Tuning as Ranknig Mark Hopkins and Jonathan May

Presented By: Youmna Farag

MT Tuning Algorithms

Algorithm	Scalability	Implementation
MERT	Bad	Easy and Simple
MIRA	Good	Complex
Pairwise Ranking Optimization (PRO)	Good	Simple (very close to MERT architecture)

Tuning for MT

Candidate space:

S	ource Sentence	Candidate Translations							
i	f(i)	j	e(i,j)	$\mathbf{x}(i, j)$	$h_{\mathbf{w}}(i,j)$	g(i,j)			
1	"il ne va pas"	1	"he goes not"	[2 4]	0	0.28			
		2	"he does not go"	[3 8]	2	0.42			
		3	"she not go"	[6 1]	-11	0.12			
2	"je ne vais pas"	1	"I go not"	[-3 -3]	3	0.15			
		2	"we do not go"	[1 -5]	-7	0.18			
		3	"I do not go"	[-5 -3]	7	0.34			

- Weights vector (w) = [-2, 1]
- Policy: maps source sentenc $i \in I$ to candidate translations J(i)
- Scoring function: $h_w(i, j) = w \cdot x(i, H_w(p) = \sum_{i=1}^{n} h_w(i, p(i))$
- e.g. for p₁={1->2, 2->3}, H_w(p₁) = 9
- G -> the "gold" scores from BLEU algorithm (global scoring function)

Tuning for MT

 Tuning -> "Learn the weight vector w such that H_w(p) assigns a high score to good policies, and low score to bad policies."

-> to minimize the loss function $l_s(H_w, G)$

MERT

- Algorithm: Tune(s, G)
- For n number of iterations:
 - 1. Candidate generation: generate the *k*-best candidates, based on h_w of previous iteration (w is randomly initialized in iteration 1).
 - 2. Optimization: calculate weights that

$$l_s(H_{\mathbf{w}}, G) = \max_p G(p) - G(\arg\max_p H_{\mathbf{w}}(p))$$

S	ource Sentence	Candidate Translations						
i	f(i)	j	e(i,j)	$\mathbf{x}(i, j)$	$h_{\mathbf{w}}(i,j)$	g(i,j)		
1	"il ne va pas"	1	"he goes not"	[2 4]	0	0.28		
		2	"he does not go"	[3 8]	2	0.42		
		3	"she not go"	[6 1]	-11	0.12		
2	"je ne vais pas"	1	"I go not"	[-3 -3]	3	0.15		
		2	"we do not go"	[1 -5]	-7	0.18		
		3	"I do not go"	[-5 -3]	7	0.34		

• Decomposes gold scoring function $G(p) = \sum_{i \in I} g(i, p(i))$ According to BLEU+1

$$\begin{split} g(i,j) > g(i,j') \Leftrightarrow h_{\mathbf{w}}(i,j) > h_{\mathbf{w}}(i,j') & \text{Vant:} \\ \Leftrightarrow h_{\mathbf{w}}(i,j) - h_{\mathbf{w}}(i,j') > 0 \\ \Leftrightarrow \mathbf{w} \cdot \mathbf{x}(i,j) - \mathbf{w} \cdot \mathbf{x}(i,j') > 0 \\ \Leftrightarrow \mathbf{w} \cdot (\mathbf{x}(i,j) - \mathbf{x}(i,j')) > 0 \end{split}$$

S	ource Sentence	Candidate Translations						
i	f(i)	j	e(i,j)	$\mathbf{x}(i, j)$	$h_{\mathbf{w}}(i,j)$	g(i,j)		
1	"il ne va pas"	1	"he goes not"	[2 4]	0	0.28		
		2	"he does not go"	[3 8]	2	0.42		
		3	"she not go"	[6 1]	-11	0.12		
2	"je ne vais pas"	1	"I go not"	[-3 -3]	3	0.15		
		2	"we do not go"	[1 -5]	-7	0.18		
		3	"I do not go"	[-5 -3]	7	0.34		

Training Data:

e.g.:

since *g*(1, 1) > *g*(1, 3), we have: ([-4, 3], +]) and ([4, -3], -])

- Training Data: [x(i, j) x(i, j'), +], [x(i, j') x(i, j), -]
- Linear classifier to calculate the weights (They used MegaM classifier)
- Loss function $(l_s, (H_w, G))$ is calculated according to chosen classifier

• Full enumeration: feature vectors of $O(|I| * J_{max}^2)$

- Full enumeration: feature vectors of $O(|I| * J_{max}^2)$
- Sampling!

For each sentence i:

- Generate Γ candidates < j, j'>
- 2. Accepts pairs with probabilities $a_i(|g(i, j) g(i, j')|)$
- 3. Sort |g(i, j) g(i, j')|in accepted pairs decreasingly
- 4. Returns Ξ candidates with largest |g(i, j) g(i, j')|

MERT Scalability

- 1. Create linear functions G, H_w of the same form
- 2. Try to optimize to the gold weight vector w^*
- 3. Use 500 source sentences, 100 candidate translations per sentence
- 4. Create feature vectors with random numbers: [0, 500]
- 5. Change vectors dimensionality from 10 to 1000, and repeat each setting 3 times
- 6. Repeat the same experiment with adding noise

PRO Scalability

- 1. Same experiment
- 2. Choose Γ (initial candidates) = 5000
- 3. Choose Ξ (kept candidates) = 50
- 4. $\alpha(n) = \begin{cases} 0 \text{ if } n < 0.05\\ 1 \text{ otherwise} \end{cases}$

Scalability Test Results

Experiment

	ИT	SBMT							
Languaga	Experiment		BLEU		Longuaga	Experiment		BLEU	
Language	feats	method	tune	test	Language	feats	method	tune	test
		MERT	20.5	17.7			MERT	23.4	21.4
	base	MIRA	20.5	17.9		base	MIRA	23.6	22.3
Urdu-English		PRO	20.4	18.2	Urdu-English		PRO	23.4	22.2
	avt	MIRA	21.8	17.8		ovt	MIRA	25.2	22.8
	CAL	PRO	21.6	18.1		CAL	PRO	24.2	22.8
	base	MERT	46.8	41.2			MERT	44.7	39.0
		MIRA	47.0	41.1	Arabic-English	base	MIRA	44.6	39.0
Arabic-English		PRO	46.9	41.1			PRO	44.5	39.0
	ext	MIRA	47.5	41.7		ext	MIRA	45.8	39.8
		PRO	48.5	41.9			PRO	45.9	40.3
		MERT	23.8	22.2			MERT	25.5	22.7
	base	MIRA	24.1	22.5	Chinese-English	base	MIRA	25.4	22.9
Chinese-English		PRO	23.8	22.5			PRO	25.5	22.9
	ant	MIRA	24.8	22.6		ext	MIRA	26.0	23.3
	CAL	PRO	24.9	22.7			PRO	25.6	23.5

Features

	Urdu-English				Arabic-English				Chinese-English			
Class	PBMT		SBMT		PBMT		SBMT		PBMT		SBMT	
	base	ext	base	ext	base	ext	base	ext	base	ext	base	ext
baseline	15	15	19	19	15	15	19	19	15	15	19	19
target word	-	51	_	50	-	51	_	50	-	51	_	299
discount	-	11	_	11	-	11	-	10	-	11	_	10
node count	-	-	_	99	-	_	-	138	-	_	_	96
rule overlap	-	-	_	98	-	_	_	136	-	_	_	93
word pair	-	2110	_	-	-	6193	-	-	-	1688	_	-
phrase length	_	63	_	-	-	63	_	-	_	63	_	-
total	15	2250	19	277	15	6333	18	352	15	1828	19	517

- Discount features for rule frequency bins
- Target word insertion features
- Rule overlap features (SBMT only)
- Node count features (SBMT only)
- Unigram word pair features for the 80 most frequent words (PBMT only)
- Source, target and joint phrase length features from 1->7 (PBMT only)

Repeating the baseline experiment 5 times, SD of the test BLEU of MERT = 0.13, PRO= 0.05

Urdu-English PBMT tuning stability

Thank You! ਓ Questions?