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SemanAc	Word	Vector	Spaces	
•  Search	query	expansions	
•  Fact	extrac&on	for	informa&on	retrieval	
•  Automa&c	annota&on	of	text	with	disambiguated	
Wikipedia	links		
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ComposiAonality	
•  Composi&onal	meaning	of	longer	phrases		
•  Deeper	understanding	of	language		

Learn	ComposiAonal	Vector	
RepresentaAons	
•  Various	types	of	phrase	
•  Sentences	of	arbitrary	length	
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MV-RNN	Model	
(Matrix-Vector	Recursive	Neural	Network)	
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ExisAng	Approaches	
•  Linear	combina&on	of	single	word	representa&ons	
•  Sum	
•  Weighted	average	
•  Mul&plica&on	

•  Tensor	product	(outperformed	by	weighted	addi&on	
and	mul&plica&on)	

•  Concatena&on	
•  p	=	Ab	(Baroni	and	Zamparelli,	2010)	
•  Standard	RNN	(Socher	et	al.,	2011c)	
•  Linear	MVR	(Mitchell	and	Lapata,	2010;	ZanzoWo	et	
al,	2010)	
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Standard	RNN	(Recursive	Neural	
Network)	

A	global	matrix	W	that	mul&plied	the	word	
vectors	(a,	b),	and	a	nonlinearity	func&on	g	

(such	as	a	sigmoid	or	tanh)	
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Linear	MVR	(Linear	Matrix-Vector	
Recursion	model)	

Linear	combina&on	
W	=	[	I		I	]	
g(x)	=	x	

p	=	Ba	+	Ab	
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ExisAng	Approaches	
•  Linear	combina&on	of	single	word	representa&ons	
•  Sum	
•  Weighted	average	
•  Mul&plica&on	

•  Tensor	product	(outperformed	by	weighted	addi&on	
and	mul&plica&on)	

•  Concatena&on	
•  p	=	Ab	(Baroni	and	Zamparelli,	2010)	
•  Standard	RNN	(Socher	et	al.,	2011c)	
•  Linear	MVR	(Mitchell	and	Lapata,	2010;	ZanzoRo	et	
al,	2010)	
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Mitchell	and	Lapata	(2010)	give	as	their	most	
general	func&on:	p	=	f	(a,	b,	R,	K	),where	R	is	
the	a-priori	known	syntac&c	rela&on	and	K	is	
background	knowledge	

MV-RNN	
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Mitchell	and	Lapata	(2010)	give	as	their	most	
general	func&on:	p	=	f	(a,	b,	R,	K	),where	R	is	
the	a-priori	known	syntac&c	rela&on	and	K	is	
background	knowledge	

MV-RNN	

•  There	is	a	constraint	on	p	which	is	that	it	has	the	
same	dimensionality	as	each	of	the	input	vectors	

•  Capture	seman&c/syntac&c	rela&on	implicitly	via	
the	learned	matrices	
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MV-RNN	

Input-specific	 nonlinear	

MV-RNN	combines	the	strengths	of	both	of	these	ideas	by	
•  assigning	a	vector	and	a	matrix	to	every	word	
	
	
	
	
	
•  learning	an	input-specific,	nonlinear,	composi&onal	

func&on	for	compu&ng	vector	and	matrix	
representa&ons	for	mul&-word	sequences	of	any	
syntac&c	type.	

any	syntac&c	type	
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MV-RNN	Dimensions	
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MV-RNN	Dimensions	
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MV-RNN	Example	
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MV-RNN	IniAalisaAon	

•  Ini&alize	all	word	vectors	x	∈	Rn	with	pre-
trained	50-dimensional	word	vectors	from	the	
unsupervised	model	of	Collobert	and	Weston	
(2008)	

•  Ini&alize	matrices	as	X	=	I	+	ε,	i.e.,	the	iden&ty	
plus	a	small	amount	of	Gaussian	noise	

•  Represent	any	phrase	or	sentence	of	length	m	
as	an	ordered	list	of	vector-	matrix	pairs	((a,	
A),	.	.	.	,	(m,	M	)),	where	each	pair	is	retrieved	
based	on	the	word	at	that	posi&on		
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MV-RNN	Training	

•  Rewri&ng	the	two	transformed	vectors	as	
one	vector	z,	we	get	p	=	g(Wz)	which	is	a	
single	layer	neural	network	

•  Add	on	top	of	each	parent	node	a	simple	
sofmax	classifier	to	predict	a	class	
distribu&on	over,	e.g.,	sen&ment	or	
rela&onship	classes:	d(p)	=	sofmax(Wlabelp).	
If	there	are	K	labels,	then	d	∈	RK	is	a	K-
dimensional	mul&nomial	distribu&on		
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MV-RNN	Training	
(See	Socher	et	al.,	2010)	

•  Error	func&on:	
•  The	sum	of	cross-entropy	errors	at	all	nodes		
•  Where	s:	sentence,	t:	tree	
•  Parameters:	
•  Learning	func&on:	

•  Low-rank	matrix	approxima&on	
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EvaluaAon	and	Generality	

•  Most	related	work	compares	similarity	
judgments	of	unsupervised	models	to	those	
of	human	judgments	and	aims	at	high	
correla&on	

•  The	ques&on	remains	how	these	models	
would	perform	on	downstream	NLP	tasks	
such	as	sen&ment	detec&on		
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EvaluaAon	and	Generality	

•  Ini&alizing	the	models	with	these	general	
representa&ons,	did	not	improve	the	
performance	on	the	tasks	we	consider.	

•  For	sen&ment	analysis,	this	is	not	surprising	
since	antonyms	ofen	get	similar	vectors	
during	unsupervised	learning	from	co-
occurrences	due	to	high	similarity	of	local	
syntac&c	contexts.	

•  In	order	to	fairly	compare	to	related	work,	
we	use	only	the	supervised	data	of	each	task.	
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PredicAng	SenAment	DistribuAons	of	
Adverb-AdjecAve	Pairs	

•  IMDB	dataset:	extract	adverb-adjec&ve	pairs	
from	movie	reviews	

•  The	dataset	provides	the	distribu&on	over	
star	ra&ngs:	Each	consecu&ve	word	pair	
appears	a	certain	number	of	&mes	in	reviews	
that	have	also	associated	with	them	an	
overall	ra&ng	of	the	movie.	

•  Only	word	pairs	that	appear	at	least	50	&mes	
are	kept	.	
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PredicAng	SenAment	DistribuAons	of	
Adverb-AdjecAve	Pairs	

•  We	never	give	the	algorithm	sen&ment	
distribu&ons	for	single	words,	and,	while	
single	words	overlap	between	training	and	
tes&ng,	the	test	set	consists	of	never	before	
seen	word	pairs.	

•  The	sofmax	classifier	is	trained	to	minimize	
the	cross	entropy	error	
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PredicAng	SenAment	DistribuAons	of	
Adverb-AdjecAve	Pairs	

•  Evalua&on:	KL-divergence	

where	g	is	the	gold	distribu&on	and	p	is	
the	predicted	one	
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PredicAng	SenAment	DistribuAons	of	
Adverb-AdjecAve	Pairs	
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PredicAng	SenAment	DistribuAons	of	
Adverb-AdjecAve	Pairs	
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Logic-	and	Vector-based	ComposiAonality	

25	



PredicAng	Movie	Review	RaAngs		
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ClassificaAon	of	SemanAc	RelaAonships	

•  The	previous	task	considered	global	
classifica&on	of	an	en&re	phrase	or	sentence	

•  MV-RNN	can	also	learn	how	a	syntac&c	
context	composes	an	aggregate	meaning	of	
the	seman&c	rela&onships	between	words		

•  The	task	is	finding	seman&c	rela&onships	
between	pairs	of	nominals.	

•  We	use	the	dataset	and	evalua&on	
framework	of	SemEval-2010	Task	8	
(Hendrickx	et	al.,	2010).	There	are	9	ordered	
rela&onships	(with	two	direc&ons)	and	an	
undirected	other	class,	resul&ng	in	19	classes.	
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ClassificaAon	of	SemanAc	RelaAonships	
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ClassificaAon	of	SemanAc	RelaAonships	

•  Many	approaches	use	features	for	all	words	
on	the	path	between	the	two	words	of	
interest.	We	show	that	by	building	a	single	
composi&onal	seman&cs	for	the	minimal	
cons&tuent	including	both	terms	one	can	
achieve	a	higher	performance.		

•  MV-RNN	only	needs	a	parser	for	the	tree	
structure	and	learns	all	seman&cs	from	
unlabeled	corpora	and	the	training	data.	

•  Only	the	SemEval	training	dataset	is	specific	
to	this	task,	the	remaining	inputs	and	the	
training	setup	are	the	same	as	in	previous	
sen&ment	experiments.	 29	



ClassificaAon	of	SemanAc	RelaAonships	
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ClassificaAon	of	SemanAc	RelaAonships	

•  In	order	to	see	whether	our	system	can	
improve	over	this	system,	we	added	three	
features	to	the	MV-RNN	vector	and	trained	
another	sofmax	classifier.	The	features	and	
their	performance	increases	were	POS	tags	
(+0.9);	WordNet	hypernyms	(+1.3)	and	
named	en&ty	tags	(NER)	of	the	two	words	
(+0.6).		

31	



Conclusion	

•  Introduce	a	complete	treatment	of	
composi&onality	in	word	vector	spaces	

•  Based	on	a	syntac&cally	plausible	parse	tree		
•  The	combina&on	of	matrix-vector	

representa&ons	with	a	recursive	neural	
network	

•  learn	both	the	meaning	vectors	of	a	word	
and	how	that	word	modifies	its	neighbors	
(via	its	matrix)		

•  generalizes	several	models	in	the	literature	
(proposi&onal	logic,	sen&ment	and	seman&c	
rela&onships	between	nouns	in	a	sentence)	
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Thanks	for	listening!	
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