
PC	 Rev	 1	

Fibbing,	 coding,	 vectoring	
April	 21,	 2016	

A B

C

destination source

Consider this simple network
(implemented with Cisco routers)

D1

D2

X

A B

C X

An IGP control-plane computes
shortest paths on a shared weighted topology

D1

D2

control-plane

3

1

1 10

shortest paths

IGP shortest paths are translated into
forwarding paths on the data-plane

D1

D2

data-plane

traffic flow

A B

C

X

A B

C X D1

D2

control-plane

3

1

1 10

In Fibbing, operators can ask
the controller to modify forwarding paths

requirement
(C,A,B,X,D2
)

A B

C X D1

D2

3

1

1 10

The Fibbing controller injects information on
fake nodes and links to the IGP control-plane

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

Informations are flooded
to all IGP routers in the network

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

Fibbing messages augment
the topology seen by all IGP routers

1

D2 node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10 V1

requirement
(C,A,B,X,D2
)

Augmented topologies translate
into new control-plane paths

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

Augmented topologies translate
into new data-plane paths

A B

C

D1

D2

X

A B

C X D1

D2

3

1

1 10

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

requirement
(C,A,B,X,D2
)

Theorem

Fibbing can program
arbitrary per-destination paths

Any set of forwarding DAGs can be enforced by Fibbing

Fibbing can program
arbitrary per-destination paths

paths to the same destination do not create loops

Theorem Any set of forwarding DAGs can be enforced by Fibbing

By achieving full per-destination control,
Fibbing is highly flexible

!   fine-grained traffic steering (middleboxing)

!   per-destination load balancing (traffic engineering)

!   backup paths provisioning (failure recovery)

Theorem Any set of forwarding DAGs can be enforced by Fibbing

Central Control over Distributed Routing
fibbing.net

Manageability 1

Scalability

2 Flexibility

3

Robustness 4

We implemented a Fibbing controller

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

We also propose algorithms
to compute augmented topologies of limited size

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

cross-destination
optimization

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

1.  simple
2. merger

cross-destination
optimization

For our Fibbing controller, we propose
algorithms to be run in sequence

A B

C D E F

1

1 10

100

1

1

original	 shortest-‐path	
“down	 and	 to	 the	 right”	

Consider the following example,
with a drastic forwarding path change

A B

C D E F

100 1

1 10

1

1

desired	 shortest-‐path	
“up	 and	 to	 the	 right”	

A B

C D E F

100 1

1 10

1

1
1 1

1

1
1

Simple adds one fake node for every
router that has to change next-hop

1

1

1
1

Merger	 iteraBvely	 merges	 fake	 nodes	
(starBng	 from	 Simple’s	 output)	

A B

C D E F

100 1

1 10

1

1
1 1

1

1
1

A B

C D E F

100 1

1 10

1

1
1

Merger	 iteraBvely	 merges	 fake	 nodes	
(starBng	 from	 Simple’s	 output)	

This way, Merger programs multiple
next-hop changes with a single fake node

A B

C D E F

100 1

1 10

1

1

1

A B

C D E F

100 1

1 10

1

1

1

Previous SDN solutions (e.g., RCP) cannot do the same

This way, Merger programs multiple
next-hop changes with a single fake node

Simple and Merger achieve different trade-offs
in terms of time and optimization efficiency

and up to 90% with cross-destination optimization

!   Merger reduces fake nodes by up to 50%

Merger takes 0.1 seconds
!   Simple runs in milliseconds

We ran experiments on Rocketfuel topologies,

with at least 25% of nodes changing next-hops

We implemented the machinery to
listen to OSPF and augment the topology

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

OSPF interaction
module

Experiments on real routers show that
Fibbing has very limited impact on routers

router
memory (MB)

fake
nodes

1 000

5 000

10 000

0.7

76.0

153

50 000

100 000

6.8

14.5

DRAM is cheap

>> # real routers

Experiments on real routers show that
Fibbing has very limited impact on routers

1 000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

CPU utilization always under 4%

Experiments on real routers show that
Fibbing does not impact IGP convergence

Upon link failure, we registered no difference in the

(sub-second) IGP convergence with

!   up to 100,000 fake nodes and destinations

!   no fake nodes

Experiments on real routers show that
Fibbing achieves fast forwarding changes

installation
time (seconds)

0.9

44.7

89.50

4.5

8.9

894.50	 μs/entry	

fake
nodes

1 000

5 000

10 000

50 000

100 000

•  Ahlswede et al. – Butterfly Example in “Network
Information Flow”, IEEE Transactions on Information
Theory, 2000

Network Coding – Background

Allowing routers to mix the bits in
forwarding messages can increase

network throughput
(Achieves multicast capacity)

This is the basis for Network Coding!

Chronology of Research
•  Li et al. – Showed that linear codes are sufficient to achieve

maximum capacity bounds (2003)
•  Koetter and Medard – Polynomial time algorithms for

encoding and decoding (2003)
•  Ho et al. – Extended previous results to a randomized

setting (2003)
•  Studies on wireless network coding began in 2003 as well!

(Shows that it was a high interest research area)
•  More work on wireless network coding with multicast

models (2004)
•  Lun et al. – Problem of minimizing communication cost in

wireless networks can be formulated linearly (2005) – Used
multicast model as well!
So all the previous work was theoretical and assumes multicast traffic.

•  Authors introduced the idea of opportunistic coding for
wireless environments in 2005

Why is it different?
They address the common case of unicast traffic, bursty flows and other

practical issues.

Current Paper
•  Explores the utility of network coding in

improving the throughput of wireless
networks.

•  Authors extend the theory of their
opportunistic coding architecture (COPE)
by application in a practical scenario.

•  Presents the first system architecture for
wireless network coding.

•  Implements the design, creating the first
deployment of network coding in a
wireless network.

•  Studies the performance of COPE.

COPE
•  What does being opportunistic mean?
 Each node relies on local information to detect and exploit
coding opportunities when they arise, so as to maximize
throughput.

•  COPE inserts an opportunistic coding
shim between the IP and MAC layers.

•  Enables forwarding of multiple packets
in a single transmission.

•  Based on the fact that intelligently
mixing packets increases network
throughput.

Design Principles:
– COPE embraces the broadcast

nature of the wireless channel.
– COPE employs network coding.

Inside COPE

COPE incorporates three main
techniques:
– Opportunistic Listening
– Opportunistic Coding
–  Learning Neighbor State

Opportunistic Listening
•  Nodes are equipped with omni-

directional antennae
•  COPE sets the nodes to a

promiscuous mode.
•  The nodes store the overheard

packets for a limited period T (0.5 s)
•  Each node also broadcasts reception

reports to tell it’s neighbors which
packets it has stored.

Opportunistic Coding

Rule:
“A node should aim to maximize

the number of native packets
delivered in a single
transmission, while ensuring
that each intended next-hop
has enough information to
decode it’s native packet.”

Issues:
– Unneeded data should not be

forwarded to areas where there is no
interested receiver, wasting capacity.

– The coding algorithm should ensure
that all next-hops of an encoded
packet can decode their corresponding
native packets.

Rule: To transmit n packets p1 … pn to n next-hops
r1 … rn, a node can XOR the n packets together only
if each next-hop ri has all n - 1 packets pj for j ≠ i

Learning Neighbor State
•  A node cannot solely rely on reception reports, and may need

to guess whether a neighbor has a particular packet.
•  To guess intelligently, we can leverage routing computations.

 The ETX metric computes the delivery probability between
nodes and assigns each link a weight of 1/(delivery_probability)

•  In the absence of deterministic information,
 COPE estimates the probability that a particular neighbor has a
packet, as the delivery probability of the link between the
packet’s previous hop and the neighbor.

A B C
Probability that

C has the
packet = p

Delivery probability = pAC

“p increases with pAC”

Understanding COPE’s Gains
Coding Gain

–  Defined as the ratio of no. of transmissions
required without COPE to the no. of
transmissions used by COPE to deliver the
same set of packets.

–  By definition, this number is greater than 1.
 (4/3 for Alice-Bob Example)

–  Theorem: In the absence of opportunistic
listening, COPE’s maximum coding gain is 2,
and it is achievable.

Coding Gain achievable =
2N/(N+1)

This value tends to 2 as

N grows.

In the presence of opportunistic listening

Achievable
Coding Gain

= 1.33

Achievable
Coding Gain

= 1.6

Understanding COPE’s Gains
Coding + MAC Gain

–  It was observed that throughput improvement
using COPE greatly exceeded the coding gain.

–  Since it tries to be fair, the MAC layer divides the
bandwidth equally between contending nodes.

–  COPE allows the bottleneck nodes to XOR pairs of
packets and drain them quicker, increasing the
throughput of the network.

–  For topologies with a single bottleneck, the Coding
+ MAC Gain is the ratio if the bottleneck’s draining
rate with COPE to it’s draining rate without COPE.

�  Theorem: In the absence of
opportunistic listening, COPE’s
maximum Coding + MAC gain is 2,
and it is achievable.
 Node can XOR at most 2 packets together, and the
bottleneck can drain at almost twice as fast, bounding the
Coding + MAC Gain at 2.

�  Theorem: In the presence of
opportunistic listening, COPE’s
maximum Coding + MAC gain is
unbounded. For N edge

nodes, the
bottleneck node
XORs N packets
together, and the
queue drains N
times faster.

The Gain is
unbounded.

•  Theoretical gains:

•  Important to note that:
– The gains in practice tend to be

lower due to non-availability of
coding opportunities, packet header
overheads, medium losses, etc.,

– But COPE does increase actual
information rate of the medium far
above the bit rate.

The	 Problem	

P3	 P2	 P1	

Sender	 Buffer	

Network

Receiver	 Buffer	

P1	 +	 P2	

P2	 +	 P3	

P1	 +	 P2	 +	 P3	

Can’t	 acknowledge	 a	 packet	 unBl	 you	 can	 decode.	
Usually,	 decoding	 requires	 a	 number	 of	 packets.	
Code	 /	 acknowledge	 over	 small	 blocks	 to	 avoid	 	
delay,	 manage	 complexity.	

Compare	 to	 ARQ	

•  Retransmit	 lost	 packets	
•  Low	 delay,	 queue	 size	
•  Streaming,	 not	 blocks	
•  Not	 efficient	 on	 broadcast	

links	
•  Link-‐by-‐link	 ARQ	 does	 not	

achieve	 network	 mulBcast	
capacity.	

•  Transmit	 linear	
combinaBons	 of	 packets	

•  Achieves	 min-‐cut	
mulBcast	 capacity	

•  Extends	 to	 broadcast	 links	
•  CongesBon	 control	

requires	 feedback	
•  Decoding	 delay:	 block-‐

based	

Context:	 	 	 Reliable	 communica1on	 over	 a	 (wireless)	 network	 of	 packet	 erasure	 channels	

ARQ	 Network	 Coding	

Goals	

•  Devise	 a	 system	 that	 behaves	 as	 close	 to	 TCP	 as	
possible,	 while	 masking	 non-‐congesBon	 wireless	
losses	 from	 congesBon	 control	 where	 possible.	
–  Standard	 TCP/wireless	 problem.	

•  Stream-‐based,	 not	 block-‐based.	
•  Low	 delay.	
•  Focus	 on	 wireless	 secng.	

– Where	 network	 coding	 can	 offer	 biggest	 benefits.	
–  Not	 necessarily	 a	 universal	 soluBon.	

Main	 Idea	 :	 Coding	 ACKs	

•  What	 does	 it	 mean	 to	 “see”	 a	 packet?	
•  Standard	 noBon:	 	 we	 have	 a	 copy	 of	 the	 packet.	

–  Doesn’t	 work	 well	 in	 coding	 secng.	
–  Implies	 must	 decode	 to	 see	 a	 packet.	

•  New	 definiBon:	 	 we	 have	 a	 packet	 that	 will	 allow	 us	
to	 decode	 once	 enough	 useful	 packets	 arrive.	
–  Packet	 is	 useful	 if	 linearly	 independent.	
– When	 enough	 useful	 packets	 arrive	 can	 decode.	

Coding	 ACKs	

•  For	 a	 message	 of	 size	 n,	 need	 n	 useful	 packets.	
•  Each	 coded	 packet	 corresponds	 to	 a	 degree	 of	
freedom.	

•  Instead	 of	 acknowledging	 individual	 packets,	
acknowledge	 newly	 arrived	 degrees	 of	
freedom.	

Coding	 ACKs	

4	 	 2	 	 5	 	 0	 	 0	 	 0	 	 0	

3	 	 1	 	 2	 	 5	 	 0	 	 0	 	 0	

1	 	 2	 	 3	 	 4	 	 1	 	 0	 	 0	

3	 	 3	 	 1	 	 2	 	 1	 	 0	 	 0	

1	 	 2	 	 5	 	 4	 	 5	 	 0	 	 0	

4	 	 2	 	 5	 	 0	 	 0	 	 0	 	 0	

3	 	 1	 	 2	 	 5	 	 0	 	 0	 	 0	

1	 	 2	 	 3	 	 4	 	 1	 	 0	 	 0	

3	 	 3	 	 1	 	 2	 	 1	 	 0	 	 0	

1	 	 2	 	 5	 	 4	 	 5	 	 0	 	 0	

4p1	 +	 2p2	 +	 5p3	

Original	 message	 :	 p1,	 p2,	 p3…	 	

Coded	
Packets	

c1	
c2	
c3	
c4	
c5	

Coding	 ACKs	

4	 	 2	 	 5	 	 0	 	 0	 	 0	 	 0	

3	 	 1	 	 2	 	 5	 	 0	 	 0	 	 0	

1	 	 2	 	 3	 	 4	 	 1	 	 0	 	 0	

3	 	 3	 	 1	 	 2	 	 1	 	 0	 	 0	

1	 	 2	 	 5	 	 4	 	 5	 	 0	 	 0	

4	 	 2	 	 5	 	 0	 	 0	 	 0	 	 0	

3	 	 1	 	 2	 	 5	 	 0	 	 0	 	 0	

1	 	 2	 	 3	 	 4	 	 1	 	 0	 	 0	

3	 	 3	 	 1	 	 2	 	 1	 	 0	 	 0	

1	 	 2	 	 5	 	 4	 	 5	 	 0	 	 0	

4p1	 +	 2p2	 +	 5p3	

Original	 message	 :	 p1,	 p2,	 p3…	 	

Coded	
Packets	

c1	
c2	
c3	
c4	
c5	

When	 c1	 comes	 in,	 you’ve	 “seen”	 packet	 1;	 eventually	 	
you’ll	 be	 able	 to	 decode	 it.	 	 And	 so	 on…	

Coding	 ACKs	

1	 	 4	 	 5	 	 3	 	 0	 	 0	 	 0	

0	 	 1	 	 3	 	 2	 	 6	 	 0	 	 0	

0	 	 0	 	 1	 	 6	 	 2	 	 0	 	 0	

0	 	 0	 	 0	 	 1	 	 5	 	 0	 	 0	

0	 	 0	 	 0	 	 0	 	 1	 	 0	 	 0	

4	 	 2	 	 5	 	 0	 	 0	 	 0	 	 0	

3	 	 1	 	 2	 	 5	 	 0	 	 0	 	 0	

1	 	 2	 	 3	 	 4	 	 1	 	 0	 	 0	

3	 	 3	 	 1	 	 2	 	 1	 	 0	 	 0	

1	 	 2	 	 5	 	 4	 	 5	 	 0	 	 0	

4p1	 +	 2p2	 +	 5p3	

Original	 message	 :	 p1,	 p2,	 p3…	 	

Coded	
Packets	

c1	
c2	
c3	
c4	
c5	

Use	 Gaussian	 eliminaBon	 as	 packets	 arrive	 to	 check	 for	
a	 new	 seen	 packet.	

Formal	 DefiniBon	

•  A	 node	 has	 seen	 a	 packet	 pk	 if	 it	 can	 compute	
a	 linear	 combinaBon	 pk+q	 where	 q	 is	 a	 linear	
combinaBon	 of	 packets	 with	 index	 larger	 than	
k.	

•  When	 all	 packets	 have	 been	 seen,	 decoding	 is	
possible.	

Layered	 Architecture	

Data	 ACK	

Application

TCP

MAC / PHY

Application

TCP

MAC / PHY

SOURCE	 SIDE	 RECEIVER	 SIDE	

IP IP

Physical	 medium	

Eg.	 HTTP,	 FTP	

Transport	 layer:	 Reliability,	 	
flow	 and	 congesBon	 control	

Network	 layer	 (RouBng)	

Medium	 access,	
channel	 coding	

TCP	 using	 Network	 Coding	

Data	 ACK	

ApplicaBon	

TCP	

IP	

ApplicaBon	

TCP	

IP	

SOURCE	 SIDE	 RECEIVER	 SIDE	

Network	 coding	 layer	 Network	 coding	 layer	

Lower	 layers	

The	 Sender	 Module	

•  Buffers	 packets	 in	 the	 current	 window	 from	
the	 TCP	 source,	 sends	 linear	 combinaBons.	

•  Need	 for	 redundancy	 factor	 R.	
– Sending	 rate	 should	 account	 for	 loss	 rate.	
– Send	 a	 constant	 factor	 more	 packets.	
– Open	 issue	 :	 determine	 R	 dynamically?	

Redundancy	 	

•  Too	 low	 R	
– TCP	 Bmes	 out	 and	 backs	 off	 drasBcally.	

•  Too	 high	 R	
– Losses	 recovered	 –	 TCP	 window	 advances	
smoothly.	

– Throughput	 reduced	 due	 to	 low	 code	 rate.	
– CongesBon	 increases.	

•  Right	 R	 is	 1/(1-p), where p is the loss rate.	

BGP-4
•  BGP = Border Gateway Protocol
•  Is a Policy-Based routing protocol

•  Is the de facto EGP of today’s global Internet

•  Relatively simple protocol, but configuration is complex and the
entire world can see, and be impacted by, your mistakes.

•  1989 : BGP-1 [RFC 1105]
– Replacement for EGP (1984, RFC 904)

•  1990 : BGP-2 [RFC 1163]
•  1991 : BGP-3 [RFC 1267]
•  1995 : BGP-4 [RFC 1771]

– Support for Classless Interdomain Routing (CIDR)

BGP Operations (Simplified)
Establish session on

 TCP port 179

 Exchange all
 active routes

Exchange incremental
 updates

AS1

AS2

While connection
is ALIVE exchange

route UPDATE messages

BGP session

Two Types of BGP Neighbor Relationships

•  External Neighbor (eBGP) in a different
Autonomous Systems

•  Internal Neighbor (iBGP) in the same
Autonomous System

AS1

AS2

eBGP	

iBGP	

iBGP is routed (using IGP!)

iBGP Mesh Does Not Scale
eBGP update

iBGP updates

•  N border routers means N(N-1)/2
peering sessions

•  Each router must have N-1 iBGP
sessions configured

•  The addition a single iBGP speaker
requires configuration changes to all

other iBGP speakers

•  Size of iBGP routing table can be
order N larger than number of best

routes (remember alternate routes!)

•  Each router has to listen to update
noise from each neighbor

Currently four solutions:
(0) Buy bigger routers!

(1)  Break AS into smaller ASes
(2)  BGP Route reflectors
(3)  BGP confederations

•  Route reflectors can pass on
iBGP updates to clients

•  Each RR passes along ONLY
best routes

•  ORIGINATOR_ID and
CLUSTER_LIST attributes are

needed to avoid loops
RR RR

RR

Route Reflectors

BGP Confederations

AS 65501

AS 65502

AS 65503 AS 65504
AS 65500

AS 1

From the outside, this looks like AS 1

Confederation eBGP (between member ASes) preserves
LOCAL_PREF, MED, and BGP NEXTHOP.

Four Types of BGP Messages

•  Open : Establish a peering session.
•  Keep Alive : Handshake at regular intervals.
•  Notification : Shuts down a peering session.
•  Update : Announcing new routes or

withdrawing previously announced routes.

 announcement
 =

 prefix + attributes values

BGP Attributes

Value Code Reference
----- --------------------------------- ---------
 1 ORIGIN [RFC1771]
 2 AS_PATH [RFC1771]
 3 NEXT_HOP [RFC1771]
 4 MULTI_EXIT_DISC [RFC1771]
 5 LOCAL_PREF [RFC1771]
 6 ATOMIC_AGGREGATE [RFC1771]
 7 AGGREGATOR [RFC1771]
 8 COMMUNITY [RFC1997]
 9 ORIGINATOR_ID [RFC2796]
 10 CLUSTER_LIST [RFC2796]
 11 DPA [Chen]
 12 ADVERTISER [RFC1863]
 13 RCID_PATH / CLUSTER_ID [RFC1863]
 14 MP_REACH_NLRI [RFC2283]
 15 MP_UNREACH_NLRI [RFC2283]
 16 EXTENDED COMMUNITIES [Rosen]

 ...
 255 reserved for development

From IANA: http://www.iana.org/assignments/bgp-parameters

Most
important
attributes

Not all attributes
need to be present in
every announcement

Attributes are Used to Select
Best Routes

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

Given multiple
routes to the same

prefix, a BGP speaker
must pick at most

one best route

(Note: it could reject
them all!)

Route Selection Summary

Highest Local Preference

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

Lowest IGP cost
to BGP egress

Lowest router ID

traffic engineering

Enforce relationships

Throw up hands and
break ties

BGP Route Processing

Best	 Route	
	 	 SelecBon	 	

Apply	 Import	
	 	 Policies	

Best	 Route	 	
	 	 Table	

Apply	 Export	
	 	 Policies	

Install	 forwarding	
Entries	 for	 best	

Routes.	 	

Receive
BGP

Updates

Best
Routes

Transmit
BGP

Updates

Apply Policy =
filter routes &

tweak attributes

Based on
Attribute
Values

IP	 Forwarding	 Table	

Apply Policy =
filter routes &

tweak attributes

 Open ended programming.
Constrained only by vendor configuration language

BGP Next Hop Attribute

Every time a route announcement crosses an AS boundary, the Next Hop
attribute is changed to the IP address of the border router that announced

the route.

AS 6431
AT&T Research

135.207.0.0/16
Next Hop = 12.125.133.90

AS 7018
AT&T

AS 12654
RIPE NCC
RIS project

12.125.133.90	

135.207.0.0/16
Next Hop = 12.127.0.121

12.127.0.121	

Forwarding Table

Forwarding Table

Join EGP with IGP For
Connectivity

AS 1 AS 2
192.0.2.1	

135.207.0.0/16	

10.10.10.10	

EGP

192.0.2.1	 135.207.0.0/1
6	

des<na<on	 next	 hop	

10.10.10.10	 192.0.2.0/30	

des<na<on	 next	 hop	

135.207.0.0/16
Next Hop = 192.0.2.1

192.0.2.0/30	

135.207.0.0/1
6	

des<na<on	 next	 hop	

10.10.10.10	

+

192.0.2.0/30	 10.10.10.10	

Implementing Customer/
Provider and Peer/Peer

relationships

•  Enforce transit relationships
– Outbound route filtering

•  Enforce order of route
preference
– provider < peer < customer

Two parts:

Import Routes

From
peer

From
peer

From
provider

From
provider

From
customer

From
customer

provider route customer route peer route ISP route

Export Routes

To
peer

To
peer

To
customer

To
customer

To
provider

From
provider

provider route customer route peer route ISP route

filters
block

How Can Routes be
Colored?

BGP Communities! A community value is 32 bits

By convention,
first 16 bits is

ASN indicating
who is giving it

an interpretation

community
number

Very powerful
BECAUSE it

has no (predefined)
meaning

Community Attribute = a list of community values.
(So one route can belong to multiple communities)

RFC 1997 (August 1996)

Used for signally
within and between

ASes

Two reserved communities

 no_advertise 0xFFFFFF02: don’t pass to BGP neighbors

no_export = 0xFFFFFF01: don’t export out of AS

Communities Example

•  1:100
–  Customer routes

•  1:200
–  Peer routes

•  1:300
–  Provider Routes

•  To Customers
–  1:100, 1:200,

1:300
•  To Peers

–  1:100
•  To Providers

–  1:100

AS 1

Import Export

So Many Choices

Which route should
Frank pick to 13.13.0.0./16?

AS 1

AS 2

AS 4

AS 3

13.13.0.0/16

Frank’s
Internet Barn

peer peer

customer provider

LOCAL PREFERENCE

AS 1 AS 2

AS 4

AS 3

13.13.0.0/16

local pref = 80

local pref = 100

local pref = 90

Higher Local
preference values
are more preferred

Local
preference
used ONLY

in iBGP

