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IO HARDWARE
Very wide range of devices that interact with the computer via input/output (IO):

Human readable: graphical displays, keyboard, mouse, printers
Machine readable: disks, tapes, CD, sensors
Communications: modems, network interfaces, radios

All differ significantly from one another with regard to:

Data rate: orders of magnitude different between keyboard and network
Control complexity: printers much simpler than disks
Transfer unit and direction: blocks vs characters vs frame stores
Data representation
Error handling
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IO SUBSYSTEM
Results in IO subsystem generally being the "messiest" part of the OS

So much variety of devices
So many applications
So many dimensions of variation:

Character-stream or block
Sequential or random-access
Synchronous or asynchronous
Shareable or dedicated
Speed of operation
Read-write, read-only, or write-only

Thus, completely homogenising device API is not possible so OS generally splits
devices into four classes
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DEVICE CLASSES
Block devices (e.g. disk drives, CD)

Commands include read, write, seek
Can have raw access or via (e.g.) filesystem ("cooked") or memory-mapped

Character devices (e.g. keyboards, mice, serial):

Commands include get, put
Layer libraries on top for line editing, etc

Network Devices

Vary enough from block and character devices to get their own interface
Unix and Windows NT use the Berkeley Socket interface

Miscellaneous

Current time, elapsed time, timers, clocks
(Unix) ioctl covers other odd aspects of IO
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OS INTERFACES
Programs access virtual devices:
Terminal streams not terminals,
windows not frame buffer, event
streams not raw mouse, files not disk
blocks, print spooler not parallel port,
transport protocols not raw Ethernet
frames

OS handles the processor-device interface: IO instructions vs memory mapped
devices; IO hardware type (e.g. 10s of serial chips); Polled vs interrupt driven; CPU
interrupt mechanism

Virtual devices then implemented:

In kernel, e.g. files, terminal devices
In daemons, e.g. spooler, windowing
In libraries, e.g. terminal screen control, sockets
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POLLED MODE
Consider a simple device with three registers:
status, data and command. Host can read
and write these via bus. Then polled mode
operation works as follows:

H repeatedly reads device-busy until clear
H sets e.g. write bit in command register, and puts data into data register
H sets command-ready bit in status register
D sees command-ready and sets device-busy
D performs write operation
D clears command-ready & then clears device-busy

What's the problem here?
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INTERRUPT DRIVEN
Rather than polling, processors provide an interrupt mechanism to handle
mismatch between CPU and device speeds:

At end of each instruction, processor checks interrupt line(s) for pending interrupt
Need not be precise (that is, occur at definite point in instruction stream)

If line is asserted then processor:
Saves program counter & processor status
Changes processor mode
Jumps to a well-known address (or contents of a well-known address)

Once interrupt-handling routine finishes, can use e.g. rti instruction to resume
More complex processors may provide:

Multiple priority levels of interrupt
Hardware vectoring of interrupts
Mode dependent registers
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HANDLING INTERRUPTS
Split the implementation into two parts:

At the bottom, the interrupt handler
At the top,  interrupt service routines (ISR; per-device)N

Processor-dependent interrupt handler may:

Save more registers and establish a language environment
Demultiplex interrupt in software and invoke relevant ISR

Device- (not processor-) dependent interrupt service routine will:

For programmed IO device: transfer data and clear interrupt
For DMA devices: acknowledge transfer; request any more pending; signal any
waiting processes; and finally enter the scheduler or return

Question: Who is scheduling whom?

Consider, e.g., network livelock
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BLOCKING VS NON-BLOCKING
From programmer's point of view, IO system calls exhibit one of three kinds of
behaviour:

Blocking: process suspended until IO completed
Easy to use and understand.
Insufficient for some needs.

Nonblocking: IO call returns as much as available
Returns almost immediately with count of bytes read or written (possibly 0)
Can be used by e.g. user interface code
Essentially application-level "polled IO"

Asynchronous: process runs while IO executes
IO subsystem explicitly signals process when its IO request has completed
Most flexible (and potentially efficient)
Also most complex to use
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IO BUFFERING
To cope with various impedance mismatches between devices (speed, transfer size),
OS may buffer data in memory. Various buffering strategies:

Single buffering: OS assigns a system buffer to the user request
Double buffering: process consumes from one buffer while system fills the next
Circular buffering: most useful for bursty IO

Buffering is useful for smoothing peaks and troughs of data rate, but can't help if on
average:

Process demand > data rate (process will spend time waiting), or
Data rate > capability of the system (buffers will fill and data will spill)
Downside: can introduce jitter which is bad for real-time or multimedia

Details often dictated by device type: character devices often by line; network
devices particularly bursty in time and space; block devices make lots of fixed size
transfers and often the major user of IO buffer memory
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SINGLE BUFFERING
OS assigns a single buffer to the user request:

OS performs transfer, moving buffer to userspace when complete (remap or copy)
Request new buffer for more IO, then reschedule application to consume
(readahead or anticipated input)
OS must track buffers
Also affects swap logic: if IO is to same disk as swap device, doesn't make sense
to swap process out as it will be behind the now queued IO request!

A crude performance comparison between no buffering and single buffering:

Let t be time to input block and c be computation time between blocks
Without buffering, execution time between blocks is 
With single buffering, time is  where  is the time to move data
from buffer to user memory
For a terminal: is the buffer a line or a char? depends on user response required

t + c
max(c, t) + m m
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DOUBLE BUFFERING
Often used in video rendering
Rough performance comparison: takes  thus

possible to keep device at full speed if 
while if , process will not have to wait for IO

Prevents need to suspend user process between IO operations
...also explains why two buffers is better than one buffer, twice as big
Need to manage buffers and processes to ensure process doesn't start consuming
from an only partially filled buffer

max(c, t)
c < t

c > t

 

CIRCULAR BUFFERING
Allows consumption from the buffer at a fixed rate, potentially lower than the
burst rate of arriving data
Typically use circular linked list which is equivalent to a FIFO buffer with queue
length
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OTHER ISSUES
Caching: fast memory holding copy of data for both reads and writes; critical to
IO performance
Scheduling: order IO requests in per-device queues; some OSs may even attempt
to be fair
Spooling: queue output for a device, useful if device is "single user" (e.g., printer),
i.e. can serve only one request at a time
Device reservation: system calls for acquiring or releasing exclusive access to a
device (care required)
Error handling: generally get some form of error number or code when request
fails, logged into system error log (e.g., transient write failed, disk full, device
unavailable, ...)
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KERNEL DATA STRUCTURES
To manage all this, the OS kernel must maintain state for IO components:

Open file tables
Network connections
Character device states

Results in many complex and performance criticial data structures to track buffers,
memory allocation, "dirty" blocks

Consider reading a file from disk for a process:

Determine device holding file
Translate name to device representation
Physically read data from disk into buffer
Make data available to requesting process
Return control to process
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PERFORMANCE
IO a major factor in system performance

Demands CPU to execute device driver, kernel IO code, etc.
Context switches due to interrupts
Data copying

Improving performance:

Reduce number of context switches
Reduce data copying
Reduce number of interrupts by using large transfers, smart controllers, polling
Use DMA where possible
Balance CPU, memory, bus and IO performance for highest throughput.

Improving IO performance remains a significant challenge...
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