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Zero-Shot Learning

• Problem: Annotating large number of 
object categories is challenging and 
expensive and needs updating over 
time to include new objects.

• Zero-Shot Learning: “The ability to 
correctly annotate images of 
previously unseen object categories”

• Solution: Mapping images into 
semantic embedding spaces. (trying 
to find relationships between object 
categories)



Training 
images

=> Tiger

=> Lion

=> Rat

=> Fish

Test images

=> Liger

=> Dog



Semantic Embedding 
Approaches

• Attribute Based Approaches
–E.g. Binary attributes to encode presence 
or absence of attributes in object, such as 
materials, colors and object parts.

–Disadvantages: Scalability issue, the need 
to annotate thousands of classes with 
thousands of attributes

• Unsupervised Neural Language 
Modeling
–Learn a set of embedding vectors for 
words in a corpus, use that to embed 
class labels

–Words with similar contexts have similar 
vectors

–E.g. use a skip-gram model



Problem Statement

• Training dataset                              where     
             is the feature vector,                        
           are training labels

• Test dataset                                where         
                           are test labels

•  
• Associate all labels with semantic 
embedding vector 

•                      so that 
• y is similar to y’ if s(y) is close to s(y’)



Regression Model

• Map input features to semantic embedding 
vectors using a regression model               , 
instead of learning n0-way classifier

• Training set:
• Learn a regression function  
• Use k-nearest neighbor search in the 
semantic space to map the prediction in    
to a ranked list of labels in  



Convex Combination of 
Semantic Embeddings 

(ConSE)
• Learn a classifier p0 to map training inputs to labels
• Output is a set of probabilities                   for class 

labels               where
•                 is the most likely training label for image x:

• Similarly,                is the tth most likely label
• Given top T predictions, predict a semantic embedding 

f(x) as the convex combination of the semantic 
embedding                                 weighted 
by their probabilities

where



Convex Combination of 
Semantic Embeddings 

(ConSE)
•  

• Example: p0=(lion|x) = 0.6 and p0=(tiger|x) = 
0.4,   f(x) = 0.6 . s(lion) + 0.4 . s(tiger). Giving 
“liger”, a hybrid between lion and tiger. f(x) ≈ 
s(liger)

• For prediction: find test labels with embeddings 
nearest to f(x). The top prediction of image x is 
calculates by:

•                is the label with the kth largest value of 
cosine similarity



Models

• Softmax Baseline (krizhevsky et al. 2012):
deep convolutional neural network (CNN) to classify images 
from ImageNet. Can only predict the labels seen in training 
data.
• Deep Visual-Semantic Embedding (DeViSE) (Frome 

et al. 2013):
– Use same CNN in krizhevsky et al.
– Use skip-gram model to generate the semantic embedding 

space
– Replace softmax layer with a linear transformation layer
– Transformation layer is trained using a ranking objective to 

map training inputs to embedding vectors close to correct 
labels

• ConSE:
– Use same CNN in krizhevsky et al., keeping the softmax 

layer
– Use skip-gram model to generate the semantic embedding 

space
– Use a convolutional classifier to get the top T predictions 

then apply convex combination of their semantic 
embeddings.



Data

• Semantic embedding space:
skip-gram model trained on 5.4 billion words 
from Wikipedia.org to construct 500 
dimensional word embedding vectors
• Images:
–Training: ImageNet 2012 1K set with 1000 
training labels

–Test:
–“2-hops”: labels from the 2011 21K set which are 

visually and semantically similar to the training 
labels (labels within 2 tree hops) – size = 1,589

–“3-hops”: labels from the 2011 21K set within 3 
tree hops training labels. (a more difficult set) – 
size = 7,860

–All labels: in the 2011 21K set (the most 
challenging set) – size = 20,900





Evaluation

• “flat” hit@k:
– the percentage of test images for which the model returns 

the one true label in its top k predictions.
• “hierarchical” precision@k:

– uses the ImageNet category hierarchy to penalize the 
predictions that are semantically far from the correct labels 
more than the predictions that are close.
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Evaluation

• “flat” hit@k:
– the percentage of test images for which the model returns 

the one true label in its top k predictions.
• “hierarchical” precision@k:

– uses the ImageNet category hierarchy to penalize the 
predictions that are semantically far from the correct labels 
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• flat hit@1  ≡  hierarchical precision@1
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Training and Test Labels are the 
Same (no Zero-Shot Learning)



Implementation Details

• ConSE(1) occasionally differs from 
Softmax baseline prediction because:
–There is no one-to-one correspondence 
between labels and embedding vectors

–To softmax scores to embedding vectors, 
ConSE averages word vectors associated 
with each label (to mirror Imagenet 
synsets), then average vectors are 
linearly combined according to softmax 
scores.

–i.e. this model takes synonym words into 
account

–Choosing this implementation is to be 
consistent with DeViSE



Conclusion

• ConSE is a simple model to map 
images to semantic embedding 
vectors

• ConSE outperforms other zero-short-
learning approaches

• ConSE can use any other visual object 
classification system or text vector 
representations.

• ConSE can represent the system 
confidence 
–Labels of low probabilities reduces the 
magnitude of ConSE linear combination

–Linear combinations of labels with 
disparate semantics have lower 
magnitude than linear combinations of the 
same number of closely related labels
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Thank You! 
Questions?
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