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An IGP control-plane computes 
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IGP shortest paths are translated into 
forwarding paths on the data-plane 
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In Fibbing, operators can ask 
the controller to modify forwarding paths 
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The Fibbing controller injects information on 
fake nodes and links to the IGP control-plane 
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Informations are flooded 
to all IGP routers in the network 

node V1, 
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Fibbing messages augment  
the topology seen by all IGP routers 
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Augmented topologies translate 
into new control-plane paths 
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Augmented topologies translate 
into new data-plane paths 
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Theorem 

Fibbing can program 
arbitrary per-destination paths 

Any set of forwarding DAGs can be enforced by Fibbing 



Fibbing can program 
arbitrary per-destination paths 

paths to the same destination do not create loops 

Theorem Any set of forwarding DAGs can be enforced by Fibbing 



By achieving full per-destination control, 
Fibbing is highly flexible 

!   fine-grained traffic steering (middleboxing) 

!   per-destination load balancing (traffic engineering) 

!   backup paths provisioning (failure recovery) 

Theorem Any set of forwarding DAGs can be enforced by Fibbing 
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We implemented a Fibbing controller 
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We also propose algorithms 
to compute augmented topologies of limited size  
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For our Fibbing controller, we propose 
algorithms to be run in sequence 
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Consider the following example, 
with a drastic forwarding path change 
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Simple adds one fake node for every 
router that has to change next-hop 
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Merger	  iteraBvely	  merges	  fake	  nodes	  
(starBng	  from	  Simple’s	  output)	  
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Merger	  iteraBvely	  merges	  fake	  nodes	  
(starBng	  from	  Simple’s	  output)	  



This way, Merger programs multiple 
next-hop changes with a single fake node 
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Previous SDN solutions (e.g., RCP) cannot do the same 

This way, Merger programs multiple 
next-hop changes with a single fake node 



Simple and Merger achieve different trade-offs 
in terms of time and optimization efficiency 

and up to 90% with cross-destination optimization  

!   Merger reduces fake nodes by up to 50% 

Merger takes 0.1 seconds 
!   Simple runs in milliseconds 

We ran experiments on Rocketfuel topologies, 

with at least 25% of nodes changing next-hops  



We implemented the machinery to 
listen to OSPF and augment the topology 
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Experiments on real routers show that 
Fibbing has very limited impact on routers 
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Experiments on real routers show that 
Fibbing has very limited impact on routers 
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Experiments on real routers show that 
Fibbing does not impact IGP convergence 

Upon link failure, we registered no difference in the 

(sub-second) IGP convergence with 

!   up to 100,000 fake nodes and destinations  

!   no fake nodes 



Experiments on real routers show that 
Fibbing achieves fast forwarding changes 
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•  Ahlswede et al. – Butterfly Example in “Network 
Information Flow”, IEEE Transactions on Information 
Theory, 2000 

 

 

Network Coding – Background 

Allowing routers to mix the bits in 
forwarding messages can increase 

network throughput 
(Achieves multicast capacity) 

This is the basis for Network Coding! 



Chronology of Research 
•  Li et al. – Showed that linear codes are sufficient to achieve 

maximum capacity bounds (2003) 
•  Koetter and Medard – Polynomial time algorithms for 

encoding and decoding (2003) 
•  Ho et al. – Extended previous results to a randomized 

setting (2003) 
•  Studies on wireless network coding began in 2003 as well! 

(Shows that it was a high interest research area) 
•  More work on wireless network coding with multicast 

models (2004)  
•  Lun et al. – Problem of minimizing communication cost in 

wireless networks can be formulated linearly (2005) – Used 
multicast model as well! 
So all the previous work was theoretical and assumes multicast traffic. 

•  Authors introduced the idea of opportunistic coding for 
wireless environments in 2005 

Why is it different? 
They address the common case of unicast traffic, bursty flows and other 

practical issues. 



Current Paper 
•  Explores the utility of network coding in 

improving the throughput of wireless 
networks. 

•  Authors extend the theory of their 
opportunistic coding architecture (COPE) 
by application in a practical scenario. 

•  Presents the first system architecture for 
wireless network coding. 

•  Implements the design, creating the first 
deployment of network coding in a 
wireless network. 

•  Studies the performance of COPE. 



COPE 
•  What does being opportunistic mean? 
 Each node relies on local information to detect and exploit 
coding opportunities when they arise, so as to maximize 
throughput. 

•  COPE inserts an opportunistic coding 
shim between the IP and MAC layers. 

•  Enables forwarding of multiple packets 
in a single transmission. 

•  Based on the fact that intelligently 
mixing packets increases network 
throughput. 



Design Principles: 
– COPE embraces the broadcast 

nature of the wireless channel. 
– COPE employs network coding. 



Inside COPE 

COPE incorporates three main 
techniques: 
– Opportunistic Listening 
– Opportunistic Coding 
–  Learning Neighbor State 



Opportunistic Listening 
•  Nodes are equipped with omni-

directional antennae 
•  COPE sets the nodes to a 

promiscuous mode. 
•  The nodes store the overheard 

packets for a limited period T (0.5 s) 
•  Each node also broadcasts reception 

reports to tell it’s neighbors which 
packets it has stored. 



Opportunistic Coding 

Rule: 
“A node should aim to maximize 

the number of native packets 
delivered in a single 
transmission, while ensuring 
that each intended next-hop 
has enough information to 
decode it’s native packet.” 



Issues: 
– Unneeded data should not be 

forwarded to areas where there is no 
interested receiver, wasting capacity. 

– The coding algorithm should ensure 
that all next-hops of an encoded 
packet can decode their corresponding 
native packets. 

Rule:  To transmit n packets p1 … pn to n next-hops 
r1 … rn, a node can XOR the n packets together only 
if each next-hop ri has all n - 1 packets pj for j ≠ i 



Learning Neighbor State 
•  A node cannot solely rely on reception reports, and may need 

to guess whether a neighbor has a particular packet. 
•  To guess intelligently, we can leverage routing computations. 

 The ETX metric computes the delivery probability between 
nodes and assigns each link a weight of 1/(delivery_probability) 

•  In the absence of deterministic information, 
 COPE estimates the probability that a particular neighbor has a 
packet, as the delivery probability of the link between the 
packet’s previous hop and the neighbor. 

A B C
Probability that 

C has the 
packet = p 

Delivery probability = pAC 

“p increases with pAC” 



Understanding COPE’s Gains 
Coding Gain 

–  Defined as the ratio of no. of transmissions 
required without COPE to the no. of 
transmissions used by COPE to deliver the 
same set of packets. 

–  By definition, this number is greater than 1. 
 (4/3 for Alice-Bob Example) 

–  Theorem: In the absence of opportunistic 
listening, COPE’s maximum coding gain is 2, 
and it is achievable. 

Coding Gain achievable = 
2N/(N+1) 

 
This value tends to 2 as 

N grows. 



In the presence of opportunistic listening 
 
 
 
 
 
 
 

Achievable 
Coding Gain 

= 1.33 

Achievable 
Coding Gain 

= 1.6 



Understanding COPE’s Gains 
Coding + MAC Gain 

–  It was observed that throughput improvement 
using COPE greatly exceeded the coding gain. 

–  Since it tries to be fair, the MAC layer divides the 
bandwidth equally between contending nodes. 

–  COPE allows the bottleneck nodes to XOR pairs of 
packets and drain them quicker, increasing the 
throughput of the network. 

–  For topologies with a single bottleneck, the Coding 
+ MAC Gain is the ratio if the bottleneck’s draining 
rate with COPE to it’s draining rate without COPE. 



�  Theorem: In the absence of 
opportunistic listening, COPE’s 
maximum Coding + MAC gain is 2, 
and it is achievable. 
 Node can XOR at most 2 packets together, and the 
bottleneck can drain at almost twice as fast, bounding the 
Coding + MAC Gain at 2. 

 

�  Theorem: In the presence of 
opportunistic listening, COPE’s 
maximum Coding + MAC gain is 
unbounded. For N edge 

nodes, the 
bottleneck node 
XORs N packets 
together, and the 
queue drains N 
times faster. 

 
The Gain is 
unbounded. 



•  Theoretical gains: 

•  Important to note that: 
– The gains in practice tend to be 

lower due to non-availability of 
coding opportunities, packet header 
overheads, medium losses, etc., 

– But COPE does increase actual 
information rate of the medium far 
above the bit rate. 



The	  Problem	  

P3	   P2	   P1	  

Sender	  Buffer	  

Network 

Receiver	  Buffer	  

P1	  +	  P2	  

P2	  +	  P3	  

P1	  +	  P2	  +	  P3	  

Can’t	  acknowledge	  a	  packet	  unBl	  you	  can	  decode.	  
Usually,	  decoding	  requires	  a	  number	  of	  packets.	  
Code	  /	  acknowledge	  over	  small	  blocks	  to	  avoid	  	  
delay,	  manage	  complexity.	  



Compare	  to	  ARQ	  

•  Retransmit	  lost	  packets	  
•  Low	  delay,	  queue	  size	  
•  Streaming,	  not	  blocks	  
•  Not	  efficient	  on	  broadcast	  

links	  
•  Link-‐by-‐link	  ARQ	  does	  not	  

achieve	  network	  mulBcast	  
capacity.	  

•  Transmit	  linear	  
combinaBons	  of	  packets	  

•  Achieves	  min-‐cut	  
mulBcast	  capacity	  

•  Extends	  to	  broadcast	  links	  
•  CongesBon	  control	  

requires	  feedback	  
•  Decoding	  delay:	  block-‐

based	  

Context:	  	  	  Reliable	  communica1on	  over	  a	  (wireless)	  network	  of	  packet	  erasure	  channels	  

ARQ	   Network	  Coding	  



Goals	  

•  Devise	  a	  system	  that	  behaves	  as	  close	  to	  TCP	  as	  
possible,	  while	  masking	  non-‐congesBon	  wireless	  
losses	  from	  congesBon	  control	  where	  possible.	  
–  Standard	  TCP/wireless	  problem.	  

•  Stream-‐based,	  not	  block-‐based.	  
•  Low	  delay.	  
•  Focus	  on	  wireless	  secng.	  

– Where	  network	  coding	  can	  offer	  biggest	  benefits.	  
–  Not	  necessarily	  a	  universal	  soluBon.	  



Main	  Idea	  :	  Coding	  ACKs	  

•  What	  does	  it	  mean	  to	  “see”	  a	  packet?	  
•  Standard	  noBon:	  	  we	  have	  a	  copy	  of	  the	  packet.	  

–  Doesn’t	  work	  well	  in	  coding	  secng.	  
–  Implies	  must	  decode	  to	  see	  a	  packet.	  

•  New	  definiBon:	  	  we	  have	  a	  packet	  that	  will	  allow	  us	  
to	  decode	  once	  enough	  useful	  packets	  arrive.	  
–  Packet	  is	  useful	  if	  linearly	  independent.	  
– When	  enough	  useful	  packets	  arrive	  can	  decode.	  



Coding	  ACKs	  

•  For	  a	  message	  of	  size	  n,	  need	  n	  useful	  packets.	  
•  Each	  coded	  packet	  corresponds	  to	  a	  degree	  of	  
freedom.	  

•  Instead	  of	  acknowledging	  individual	  packets,	  
acknowledge	  newly	  arrived	  degrees	  of	  
freedom.	  



Coding	  ACKs	  
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Original	  message	  :	  p1,	  p2,	  p3…	  	  
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When	  c1	  comes	  in,	  you’ve	  “seen”	  packet	  1;	  eventually	  	  
you’ll	  be	  able	  to	  decode	  it.	  	  And	  so	  on…	  



Coding	  ACKs	  
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Use	  Gaussian	  eliminaBon	  as	  packets	  arrive	  to	  check	  for	  
a	  new	  seen	  packet.	  



Formal	  DefiniBon	  

•  A	  node	  has	  seen	  a	  packet	  pk	  if	  it	  can	  compute	  
a	  linear	  combinaBon	  pk+q	  where	  q	  is	  a	  linear	  
combinaBon	  of	  packets	  with	  index	  larger	  than	  
k.	  

•  When	  all	  packets	  have	  been	  seen,	  decoding	  is	  
possible.	  



Layered	  Architecture	  

Data	   ACK	  

Application 

TCP 

MAC / PHY 

Application 

TCP 

MAC / PHY 

SOURCE	  SIDE	   RECEIVER	  SIDE	  

IP IP 

Physical	  medium	  

Eg.	  HTTP,	  FTP	  

Transport	  layer:	  Reliability,	  	  
flow	  and	  congesBon	  control	  

Network	  layer	  (RouBng)	  

Medium	  access,	  
channel	  coding	  



TCP	  using	  Network	  Coding	  

Data	   ACK	  

ApplicaBon	  

TCP	  

IP	  

ApplicaBon	  

TCP	  

IP	  

SOURCE	  SIDE	   RECEIVER	  SIDE	  

Network	  coding	  layer	   Network	  coding	  layer	  

Lower	  layers	  



The	  Sender	  Module	  

•  Buffers	  packets	  in	  the	  current	  window	  from	  
the	  TCP	  source,	  sends	  linear	  combinaBons.	  

•  Need	  for	  redundancy	  factor	  R.	  
– Sending	  rate	  should	  account	  for	  loss	  rate.	  
– Send	  a	  constant	  factor	  more	  packets.	  
– Open	  issue	  :	  determine	  R	  dynamically?	  



Redundancy	  	  

•  Too	  low	  R	  
– TCP	  Bmes	  out	  and	  backs	  off	  drasBcally.	  

•  Too	  high	  R	  
– Losses	  recovered	  –	  TCP	  window	  advances	  
smoothly.	  

– Throughput	  reduced	  due	  to	  low	  code	  rate.	  
– CongesBon	  increases.	  

•  Right	  R	  is	  1/(1-p), where p is the loss rate.	




BGP-4 
•  BGP = Border Gateway Protocol  
•  Is a Policy-Based routing protocol  

•  Is the de facto EGP of today’s global Internet 

•  Relatively simple protocol, but configuration is complex and the 
entire world can see, and be impacted by, your mistakes.  

•  1989 : BGP-1 [RFC 1105] 
– Replacement for EGP (1984, RFC 904)  

•  1990 : BGP-2 [RFC 1163] 
•  1991 : BGP-3 [RFC 1267] 
•  1995 : BGP-4 [RFC 1771]  

– Support for Classless Interdomain Routing (CIDR)  



BGP Operations (Simplified)  
Establish session on 

     TCP port 179 

        Exchange all 
        active routes  

Exchange incremental 
           updates 

AS1 

AS2 

While connection  
is ALIVE exchange 

route UPDATE messages 

BGP session 



Two Types of BGP Neighbor Relationships 

•  External Neighbor (eBGP) in a different 
Autonomous Systems  

•  Internal Neighbor (iBGP) in the same 
Autonomous System  

AS1 

AS2 

eBGP	  

iBGP	  

iBGP is routed (using IGP!)  



iBGP Mesh Does Not Scale 
eBGP update 

iBGP updates 

•  N border routers means N(N-1)/2 
peering sessions  

•  Each router must have N-1 iBGP 
sessions configured 

•  The addition a single iBGP speaker 
requires configuration changes to all 

other iBGP speakers 

•  Size of iBGP routing table can be 
order N larger than number of best 

routes (remember alternate routes!) 

•  Each router has to listen to update 
noise from each neighbor 

Currently four solutions:  
(0)  Buy bigger routers! 

(1)  Break AS into smaller ASes 
(2)  BGP Route reflectors 
(3)  BGP confederations 



•  Route reflectors can pass on 
iBGP updates to clients 

•  Each RR passes along ONLY 
best routes  

•  ORIGINATOR_ID and 
CLUSTER_LIST attributes are 

needed to avoid loops 
RR RR 

RR 

Route Reflectors 



BGP Confederations 

AS 65501 

AS 65502 

AS 65503 AS 65504 
AS 65500 

AS 1 

From the outside, this looks like AS 1 

Confederation eBGP (between member ASes) preserves  
LOCAL_PREF, MED, and BGP NEXTHOP.  



Four Types of BGP Messages 

•  Open : Establish a peering session.  
•  Keep Alive : Handshake at regular intervals.  
•  Notification : Shuts down a peering session.  
•  Update : Announcing new routes or 

withdrawing previously announced routes.   

           announcement  
                     =  

   prefix + attributes values 



BGP Attributes 
 
 

Value      Code                              Reference 
-----      --------------------------------- --------- 
   1       ORIGIN                            [RFC1771] 
   2       AS_PATH                           [RFC1771] 
   3       NEXT_HOP                          [RFC1771] 
   4       MULTI_EXIT_DISC                   [RFC1771] 
   5       LOCAL_PREF                        [RFC1771] 
   6       ATOMIC_AGGREGATE                  [RFC1771] 
   7       AGGREGATOR                        [RFC1771] 
   8       COMMUNITY                         [RFC1997] 
   9       ORIGINATOR_ID                     [RFC2796] 
  10       CLUSTER_LIST                      [RFC2796] 
  11       DPA                                  [Chen] 
  12       ADVERTISER                        [RFC1863] 
  13       RCID_PATH / CLUSTER_ID            [RFC1863] 
  14       MP_REACH_NLRI                     [RFC2283]   
  15       MP_UNREACH_NLRI                   [RFC2283]   
  16       EXTENDED COMMUNITIES                [Rosen] 

 ... 
 255       reserved for development 

 

From IANA: http://www.iana.org/assignments/bgp-parameters 

Most 
important 
attributes 

Not all attributes 
need to be present in 
every announcement  



Attributes are Used to Select 
Best Routes  

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

Given multiple 
routes to the same 

prefix, a BGP speaker 
must pick at most 

one best route 
 

(Note: it could reject  
them all!) 



Route Selection Summary 

Highest Local Preference 

Shortest ASPATH 

Lowest MED 

i-BGP < e-BGP 

Lowest IGP cost  
to BGP egress 

Lowest router ID 

traffic engineering  

Enforce relationships 

Throw up hands and 
break ties 



BGP Route Processing 

Best	  Route	  
	  	  SelecBon	  	  

Apply	  Import	  
	  	  Policies	  

Best	  Route	  	  
	  	  Table	  

Apply	  Export	  
	  	  Policies	  

Install	  forwarding	  
Entries	  for	  best	  

Routes.	  	  

Receive 
BGP 

Updates 

Best 
Routes 

Transmit 
BGP  

Updates 

Apply Policy = 
filter routes &  

tweak attributes 

Based on 
Attribute 
Values 

IP	  Forwarding	  Table	  

Apply Policy = 
filter routes &  

tweak attributes 

                 Open ended programming. 
Constrained only by vendor configuration language 



BGP Next Hop Attribute 

Every time a route announcement crosses an AS boundary, the Next Hop 
attribute is changed to the IP address of the border router that announced 

the route.  

AS 6431 
AT&T Research 

135.207.0.0/16 
Next  Hop = 12.125.133.90 

AS 7018 
AT&T  

AS 12654 
RIPE NCC 
RIS project  

12.125.133.90	  

135.207.0.0/16 
Next  Hop = 12.127.0.121 

12.127.0.121	  



Forwarding Table 

Forwarding Table 

Join EGP with IGP For 
Connectivity 

AS 1 AS 2 
192.0.2.1	  

135.207.0.0/16	  

10.10.10.10	  

EGP 

192.0.2.1	  135.207.0.0/1
6	  

des<na<on	   next	  hop	  

10.10.10.10	  192.0.2.0/30	  

des<na<on	   next	  hop	  

135.207.0.0/16 
Next  Hop = 192.0.2.1 

192.0.2.0/30	  

135.207.0.0/1
6	  

des<na<on	   next	  hop	  

10.10.10.10	  

+ 

192.0.2.0/30	   10.10.10.10	  



Implementing Customer/
Provider and Peer/Peer 

relationships 

•  Enforce  transit relationships  
– Outbound route filtering  

•  Enforce order of route 
preference 
– provider < peer < customer 

 
 

Two parts:  



Import Routes  

From 
peer 

From 
peer 

From 
provider 

From 
provider 

From  
customer 

From  
customer 

provider route customer route peer route ISP route 



Export Routes  

To 
peer 

To 
peer 

To 
customer 

To 
customer 

To 
provider 

From  
provider 

provider route customer route peer route ISP route 

filters 
block  



How Can Routes be 
Colored? 

BGP Communities! A community value is 32 bits 

By convention,  
first 16 bits is  

ASN indicating  
who is giving it 

an interpretation 

community 
number 

Very powerful  
BECAUSE it  

has no (predefined) 
meaning 

Community Attribute = a list of community values. 
(So one route can belong to multiple communities) 

RFC 1997 (August 1996) 

Used for signally 
within and between 

ASes  

Two reserved communities 
 
 no_advertise 0xFFFFFF02: don’t pass to BGP neighbors 

no_export = 0xFFFFFF01: don’t export out of AS 



Communities Example 

•  1:100 
–  Customer routes 

•  1:200 
–  Peer routes 

•  1:300 
–  Provider Routes 

•  To Customers 
–  1:100, 1:200, 

1:300 
•  To Peers 

–  1:100 
•  To Providers 

–  1:100 

AS 1 

Import Export 



So Many Choices 

Which route should 
Frank pick to 13.13.0.0./16?  

AS 1 

AS 2 

AS 4 

AS 3 

13.13.0.0/16 

Frank’s  
Internet Barn 

peer peer 

customer provider 



LOCAL PREFERENCE 

AS 1 AS 2 

AS 4 

AS 3 

13.13.0.0/16 

local pref = 80 

local pref = 100 

local pref = 90 

Higher Local 
preference values 
are more preferred 

Local  
preference  
used ONLY  

in iBGP 


