
1 . 1

[12] CASE STUDY: WINDOWS NT

1 . 2

OUTLINE
Introduction
Design Principles
Design

Structural
HAL, Kernel
Processes and Threads, Scheduling
Environmental Subsystems

Objects
Manager, Namespace
Other Managers: Process, VM, Security Reference, IO, Cache

Filesystems
FAT16, FAT32, NTFS
NTFS: Recovery, Fault Tolerance, Other Features

Summary

2 . 1

INTRODUCTION
Introduction
Design Principles
Design
Objects
Filesystems
Summary

2 . 2

PRE-HISTORY
Microsoft and IBM co-developed OS/2 — in hand-written 80286 assembly! As a
result, portability and maintainability weren't really strong features so in 1988
Microsoft decided to develop a "new technology" portable OS supporting both OS/2
and POSIX APIs

Goal: A 32-bit preemptive multitasking operating system for modern
microprocessors

Originally, NT was supposed to use the OS/2 API as its native environment, but
during development NT was changed to use the Win32 API, reflecting the
popularity of Windows 3.0

2 . 3

NEW TECHNOLOGY
After OS/2, MS decide they need "New Technology":

1988: Dave Cutler recruited from DEC
1989: team (~10 people) starts work on a new OS with a micro-kernel
architecture
Team grew to about 40 by the end, with overall effort of 100 person-years
July 1993: first version (3.1) introduced. Sucked
September 1994: NT 3.5 released, providing mainly size and performance
optimisations
May 1995: NT 3.51 with support for the Power PC, and more performance tweaks
July 1996: NT 4.0 with "new" (Windows 95) look 'n' feel. Saw some desktop use
but mostly limited to servers. Various functions pushed back into the kernel,
notably graphics rendering

2 . 4

CONTINUED EVOLUTION
Feb 2000: NT 5.0 aka Windows 2000. Borrows from windows 98 look 'n' feel.
Provides server and workstation versions, latter of which starts to get wider use.
Big push to finally kill DOS/Win9x family that fails due to internal politicking
Oct 2001: Windows XP (NT 5.1) launched with home and professional editions.
Finally kills Win9x. Several "editions" including Media Center [2003], 64-bit
[2005]) and Service Packs (SP1, SP2). 45 million lines of code
2003: Server product 2K3 (NT 5.2), basically the same modulo registry tweaks,
support contract and of course cost. Comes in many editions
2006: Windows Vista (NT 6.0). More security, more design, new APIs
2009: Windows 7 (NT 7.0). Focused more on laptops and touch devices
2012: Windows 8 (NT 8.0). Radical new UI with tiles, focused on touch at least as
much as supporting mouse/keyboard
2013: Windows 8.1 (NT 8.1). Back off the UI a bit, more customisation
2015: Windows 10 (NT 10.0). More connectivity, for and between devices

3 . 1

DESIGN PRINCIPLES
Introduction
Design Principles
Design
Objects
Filesystems
Summary

3 . 2

KEY GOALS
Portability: hence written in C/C++ with the HAL to hide low-level details
Security: new uniform access model implemented via object manager, and
certified to US DOD level C2
POSIX compliance: believed this would win sales, but desire to support both
POSIX and OS/2 (later WIN32) impacted overall design
Multiprocessor support: most small OSs didn't have this, and traditional kernel
schemes are less well suited
Extensibility: because, sometimes, we get things wrong; coupled with the above
point, most directly led to the use of a micro-kernel design
International support: sell to a bigger market, meant adopting UNICODE as
fundamental internal naming scheme
Compatibility with MS-DOS/Windows: don't want to lose customers, but achieved
partial compatibility only...

3 . 3

OTHER GOALS
Reliability: NT uses hardware protection for virtual memory and software
protection mechanisms for operationg system resources
Compatibility: applications that follow the IEEE 1003.1 (POSIX) standard can be
compiled to run on NT without changing the source code
Performance: NT subsystems can communicate with one another via high-
performance message passing
Preemption: of low priority threads enable sthe system to respond quickly to
external events
Designed for symmetrical multiprocessing

3 . 4

THE RESULT
Development of a system which was:

Written in high-level languages (C and C++)
Hence portable to other machines, with
Processor-dependent code isolated in a dynamic link library (HAL)

Based around a micro-kernel
Hence extensibility and multiprocessor support

Constructed in a layered/modular fashion
E.g. environmental subsystems

4 . 1

DESIGN
Introduction
Design Principles
Design

Structural
HAL, Kernel
Processes and Threads, Scheduling
Environmental Subsystems

Objects
Filesystems
Summary

4 . 2

STRUCTURAL OVERVIEW
Both layered and modular ("layered
system of modules")

Interactions at top are message
passing (IPC/LPC); next down is system
calls (traps); below is direct invocation

Note that this is a static representation;
in practice subsystems are DLLs (plus a
few services); also have various threads
running below

Kernel Mode: HAL, Kernel, & Executive

User Mode: environmental subsystems,
protection subsystem

4 . 3

KERNEL MODE
Hardware Abstraction Layer (HAL): Layer of software (HAL.DELL) hiding hardware
details, e.g., interrupt mechanisms, DMA controllers, multiprocessor communication
mechanisms. Many implementations to the same interface

Kernel: Foundation for the executive and the subsystems, its execution is never
preempted (it can be interrupted, but will always resume)

Four main responsibilities:

1. CPU scheduling: hybrid dynamic/static priority scheduling
2. Interrupt and exception handling: kernel provides trap handling when exceptions

and interrupts are generated by hardware or software. If the trap handler can't
handle the exception, the kernel's exception dispatcher does. Handle interrupts
by either ISR or internal kernel routine

3. Low-level processor synchronisation: spin locks that reside in global memory to
achieve multiprocessor mutual exclusion, normally provided by HAL

4. Recovery after a power failure

4 . 4

KERNEL
Kernel is object oriented; all objects either dispatcher objects or control objects

Dispatcher objects have to do with dispatching and synchronisation, i.e. they are
active or temporal things like

Threads: basic unit of [CPU] dispatching
Events: record event occurrences & synchronise
Timer: tracks time, signals "time-outs"
Mutexes: mutual exclusion in kernel mode
Mutants: as above, but work in user mode too
Semaphores: does what it says on the tin

Control objects represent everything else, e.g.,
Process: representing VAS and miscellaneous other bits
Interrupt: binds ISR to an interrupt source [HAL]

4 . 5

PROCESSES AND THREADS
NT splits the virtual processor into two parts:

A process, the unit of resource ownership. Each has:
A security token
A virtual address space
A set of resources (object handles)
One or more threads

A thread, the unit of dispatching. Each has:
A scheduling state (ready, running, etc.)
Other scheduling parameters (priority, etc.)
A context slot
An associated process (generally)

Threads have one of six states: ready, standby, running, waiting, transition,
terminated. They are co-operative: all in a process share the same address space &
object handles; lightweight: less work to create/delete than processes (shared
virtual addresss spaces)

4 . 6

CPU SCHEDULING
A process starts via the CreateProcess routine, loading any dynamic link
libraries that are used by the process and creating a primary thread. Additional
threads can be created via the CreateThread function

Hybrid static/dynamic priority scheduling:

Priorities 16—31: "real time" (static) priority
Priorities 1—15: "variable" (dynamic) priority
Priority 0 is reserved for the zero page thread

Default quantum 2 ticks (20ms) on Workstation, 12 ticks (120ms) on Server∼ ∼

4 . 7

CPU SCHEDULING
Some very strange things to remember:

When thread blocks, it loses 1/3 tick from quantum
When thread preempted, moves to head of own run queue

Threads have base and current (base) priorities.≥

On return from IO, current priority is boosted by driver-specific amount.
Subsequently, current priority decays by 1 after each completed quantum.
Also get boost for GUI threads awaiting input: current priority boosted to 14 for
one quantum (but quantum also doubled)
Yes, this is true

On Workstation also get quantum stretching:

"... performance boost for the foreground application" (window with focus)
Foreground thread gets double or triple quantum

4 . 8

ENVIRONMENTAL SUBSYSTEMS
User-mode processes layered over the native NT executive services to enable NT
to run programs developed for other operating systems
NT uses the Win32 subsystem as the main operating environment; Win32 is used
to start all processes. It also provides all the keyboard, mouse and graphical
display capabilities
MS-DOS environment is provided by a Win32 application called the virtual dos
machine (VDM), a user-mode process that is paged and dispatched like any other
NT thread
16-Bit Windows Environment:

Provided by a VDM that incorporates Windows on Windows
Provides the Windows 3.1 kernel routines and stub routings for window
manager and GDI functions

The POSIX subsystem is designed to run POSIX applications following the
POSIX.1 standard which is based on the Unix model

5 . 1

OBJECTS
Introduction
Design Principles
Design
Objects

Manager, Namespace
Other Managers: Process, VM, Security Reference, IO, Cache

Filesystems
Summary

5 . 2

OBJECTS AND MANAGERS

In Unix, everything is a file — in NT, everything is an object

Every resource in NT is represented by an (executive) object
Kernel objects are re-exported at executive level by encapsulation
Objects comprise a header and a body, and have a type (approximately 15 types
in total)

5 . 3

THE OBJECT MANAGER
Responsible for:

Creating and tracking objects and object handles. An object handle represents an
open object and is process-local, somewhat analogous to an fd
Performing security checks

Objects are manipulated by a standard set of methods, namely create, open,
close, delete, query name, parse and security. These are usually per
type ("class") and hence implemented via indirection through the associated type
object. Not all will be valid (specified) for all object types

handle = open(objectname, accessmode)
result = service(handle, arguments)

A process gets an object handle by creating an object, by opening an existing
one, by receiving a duplicated handle from another process, or by inheriting a
handle from a parent process

5 . 4

THE OBJECT NAMESPACE
Objects (optionally) have a name, temporary
or permanent, given via the NT executive

The Object Manger manages a hierarchical
namespace, shared between all processes.
The namespace is implemented via directory
objects analogous to filesystem directories

Each object is protected by an access control
list. Naming domains (implemented via parse) mean filesystem namespaces can
be integrated

Object names structured like file path names in MS-DOS and Unix. Symbolic link
objects allow multiple names (aliases) for the same object. Modified view presented
at API level: the Win32 model has multiple "root" points (e.g., C:, D:, etc) so even
though was all nice & simple, gets screwed up

5 . 5

PROCESS MANAGER
Provides services for creating, deleting, and using threads and processes. Very
flexible:

No built in concept of parent/child relationships or process hierarchies
Processes and threads treated orthogonally

...thus can support Posix, OS/2 and Win32 models

It's up to environmental subsystem that owns the process to handle any
hierarchical relationships (e.g. inheritance, cascading termination, etc)
E.g., as noted above, in Win32: a process is started via the CreateProcess()
function which loads any dynamic link libraries that are used by the process and
creates a primary thread; additional threads can be created by the
CreateThread() function

5 . 6

VIRTUAL MEMORY MANAGER
Assumes that the underlying hardware supports virtual to physical mapping, a
paging mechanism, transparent cache coherence on multiprocessor systems, and
virtual address aliasing. NT employs paged virtual memory management, The VMM
provides processes with services to:

Allocate and free virtual memory via two step process: reserve a portion of the
process's address space, then commit the allocation by assigning space in the NT
paging file
Modify per-page protections, in one of six states: valid, zeroed, free, standby,
modified and bad
Share portions of memory using section objects (software segments), based
verus non-based, as well as memory-mapped files
A section object is a region of [virtual] memory which can be shared, containing:
max size, page protection, paging file (or mapped file if mmap) and based vs non-
based (meaning does it need to appear at same address in all process address
spaces (based), or not (non-based)?)

∼

5 . 7

SECURITY REFERENCE MANAGER
NT's object-oriented nature enables a uniform mechanism for runtime access and
audit checks

Every time a process opens handle to an object, check that process's security
token and object's ACL
Compare with Unix (filesystem, networking, window system, shared memory, ...)

5 . 8

LOCAL PROCEDURE CALL FACILITY
Local Procedure Call (LPC) (or IPC) passes requests and results between client and
server processes within a single machine

Used to request services from the various NT environmental subsystems
Three variants of LPC channels:
1. small messages (256 bytes): copy messages between processes
2. zero copy: avoid copying large messages by pointing to a shared memory

section object created for the channel
3. quick LPC: used by the graphical display portions of the Win32 subsystem

≤

5 . 9

IO MANAGER

The IO Manager is responsible for file systems, cache management, device drivers

Keeps track of which installable file systems are loaded, manages buffers for IO
requests, and works with VMM to provide memory-mapped files

Controls the NT cache manager, which handles caching for the entire IO system
(ignore network drivers for now)

5 . 10

IO OPERATIONS
Basic model is asynchronous:

Each IO operation explicitly split into a request and a response
IO Request Packet (IRP) used to hold parameters, results, etc.

This allows high levels of flexibility in implementing IO type (can implement
synchronous blocking on top of asynchronous, other way round is not so easy)

Filesystem & device drivers are stackable (plug'n'play)

5 . 11

CACHE MANAGER
Caches "virtual blocks", keeping track of cache "lines" as offsets within a file
rather than a volume — disk layout & volume concept abstracted away

No translation required for cache hit
Can get more intelligent prefetching

Completely unified cache:
Cache "lines" all in virtual address space.
Decouples physical & virtual cache systems: e.g. virtually cache in 256kB
blocks, physically cluster up to 64kB

NT virtual memory manager responsible for actually doing the IO
Allows lots of FS cache when VM system lightly loaded, little when system is
thrashing

NT/2K also provides some user control:
If specify temporary attrib when creating file means it will never be flushed to
disk unless necessary
If specify write through attrib when opening a file means all writes will
synchronously complete

6 . 1

FILESYSTEMS
Introduction
Design Principles
Design
Objects
Filesystems

FAT16, FAT32, NTFS
NTFS: Recovery, Fault Tolerance, Other Features

Summary

6 . 2

FILE SYSTEMS: FAT16

FAT16 (originally just "FAT") is a
floppy disk format from
Microsoft (1977) but was used
for hard-disks up to about 1996.
It's quite a simple file system
which basically uses the
"chaining in a map" technique
described in lectures to manage
files

A file is a linked list of clusters: a cluster is a set of contiguous disk blocks,
. Each entry in the FAT contains either: the index of another entry within the

FAT, or a special value EOF meaning "end of file", or a special value Free meaning
"free". Directory entries contain index into the FAT. FAT16 could only handle
partitions up to () bytes means a max 2GB partition with 32kB clusters (and
big cluster size is bad)

2n

n ≥ 0

× c216

6 . 3

FILE SYSTEMS: FAT32
Obvious extetension: instead of using 2 bytes per entry, FAT32 uses 4 bytes per
entry, so can support e.g. 8Gb partition with 4kB clusters
Further enhancements with FAT32 include:

Can locate the root directory anywhere on the partition (in FAT16, the root
directory had to immediately follow the FAT(s))
Can use the backup copy of the FAT instead of the default (more fault
tolerant)
Improved support for demand paged executables (consider the 4kB default
cluster size)
VFAT on top of FAT32 does long name support: unicode strings of up to 256
characters
Want to keep same directory entry structure for compatibility with, e.g., DOS
so use multiple directory entries to contain successive parts of name
Abuse V attribute to avoid listing these

Still pretty primitive...

6 . 4

FILESYSTEMS: NTFS

Fundamental structure of NTFS is a volume:

Based on a logical disk partition
May occupy a portion of a disk, and entire disk, or span across several disks

6 . 5

NTFS FORMAT
NTFS uses clusters as the underlying unit of disk allocation:

A cluster is a number of disk sectors that is a power of two
Because the cluster size is smaller than for the 16-bit FAT file system, the
amount of internal fragmentation is reduced
NTFS uses logical cluster numbers (LCNs) as disk addresses
The NTFS name space is organized by a hierarchy of directories; the index root
contains the top level of the B+ tree

An array of file records is stored in a special file called the Master File Table (MFT),
indexed by a file reference (a 64-bit unique identifier for a file). A file itself is a
structured object consisting of set of attribute/value pairs of variable length:

Each file on an NTFS volume has a unique ID called a file reference: a 64-bit
quantity that consists of a 16-bit file number and a 48-bit sequence number
used to perform internal consistency checks
MFT indexed by file reference to get file record

6 . 6

NTFS: RECOVERY
To aid recovery, all file system data structure updates are performed inside
transactions:

Before a data structure is altered, the transaction writes a log record that
contains redo and undo information
After the data structure has been changed, a commit record is written to the log
to signify that the transaction succeeded
After a crash, the file system can be restored to a consistent state by processing
the log records

Does not guarantee that all the user file data can be recovered after a crash — just
that metadata files will reflect some prior consistent state. The log is stored in the
third metadata file at the beginning of the volume ($Logfile):

NT has a generic log file service that could be used by e.g. databases
Makes for far quicker recovery after crash
Modern Unix filesystems eg., ext3, xfs use a similar scheme

6 . 7

NTFS: FAULT TOLERANCE

FtDisk driver allows multiple partitions be combined into a logical volume:

Logically concatenate multiple disks to form a large logical volume, a volume set
Based on the concept of RAID = Redundant Array of Inexpensive Disks
E.g., RAID level 0: interleave multiple partitions round-robin to form a stripe set
E.g., RAID level 1 increases robustness by using a mirror set: two equally sized
partitions on two disks with identical data contents
(Other more complex RAID levels also exist)

FtDisk can also handle sector sparing where the underlying SCSI disk supports it;
if not, NTFS supports s/w cluster remapping

6 . 8

NTFS: OTHER FEATURES (I)
Security

Security derived from the NT object model
Each file object has a security descriptor attribute stored in its MFT record
This atrribute contains the access token of the owner of the file plus an access
control list

Compression

NTFS can divide a file's data into compression units (blocks of 16 contiguous
clusters) and supports sparse files

Clusters with all zeros not allocated or stored
Instead, gaps are left in the sequences of VCNs kept in the file record
When reading a file, gaps cause NTFS to zero-fill that portion of the caller's
buffer

6 . 9

NTFS: OTHER FEATURES (I)
Encryption

Use symmetric key to encrypt files; file attribute holds this key encrypted with
user public key
Problems:

Private key pretty easy to obtain; and
Administrator can bypass entire thing anyhow

7 . 1

SUMMARY
Introduction
Design Principles
Design
Objects
Filesystems
Summary

7 . 2

SUMMARY
Main Windows NT features are:

Layered/modular architecture
Generic use of objects throughout
Multi-threaded processes & multiprocessor support
Asynchronous IO subsystem
NTFS filing system (vastly superior to FAT32)
Preemptive priority-based scheduling

Design essentially more advanced than Unix.

Implementation of lower levels (HAL, kernel & executive) actually rather decent
But: has historically been crippled by

Almost exclusive use of Win32 API
Legacy device drivers (e.g. VXDs)
Lack of demand for "advanced" features

Continues to evolve: Singularity, Drawbridge, Windows 10, ...

8

SUMMARY
Introduction
Design Principles
Design

Structural
HAL, Kernel
Processes and Threads, Scheduling
Environmental Subsystems

Objects
Manager, Namespace
Other Managers: Process, VM, Security Reference, IO, Cache

Filesystems
FAT16, FAT32, NTFS
NTFS: Recovery, Fault Tolerance, Other Features

Summary

