Quantum Computing Lecture 2

Review of Linear Algebra

Anuj Dawar

Linear Algebra

The state space of a quantum system is described in terms of a *vector space*.

Vector spaces are the object of study in *Linear Algebra*.

In this lecture we review definitions from linear algebra that we need in the rest of the course.

We are mainly interested in vector spaces over the *complex number field* $-\mathbb{C}$.

We use the *Dirac notation*— $|v\rangle$, $|\phi\rangle$ (read as *ket*) for vectors.

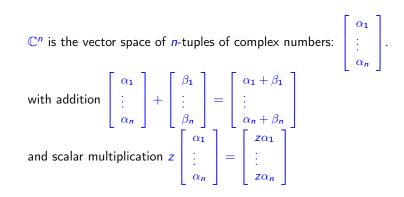
Vector Spaces

A vector space over \mathbb{C} is a set \mathbf{V} with

- a commutative, associative addition operation + that has
 - an identity 0: $|v\rangle + 0 = |v\rangle$
 - inverses: $|v\rangle + (-|v\rangle) = 0$

• an operation of multiplication by a scalar $\alpha \in \mathbb{C}$ such that:

- $\alpha(\beta|\mathbf{v}\rangle) = (\alpha\beta)|\mathbf{v}\rangle$
- $(\alpha + \beta)|v\rangle = \alpha|v\rangle + \beta|v\rangle$ and $\alpha(|u\rangle + |v\rangle) = \alpha|u\rangle + \alpha|v\rangle$
- $1|v\rangle = |v\rangle.$



Basis

A *basis* of a vector space **V** is a *minimal* collection of vectors $|v_1\rangle, \ldots, |v_n\rangle$ such that every vector $|v\rangle \in \mathbf{V}$ can be expressed as a linear combination of these:

 $|\mathbf{v}\rangle = \alpha_1 |\mathbf{v}_1\rangle + \cdots + \alpha_n |\mathbf{v}_n\rangle.$

n—the size of the basis—is uniquely determined by \mathbf{V} and is called the *dimension* of \mathbf{V} .

Given a basis, every vector $|v\rangle$ can be represented as an *n*-tuple of scalars.

Bases for \mathbb{C}^n

The standard basis for
$$\mathbb{C}^{n}$$
 is $\begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}$
(written $|0\rangle, \dots, |n-1\rangle$).
But other bases are possible: $\begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 4\\-i \end{bmatrix}$ is a basis for \mathbb{C}^{2} .

We'll be interested in *orthonormal* bases. That is bases of vectors of unit length that are mutually orthogonal. Examples are $|0\rangle, |1\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$

Linear Operators

A linear operator A from one vector space \mathbf{V} to another \mathbf{W} is a function such that:

 $A(\alpha|u\rangle + \beta|v\rangle) = \alpha(A|u\rangle) + \beta(A|v\rangle)$

If **V** is of dimension *n* and **W** is of dimension *m*, then the operator *A* can be represented as an $m \times n$ -matrix.

The matrix representation depends on the choice of bases for V and W.

Matrices

Given a choice of bases $|v_1\rangle, \ldots, |v_n\rangle$ and $|w_1\rangle, \ldots, |w_m\rangle$, let

$$A|v_j\rangle = \sum_{i=1}^m \alpha_{ij}|w_i\rangle$$

Then, the matrix representation of A is given by the entries α_{ij} .

Multiplying this matrix by the representation of a vector $|v\rangle$ in the basis $|v_1\rangle, \ldots, |v_n\rangle$ gives the representation of $A|v\rangle$ in the basis $|w_1\rangle, \ldots, |w_m\rangle$.

Examples

A 45° rotation of the real plane that takes
$$\begin{bmatrix} 1\\0 \end{bmatrix}$$
 to $\begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ to $\begin{bmatrix} -\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}$ is represented, in the standard basis by the matrix

$$\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right]$$

The operator $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ does not correspond to a transformation of the real plane.

Inner Products

An inner product on **V** is an operation that associates to each pair $|u\rangle$, $|v\rangle$ of vectors a *complex number*

 $\langle u|v\rangle$.

The operation satisfies

- $\langle u | \alpha v + \beta w \rangle = \alpha \langle u | v \rangle + \beta \langle u | w \rangle$
- $\langle u | v \rangle = \langle v | u \rangle^*$ where the * denotes the complex conjugate.
- $\langle v | v \rangle \ge 0$ (note: $\langle v | v \rangle$ is a real number) and $\langle v | v \rangle = 0$ iff $| v \rangle = 0$.

Inner Product on \mathbb{C}^n

The standard inner product on \mathbb{C}^n is obtained by taking, for

$$egin{aligned} u &= \sum_i u_i |i
angle & ext{ and } & |m{v}
angle = \sum_i v_i |i
angle & \ & \langle u |m{v}
angle = \sum_i u_i^* v_i & \end{aligned}$$

Note: $\langle u |$ is a *bra*, which together with $|v\rangle$ forms the *bra-ket* $\langle u | v \rangle$.

Norms

The norm of a vector $|v\rangle$ (written $||v\rangle||$) is the non-negative, real number.

 $|| |v\rangle || = \sqrt{\langle v | v \rangle}.$

A *unit vector* is a vector with norm 1.

Two vectors $|u\rangle$ and $|v\rangle$ are *orthogonal* if $\langle u|v\rangle = 0$.

An *orthonormal* basis for an inner product space **V** is a basis made up of *pairwise orthogonal, unit vectors*.

the term *Hilbert space* is also used for an inner product space

Outer Product

With a pair of vectors $|u\rangle \in U$, $|v\rangle \in V$ we associate a linear operator $|u\rangle\langle v| : V \to U$, known as the *outer product* of $|u\rangle$ and $|v\rangle$.

 $(|u\rangle\langle v|)|v'\rangle = \langle v|v'\rangle|u\rangle$

 $|v\rangle\langle v|$ is the *projection* on the one-dimensional space generated by $|v\rangle$.

Any linear operator can be expressed as a linear combination of outer products:

 $A = \sum_{ij} A_{ij} |i\rangle \langle j|.$

Eigenvalues

An *eigenvector* of a linear operator $A : \mathbf{V} \to \mathbf{V}$ is a non-zero vector $|v\rangle$ such that

$$A|v\rangle = \lambda |v\rangle$$

for some complex number λ

 λ is the *eigenvalue* corresponding to the eigenvector v.

The eigenvalues of A are obtained as solutions of the characteristic equation:

 $\det(A - \lambda I) = 0$

Each operator has at least one eigenvalue.

Diagonal Representation

A linear operator (over an inner product space) *A* is said to be *diagonalisable* if

$$\mathsf{A} = \sum_{i} \lambda_{i} |\mathbf{v}_{i}\rangle \langle \mathbf{v}_{i}|$$

where the $|v_i\rangle$ are an orthonormal set of eigenvectors of A with corresponding eigenvalues λ_i .

Equivalently, A can be written as a matrix

$$\left[\begin{array}{cc}\lambda_1&&\\&\ddots\\&&&\\&&&\lambda_n\end{array}\right]$$

in the basis $|v_1\rangle, \ldots, |v_n\rangle$ of its eigenvectors.

Adjoints

Associated with any linear operator A is its *adjoint* A^{\dagger} which satisfies

 $\langle v|Aw\rangle = \langle A^{\dagger}v|w\rangle$

In terms of matrices, $A^{\dagger} = (A^*)^T$

where * denotes complex conjugation and T denotes transposition.

$$\left[\begin{array}{cc} 1+i & 1-i \\ -1 & 1 \end{array}\right]^{\dagger} = \left[\begin{array}{cc} 1-i & -1 \\ 1+i & 1 \end{array}\right]$$

Normal and Hermitian Operators

An operator A is said to be *normal* if

 $AA^{\dagger} = A^{\dagger}A$

Fact: An operator is diagonalisable if, and only if, it is normal.

A is said to be *Hermitian* if $A = A^{\dagger}$

A normal operator is Hermitian if, and only if, it has real eigenvalues.

Unitary Operators

A linear operator A is *unitary* if

 $AA^{\dagger} = A^{\dagger}A = I$

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

 $\langle Au|Av\rangle = \langle u|v\rangle$

All eigenvalues of a unitary operator have modulus 1.

Tensor Products

If **U** is a vector space of dimension m and **V** one of dimension n then $\mathbf{U} \otimes \mathbf{V}$ is a space of dimension mn. Writing $|uv\rangle$ for the vectors in $\mathbf{U} \otimes \mathbf{V}$:

- $|(u + u')v\rangle = |uv\rangle + |u'v\rangle$
- $|u(v + v')\rangle = |uv\rangle + |uv'\rangle$
- $z|uv\rangle = |(zu)v\rangle = |u(zv)\rangle$

Given linear operators $A : \mathbf{U} \to \mathbf{U}$ and $B : \mathbf{V} \to \mathbf{V}$, we can define an operator $A \otimes B$ on $\mathbf{U} \otimes \mathbf{V}$ by

 $(A \otimes B) |uv\rangle = |(Au), (Bv)\rangle$

Tensor Products

In matrix terms,

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1m}B \\ A_{21}B & A_{22}B & \cdots & A_{2m}B \\ \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mm}B \end{bmatrix}$$