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Applications of L2R

Information Retrieval

Collaborative Filtering

Automated Text Scoring (Essay Scoring)

Machine Translation

Sentence Parsing
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Applications of L2R

Information Retrieval

Collaborative Filtering

Automated Text Scoring (Essay Scoring)

Machine Translation

Sentence Parsing

Applicable to many tasks where you wish to specify an ordering over
items in a collection
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Difference with Other Learning Models

No need to predict the absolute value of items (unlike regression)

No need to predict the absolute class of items (unlike classification
and ordinal regression)

The relative ranking of items is all that is important (at least for
information retrieval)
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Example: Information Retrieval
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Example: Information Retrieval

Information retrieval often involves ranking documents in order of
relevance

E.g. relevant, partially-relevant, non-relevant

Assume that we can describe documents (items) using feature vectors
~xqi = Φ(q, di ) that correspond to features of the query-document pair:
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Example: Information Retrieval

Information retrieval often involves ranking documents in order of
relevance

E.g. relevant, partially-relevant, non-relevant

Assume that we can describe documents (items) using feature vectors
~xqi = Φ(q, di ) that correspond to features of the query-document pair:

Example Features

# of query keywords in document

BM25 score

document length

page-rank

sum of term-frequencies

...

...
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Example of Input Vectors in RN

yi input vectors ~xi
~xi1 ~xi2 ~xi3

3 7.0 9.2 3.2
2 2.0 9.2 4.1
0 2.0 3.5 0.2
2 2.0 9.2 11.2
1 3.0 5.3 2.2
0 0.0 3.2 0.5

Table : Sample Dataset
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Problem Formulation

Given a set of input vectors {~xi}
n
i=1 and corresponding labels {yi}

n
i=1

where Y = {1, 2, 3, 4, ..l} specifying a total order on the labels.

Determine a function f that specifies a ranking over the vectors
{~xi}

n
i=1 such that f minimises some cost C

In general you would like to use a cost function C that is closely
correlated to the most suitable measure of performance for the task

This is not always easy
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Three Common Approaches

Pointwise - Regression, Classification, Ordinal regression (items to be
ranked are treated in isolation)

Pairwise - Rank-preference models (items to be ranked are treated in
pairs)

Listwise - Treat each list as an instance. Usually tries to directly
optimise the evaluation measure (e.g. mean average precision)
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Three Common Approaches

Pointwise - Regression, Classification, Ordinal regression (items to be
ranked are treated in isolation)

Pairwise - Rank-preference models (items to be ranked are treated in
pairs)

Listwise - Treat each list as an instance. Usually tries to directly
optimise the evaluation measure (e.g. mean average precision)

We’ll just consider linear functions of the form f (~x) =< ~x , ~w > +b
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Pointwise Outline

General Criteria

The ranking function f learns to assign an absolute score (categories) to
each item in isolation.

1Adapted from [Hang(2009)Hang]
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Pointwise Outline

General Criteria

The ranking function f learns to assign an absolute score (categories) to
each item in isolation.

Regression Classification Ordinal Regression

Input input vector ~x

Output Real Number Category Ordered Category
y = f (~x) y = sign(f (~x)) y = thresh(f (~x))

Model Ranking Function
f (~x)

Loss Regression Loss Classification Loss Ordinal Regression Loss

Table : Learning in Pointwise approaches1

1Adapted from [Hang(2009)Hang]
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Example of Input Vectors

yi input vectors ~xi
xi1 xi2 xi3

3 7.0 9.2 3.2
2 2.0 9.2 4.1
0 2.0 3.5 0.2
2 2.0 9.2 11.2
1 3.0 5.3 2.2
0 0.0 3.2 0.5

Table : Sample Dataset
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A Simple Pointwise Example
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A Simple Pointwise Example
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Minimise Error
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Pointwise summary

Each instance is treated in isolation

The error from the absolute gold score (or class) is minimised
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Pointwise summary

Each instance is treated in isolation

The error from the absolute gold score (or class) is minimised

In general, this is solving a more difficult problem than is necessary
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Pairwise Outline I

General Criteria

The ranking function f learns to rank pairs of items (i.e. for {~xi , ~xj}, is yi
greater than yj?).

2Adapted from [Hang(2009)Hang]
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Pairwise Outline I

General Criteria

The ranking function f learns to rank pairs of items (i.e. for {~xi , ~xj}, is yi
greater than yj?).

Learning Ranking

Input Order input vector pair Feature vectors
{~xi , ~xj} {xi}

n
i=1

Output Classifier of pairs Permutation over vectors
yij = sign(f (~xi − ~xj )) y = sort({f (~xi )}

n
i=1)

Model Ranking Function
f (~x)

Loss Pairwise misclassification Ranking evaluation measure

Table : Learning in Pairwise approaches2

2Adapted from [Hang(2009)Hang]
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Pairwise Outline II

Cost function typically minimises misclassification of pairwise
difference vectors

The function learns using paired input vectors f (~xi − ~xj)

Any binary classifier can be used for implementation

Although svmrank is a commonly used implementation3

3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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Pairwise Transformation

yi input vectors ~xi
xi1 xi2 xi3

3 7.0 9.2 3.2
2 2.0 9.2 4.1
0 2.0 3.5 0.2
2 2.0 9.2 11.2
1 3.0 5.3 2.2
0 0.0 3.2 0.5

Table : Sample Dataset
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Pairwise Transformation

y ′

ij input vectors ~xi − ~xj
xi1 − xj1 xi2 − xj2 xi3 − xj3

+(3-2) 5.0 0.0 -0.9
+(3-0) 5.0 5.7 3.0
+(3-2) 5.0 0.0 -8.0
+(3-1) 6.0 3.9 1.0
+(3-0) 7.0 6.0 2.7
+(2-0) 0.0 5.7 3.9
+(2-1) -1.0 3.9 1.9
+(3-0) 2.0 6.0 3.6
· · · · · · · · · · · ·
-(3-2) -5.0 0.0 0.9
· · · · · · · · · · · ·

Table : Transformed Dataset
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A Graphical Example I
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A Graphical Example II
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A Graphical Example II
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Pairwise Summary

In general, pairwise approaches outperform pointwise approaches in IR

Pairwise preference models can be biased towards rankings containing
many instances

However, pairwise approaches often do not optimise the cost function
that is usually used for evaluation (e.g. average precision or NDCG)

For example, correctly ranking items at the top of the list is often
more important than correctly ranking items lower down

Example
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Pairwise Summary

In general, pairwise approaches outperform pointwise approaches in IR

Pairwise preference models can be biased towards rankings containing
many instances

However, pairwise approaches often do not optimise the cost function
that is usually used for evaluation (e.g. average precision or NDCG)

For example, correctly ranking items at the top of the list is often
more important than correctly ranking items lower down

Example

{RRRNNN} vs {NRRRNN} =⇒ ap = 0.638
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Pairwise Summary

In general, pairwise approaches outperform pointwise approaches in IR

Pairwise preference models can be biased towards rankings containing
many instances

However, pairwise approaches often do not optimise the cost function
that is usually used for evaluation (e.g. average precision or NDCG)

For example, correctly ranking items at the top of the list is often
more important than correctly ranking items lower down

Example

{RRRNNN} vs {NRRRNN} =⇒ ap = 0.638

{RRRNNN} vs {RRNNNR} =⇒ ap = 0.833

where R and N are relevant and non-relevant respectively.
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Listwise outline

Many listwise approaches aim to directly optimise the most
appropriate task-specific metric (e.g. for IR it may be average
precision or NDCG)

However, for rank-based approaches these metrics are often
non-continuous w.r.t the scores

E.g. the score of documents could change without any change in
ranking

Two-broad approaches to handling this:

Modify the cost function to a continuous (smooth) version
Use (or modify) an algorithm that can navigate discrete spaces
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Listwise example I

We’ll use SVMmap

[Yue et al.(2007)Yue, Finley, Radlinski, and Joachims] as a brief
example

Each permutation (list) of items is treated as an instance

Aim to find weight vector ~w that ranks these permutations according
to a loss function

h(~q; ~w ) = arg max~y∈YF (~q, ~y ; ~w)

And F (~q, ~y ; ~w) = ~wΨ(~q, ~y)
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Listwise example II

Essentially each permutation is encoded as summation of ranked
pairwise difference vectors (while negating incorrectly ranked pairs
before summation)

As a result, each list instance is mapped to a feature vector in RN

Vectors with high feature values are good rankings

As each input vector is a list, a list-based metric can be used as a
smooth loss function (hinge-loss)
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Listwise example II

Essentially each permutation is encoded as summation of ranked
pairwise difference vectors (while negating incorrectly ranked pairs
before summation)

As a result, each list instance is mapped to a feature vector in RN

Vectors with high feature values are good rankings

As each input vector is a list, a list-based metric can be used as a
smooth loss function (hinge-loss)

Number of permutations (rankings) is extremely large and so all lists
are not used for training (see
[Yue et al.(2007)Yue, Finley, Radlinski, and Joachims] for details)
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Navigating Non-continuous Spaces

RankGP [Yeh et al.(2007)Yeh, Lin, Ke, and Yang] - Uses genetic
programming to evolve ranking functions from a set of features and
operators (e.g. +, −, /, × )

4http://research.microsoft.com/en-us/people/tyliu/learning_to_rank_tutori
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Navigating Non-continuous Spaces

RankGP [Yeh et al.(2007)Yeh, Lin, Ke, and Yang] - Uses genetic
programming to evolve ranking functions from a set of features and
operators (e.g. +, −, /, × )

4

4http://research.microsoft.com/en-us/people/tyliu/learning_to_rank_tutori
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Other Listwise Approaches

In general when you can represent a list as a vector in RN , you can
optimize w such that it can rank these lists

lambdaRANK [Burges et al.(2006)Burges, Ragno, and Le]

softRANK [Taylor et al.(2008)Taylor, Guiver, Robertson, and Minka]
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Open Questions

Learning to rank for other tasks/domains (e.g. essay scoring)

Optimising the “True loss” for ranking. What might that be?

Ranking using deep learning

Ranking natural language texts using distributed representations
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Datasets

LETOR Datasets 5

Yahoo! Learning to Rank Challenge
https://webscope.sandbox.yahoo.com/#datasets

5http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Take-away Messages

Applications of learning to rank abound

Three main categories of approaches:

pointwise
pairwise
listwise

Challenges in L2R

Many open research questions
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