# LEARNING TO RANK LEXICAL SUBSTITUTIONS

GYÖRGY SZARVAS, RÓBERT BUSA-FEKETE, EYKE HÜLLERMEIER PRESENTATION BY SHUSHAN ARAKELYAN, SA767@CAM.AC.UK

#### Problem:

Lexical substitution task

Given

Goal

Solution

### Lexical substitution task

Special form of contextual paraphrasing: replacing a single word

Lexical substitution subtasks:

- Generating possible substitutions
- Ranking candidate substitutions according to their contextual fitness

#### Problem

#### Given:

- Dataset of target words
- Sentential contexts
- Potential substitutions for the target words

Goal

Solution



#### Lexsub Dataset (McCarthy and Navigli, 2007)

- 201 target words (any part of speech)
- Contains 2002 sentences
- Lexical substitutions assigned to each (target word, sentence) pair by 5 native speakers

#### TWSI Dataset (Biemann, 2012)

- 1012 target nouns
- 24647 sentences
- Lexical substitutions for each target word in context from crowd sourced annotation

### **Potential Substitutions**

#### WordNet synsets

- All synonyms
- Similar to
- Entailment
- Also see

#### Gold standard

Problem

Given

Goal:

 Train a machine learning model that accurately ranks the candidate substitutions based on their contextual fitness.

Solution

Problem

Given

Goal

Solution:

• Several learning to rank methods, all using the same features.

### Delexicalized features

#### Local n-gram frequencies

- 1-5 gram frequencies extracted from web
- Syntagmatic coherence of the substitute in context

#### Corpus-based features

- Extracted from newspaper texts
- Non-local distributional features

#### Lexical resource features

Extracted from WordNet

#### Shallow syntactic features

Part of speech patterns

## Classifiers (Part 1)

#### MaxEnt (Szarvas et al., 2013)

- Pointwise approach
- Formulates ranking as binary classification

#### ExpEns (Busa-Fekete et al., 2013)

- Pointwise approach with listwise meta-learning
- Listwise step uses AdaBoost

#### RankBoost (Freund et al., 2003)

- Pairwise boosting
- Optimizes the rank loss

### Classifiers (Part 2)

#### RankSVM (Joachims, 2006)

- Paiwise approach, based on SVMs
- Formulates ranking as binary classification

#### LambdaMART (Wu et al., 2010)

- Listiwise approach
- Based on gradient boosted regression trees
- Gradient of parameters is calculated based on the evaluation metric

Problem

Given

Goal

#### Solution

**Result:** 

• The performance on ranking task strongly depends on the way the task is formalized as a machine learning problem.

# Experimental setup and evaluation

#### Experimental setup

Cross validation on target word level

#### Evaluation

- Generalized Average Precision the quality of the entire ranked list
- Precision at 1 percentage of correct paraphrases at rank 1

## Results (Part 1)

| Database   | LexSub      |      | TWSI |             |
|------------|-------------|------|------|-------------|
| Candidates | WN          | Gold | WN   | Gold        |
|            | GAP         |      |      |             |
| MaxEnt     | 43.8        | 52.4 | 36.6 | 47.2        |
| ExpEns     | 44.3        | 53.5 | 37.8 | <b>49.7</b> |
| RankBoost  | 44.0        | 51.4 | 37.0 | 47.8        |
| RankSVM    | 43.3        | 51.8 | 35.5 | 45.2        |
| LambdaMART | 45.5        | 55.0 | 37.8 | 50.1        |
|            | P@1         |      |      |             |
| MaxEnt     | 40.2        | 57.7 | 32.4 | 49.5        |
| ExpEns     | 39.8        | 58.5 | 33.8 | 53.2        |
| RankBoost  | <b>40.7</b> | 55.2 | 33.1 | 50.8        |
| RankSVM    | 40.3        | 51.7 | 33.2 | 45.1        |
| LambdaMART | 40.8        | 60.2 | 33.1 | 53.6        |

# Results (Part 2)

| GAP  |
|------|
| 38.6 |
| 42.9 |
| 46.0 |
| 51.7 |
| 52.4 |
| 53.5 |
| 55.0 |
|      |

# THANK YOU!

QUESTIONS?