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Linear Algebra

The state space of a quantum system is described in terms of a vector
space.

Vector spaces are the object of study in Linear Algebra.

In this lecture we review definitions from linear algebra that we need in
the rest of the course.

We are mainly interested in vector spaces over the complex number field
– C.

We use the Dirac notation—|v〉, |φ〉 (read as ket) for vectors.



Vector Spaces

A vector space over C is a set V with
• a commutative, associative addition operation + that has

• an identity 0: |v〉+ 0 = |v〉
• inverses: |v〉+ (−|v〉) = 0

• an operation of multiplication by a scalar α ∈ C such that:
• α(β|v〉) = (αβ)|v〉
• (α+ β)|v〉 = α|v〉+ β|v〉 and α(|u〉+ |v〉) = α|u〉+ α|v〉
• 1|v〉 = |v〉.



Cn

Cn is the vector space of n-tuples of complex numbers:

 α1
...
αn

.
with addition

 α1
...
αn

+

 β1
...
βn

 =

 α1 + β1
...
αn + βn


and scalar multiplication z

 α1
...
αn

 =

 zα1
...
zαn





Basis

A basis of a vector space V is a minimal collection of vectors
|v1〉, . . . , |vn〉 such that every vector |v〉 ∈ V can be expressed as a linear
combination of these:

|v〉 = α1|v1〉+ · · ·+ αn|vn〉.

n—the size of the basis—is uniquely determined by V and is called the
dimension of V.

Given a basis, every vector |v〉 can be represented as an n-tuple of scalars.



Bases for Cn

The standard basis for Cn is


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


(written |0〉, . . . , |n − 1〉).

But other bases are possible:
[

3
2

]
,

[
4
−i

]
is a basis for C2.

We’ll be interested in orthonormal bases. That is bases of vectors of unit
length that are mutually orthogonal. Examples are |0〉, |1〉 and
1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉).



Linear Operators

A linear operator A from one vector space V to another W is a function
such that:

A(α|u〉+ β|v〉) = α(A|u〉) + β(A|v〉)

If V is of dimension n and W is of dimension m, then the operator A can
be represented as an m × n-matrix.

The matrix representation depends on the choice of bases for V and W.



Matrices

Given a choice of bases |v1〉, . . . , |vn〉 and |w1〉, . . . , |wm〉, let

A|vj〉 =
m∑

i=1

αij |wi 〉

Then, the matrix representation of A is given by the entries αij .

Multiplying this matrix by the representation of a vector |v〉 in the basis
|v1〉, . . . , |vn〉 gives the representation of A|v〉 in the basis |w1〉, . . . , |wm〉.



Examples

A 45◦ rotation of the real plane that takes
[

1
0

]
to
[ 1√

2
1√
2

]
and

[
0
1

]
to
[
− 1√

2
1√
2

]
is represented, in the standard basis by the matrix

[
1√
2
− 1√

2
1√
2

1√
2

]

The operator
[

0 −i
i 0

]
does not correspond to a transformation of the

real plane.



Inner Products

An inner product on V is an operation that associates to each pair
|u〉, |v〉 of vectors a complex number

〈u|v〉.

The operation satisfies
• 〈u|αv + βw〉 = α〈u|v〉+ β〈u|w〉
• 〈u|v〉 = 〈v |u〉∗ where the ∗ denotes the complex conjugate.
• 〈v |v〉 ≥ 0 (note: 〈v |v〉 is a real number) and 〈v |v〉 = 0 iff |v〉 = 0.



Inner Product on Cn

The standard inner product on Cn is obtained by taking, for

|u〉 =
∑

i

ui |i〉 and |v〉 =
∑

i

vi |i〉

〈u|v〉 =
∑

i

u∗i vi

Note: 〈u| is a bra, which together with |v〉 forms the bra-ket 〈u|v〉.



Norms

The norm of a vector |v〉 (written || |v〉||) is the non-negative, real
number:

|| |v〉|| =
√
〈v |v〉.

A unit vector is a vector with norm 1.

Two vectors |u〉 and |v〉 are orthogonal if 〈u|v〉 = 0.

An orthonormal basis for an inner product space V is a basis made up of
pairwise orthogonal, unit vectors.

the term Hilbert space is also used for an inner product space



Outer Product

With a pair of vectors |u〉 ∈ U, |v〉 ∈ V we associate a linear operator
|u〉〈v | : V→ U, known as the outer product of |u〉 and |v〉.

(|u〉〈v |)|v ′〉 = 〈v |v ′〉|u〉

|v〉〈v | is the projection on the one-dimensional space generated by |v〉.

Any linear operator can be expressed as a linear combination of outer
products:

A =
∑
ij

Aij |i〉〈j |.



Eigenvalues

An eigenvector of a linear operator A : V→ V is a non-zero vector |v〉
such that

A|v〉 = λ|v〉

for some complex number λ
λ is the eigenvalue corresponding to the eigenvector v .

The eigenvalues of A are obtained as solutions of the characteristic
equation:

det(A− λI ) = 0

Each operator has at least one eigenvalue.



Diagonal Representation

A linear operator (over an inner product space) A is said to be
diagonalisable if

A =
∑

i

λi |vi 〉〈vi |

where the |vi 〉 are an orthonormal set of eigenvectors of A with
corresponding eigenvalues λi .

Equivalently, A can be written as a matrix λ1
. . .

λn


in the basis |v1〉, . . . , |vn〉 of its eigenvectors.



Adjoints

Associated with any linear operator A is its adjoint A† which satisfies

〈v |Aw〉 = 〈A†v |w〉

In terms of matrices, A† = (A∗)T

where ∗ denotes complex conjugation and T denotes transposition.[
1+ i 1− i
−1 1

]†
=

[
1− i −1
1+ i 1

]



Normal and Hermitian Operators

An operator A is said to be normal if

AA† = A†A

Fact: An operator is diagonalisable if, and only if, it is normal.

A is said to be Hermitian if A = A†

A normal operator is Hermitian if, and only if, it has real eigenvalues.



Unitary Operators

A linear operator A is unitary if

AA† = A†A = I

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

〈Au|Av〉 = 〈u|v〉

All eigenvalues of a unitary operator have modulus 1.



Tensor Products

If U is a vector space of dimension m and V one of dimension n then
U⊗ V is a space of dimension mn.
Writing |uv〉 for the vectors in U⊗ V:
• |(u + u′)v〉 = |uv〉+ |u′v〉
• |u(v + v ′)〉 = |uv〉+ |uv ′〉
• z |uv〉 = |(zu)v〉 = |u(zv)〉

Given linear operators A : U→ U and B : V→ V, we can define an
operator A⊗ B on U⊗ V by

(A⊗ B)|uv〉 = |(Au), (Bv)〉



Tensor Products

In matrix terms,

A⊗ B =


A11B A12B · · · A1mB
A21B A22B · · · A2mB
...

...
...

Am1B Am2B · · · AmmB




