-gram model to generate the semantic embedding space
 - Replace softmax layer with a linear transformation layer
 - Transformation layer is trained using a ranking objective to map training inputs to embedding vectors close to correct labels
- ConSE:
 - Use same CNN in krizhevsky et al., keeping the softmax layer

Data

- Semantic embedding space: skip-gram model trained on 5.4 billion words from Wikipedia.org to construct 500 dimensional word embedding vectors
- Images:
 - -Training: ImageNet 2012 1K set with 1000 training labels
 - -Test:
 - -"2-hops": labels from the 2011 21K set which are visually and semantically similar to the training labels (labels within 2 tree hops) size = 1,589
 - "3-hops": labels from the 2011 21K set within 3

Test Image	Softmax Baseline [7]	DeViSE [6]	ConSE(10)
	wig	water spaniel	business suit
	fur coat	tea gown	dress, frock
	Saluki, gazelle hound	bridal gown, wedding gown	hairpiece, false hair, postiche
	Afghan hound, Afghan	spaniel	swimsuit, swimwear, bathing suit
	stole	tights, leotards	kit, outfit
7	ostrich, Struthio camelus	heron	ratite, ratite bird, flightless bird
	black stork, Ciconia nigra	owl, bird of Minerva, bird of night	peafowl, bird of Juno
	vulture	hawk	common spoonbill
	crane	bird of prey, raptor, raptorial bird	New World vulture, cathartid
	peacock	finch	Greek partridge, rock partridge
	sea lion	elephant	California sea lion
	plane, carpenter's plane	turtle	Steller sea lion
	cowboy boot	turtleneck, turtle, polo-neck	Australian sea lion
	loggerhead, loggerhead turtle	flip-flop, thong	South American sea lion
	goose	handcart, pushcart, cart, go-cart	eared seal
	hamster	golden hamster, Syrian hamster	golden hamster, Syrian hamster
	broccoli	rhesus, rhesus monkey	rodent, gnawer
	Pomeranian	pipe	Eurasian hamster
	capuchin, ringtail	shaker	rhesus, rhesus monkey
	weasel	American mink, Mustela vison	rabbit, coney, cony
	thresher, threshing machine	truck, motortruck	flatcar, flatbed, flat
	tractor	skidder	truck, motortruck
	harvester, reaper	tank car, tank	tracked vehicle
	half track	automatic rifle, machine rifle	bulldozer, dozer
	snowplow, snowplough	trailer, house trailer	wheeled vehicle
(farm machine)	Tibetan mastiff	kernel	dog, domestic dog
	titi, titi monkey	littoral, litoral, littoral zone, sands	domestic cat, house cat
	koala, koala bear, kangaroo bear	carillon	schnauzer
	llama	Cabernet, Cabernet Sauvignon	Belgian sheepdog
	chow, chow chow	poodle, poodle dog	domestic llama, Lama peruana

Evaluation

- "flat" hit@*k*:
 - the percentage of test images for which the model returns the one true label in its top k predictions.
- "hierarchical" precision@k:
 - uses the ImageNet category hierarchy to penalize the predictions that are semantically far from the correct labels more than the predictions that are close.

Evaluation

- "flat" hit@*k*:
 - the percentage of test images for which the model returns the one true label in its top k predictions.
- "hierarchical" precision@k:
 - uses the ImageNet category hierarchy to penalize the predictions that are semantically far from the correct labels more than the predictions that are close.

Top k predictions	K most relevant labels based on Imagenet distance
----------------------	---

Evaluation

- "flat" hit@*k*:
 - the percentage of test images for which the model returns the one true label in its top k predictions.
- "hierarchical" precision@k:
 - uses the ImageNet category hierarchy to penalize the predictions that are semantically far from the correct labels more than the predictions that are close.

• flat hit@1

	# Candidate		Flat hit@k (%)				
Test Label Set	Labels	Model	1	2	5	10	20
		DeViSE	6.0	10.0	18.1	26.4	36.4
2 hops	1,589	ConSE(1)	9.3	14.4	23.7	30.8	38.7
2-1005		ConSE(10)	9.4	15.1	24.7	32.7	41.8
		ConSE(1000)	9.2	14.8	24.1	32.1	41.1
[DeViSE	0.8	$\bar{2.7}$	7.9	14.2	22.7
2-hops (+1K)	1,589	ConSE(1)	0.2	7.1	17.2	24.0	31.8
2-110ps (+1K)	+1000	ConSE(10)	0.3	6.2	17.0	24.9	33.5
		ConSE(1000)	0.3	6.2	16.7	24.5	32.9
	7,860	DeViSE	1.7	2.9	5.3	8.2	12.5
S-hons		ConSE(1)	2.6	4.2	7.3	10.8	14.8
0-100		ConSE(10)	2.7	4.4	7.8	11.5	16.1
		ConSE(1000)	2.6	_4.3	_7.6_	11.3	15.7
[DeViSE	0.5	1.4	3.4	5.9	9.7
3-hops (+1K)	7,860 +1000	ConSE(1)	0.2	2.4	5.9	9.3	13.4
5-hops (+TK)		ConSE(10)	0.2	2.2	5.9	9.7	14.3
		ConSE(1000)	0.2	2.2	5.8	9.5	14.0
	20, 841	DeViSE	0.8	1.4	2.5	3.9	6.0
ImageNet 2011 21K		ConSE(1)	1.3	2.1	3.6	5.4	7.6
Inageivet 2011 21K		ConSE(10)	1.4	2.2	3.9	5.8	8.3
		ConSE(1000)	1.3	2.1	_3.8_	5.6	_8.1
[$20,841 \\ +1000$	DeViSE	0.3	0.8	1.9	3.2	5.3
ImageNet 2011 21K (+1K)		ConSE(1)	0.1	1.2	3.0	4.8	7.0
		ConSE(10)	0.2	1.2	3.0	5.0	7.5
		ConSE(1000)	0.2	1.2	3.0	4.9	7.3

		Hierarchical precision@k				
Test Label Set	Model	1	2	5	10	20
2 hope	DeViSE	0.06	0.152	0.192	0.217	0.233
2-10ps	ConSE(10)	0.094	0.214	0.247	0.269	0.284
	Softmax baseline	- <u> </u>	0.236	0.181	0.174	0.179
2-hops (+1K)	DeViSE	0.008	0.204	0.196	0.201	0.214
	ConSE(10)	0.003	0.234	0.254	0.260	0.271
2 hops	DeViSE	0.017	0.037	0.191	0.214	0.236
3-nops	ConSE(10)	0.027	0.053	0.202	0.224	0.247
	Softmax baseline	- ō	0.053	0.157	0.143	0.130
3-hops (+1K)	DeViSE	0.005	0.053	0.192	0.201	0.214
	ConSE(10)	0.002	0.061	0.211	0.225	0.240
ImageNet 2011 21K	DeViSE	0.008	0.017	0.072	0.085	0.096
inagenet 2011 21K	ConSE(10)	0.014	0.025	0.078	0.092	0.104
	Softmax baseline	- <u> </u>	0.023	0.071^{-}	0.069	0.065
ImageNet 2011 21K (+1K)	DeViSE	0.003	0.025	0.083	0.092	0.101
	ConSE(10)	0.002	0.029	0.086	0.097	0.105

Training and Test Labels are the Same (no Zero-Shot Learning)

		Hierarchical precision@k					
Test Label Set	Model	1	2	5	10	20	
ImageNet 2011 1K	Softmax baseline	0.556	0.452	0.342	0.313	0.319	
	DeViSE	0.532	0.447	0.352	0.331	0.341	
	ConSE (1)	0.551	0.422	0.32	0.297	0.313	
	ConSE (10)	0.543	0.447	0.348	0.322	0.337	
	ConSE (1000)	0.539	0.442	0.344	0.319	0.335	

		Flat hit@k (%)			
Test Label Set	Model	1	2	5	10
ImageNet 2011 1K	Softmax baseline	55.6	67.4	78.5	85.0
	DeViSE	53.2	65.2	76.7	83.3
	ConSE (1)	55.1	57.7	60.9	63.5
	ConSE (10)	54.3	61.9	68.0	71.6
	ConSE (1000)	53.9	61.1	67.0	70.6

Implementation Details

- ConSE(1) occasionally differs from Softmax baseline prediction because: -There is no one-to-one correspondence between labels and embedding vectors -To softmax scores to embedding vectors, ConSE averages word vectors associated with each label (to mirror Imagenet synsets), then average vectors are linearly combined according to softmax scores.
 - –i.e. this model takes synonym words into account

Conclusion

- ConSE is a simple model to map images to semantic embedding vectors
- ConSE outperforms other zero-shortlearning approaches
- ConSE can use any other visual object classification system or text vector representations.
- ConSE can represent the system confidence
 - -Labels of low probabilities reduces the

Conclusion

- ConSE is a simple model to map images to semantic embedding vectors
- ConSE outperforms other zero-shortlearning approaches
- ConSE can use any other visual object classification system or text vector representations.
- ConSE can represent the cystem confid $f(\mathbf{x}) = \frac{1}{Z} \sum_{t=1}^{T} p(\widehat{y}_0(\mathbf{x}, t) \mid \mathbf{x}) \cdot s(\widehat{y}_0(\mathbf{x}, t))$ -Labels or row propaginges requces the

Thank You! Questions?