
1 . 1

[04] SCHEDULING

1 . 2

OUTLINE
Scheduling Concepts

Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria
Utilisation
Throughput
Turnaround, Waiting, Response Times

Scheduling Algorithms
First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

2 . 1

SCHEDULING CONCEPTS
Scheduling Concepts

Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria
Scheduling Algorithms

2 . 2

QUEUES

Job Queue: batch processes awaiting admission
Ready Queue: processes in main memory, ready and waiting to execute
Wait Queue(s): set of processes waiting for an IO device (or for other processes)

Job scheduler selects processes to put onto the ready queue
CPU scheduler selects process to execute next and allocates CPU

2 . 3

PREEMPTIVE VS NON-PREEMPTIVE

OS needs to select a ready process and allocate it the CPU
When?

...a running process blocks (running blocked)

...a process terminates (running exit)
→

→

If scheduling decision is only taken under these conditions, the scheduler is said to
be non-preemptive

...a timer expires (running ready)

...a waiting process unblocks (blocked ready)
→

→

Otherwise it is preemptive

2 . 4

NON-PREEMPTIVE
Simple to implement:

No timers, process gets the CPU for as long as desired
Open to denial-of-service:

Malicious or buggy process can refuse to yield

Typically includes an explicit yield system call or similar, plus implicit yields, e.g.,
performing IO, waiting

Examples: MS-DOS, Windows 3.11

2 . 5

PREEMPTIVE
Solves denial-of-service:

OS can simply preempt long-running process
More complex to implement:

Timer management, concurrency issues

Examples: Just about everything you can think of :)

2 . 6

IDLING
We will usually assume that there's always something ready to run. But what if
there isn't?

This is quite an important question on modern machines where the common case is
>50% idle

2 . 7

IDLING

Three options

1. Busy wait in scheduler, e.g., Windows 9x
Quick response time
Ugly, useless

2 . 8

IDLING

Three options

1. Busy wait in scheduler
2. Halt processor until interrupt arrives, e.g., modern OSs

Saves power (and reduces heat!)
Increases processor lifetime
Might take too long to stop and start

2 . 9

IDLING

Three options

1. Busy wait in scheduler
2. Halt processor until interrupt arrives
3. Invent an idle process, always available to run

Gives uniform structure
Could run housekeeping
Uses some memory
Might slow interrupt response

In general there is a trade-off between responsiveness and usefulness. Consider the
important resources and the system complexity

3 . 1

SCHEDULING CRITERIA
Scheduling Concepts
Scheduling Criteria

Utilisation
Throughput
Turnaround, Waiting, Response Times

Scheduling Algorithms

3 . 2

SCHEDULING CRITERIA
Typically one expects to have more than one option — more than one process is
runnable

On what basis should the CPU scheduler make its decision?

Many different metrics may be used, exhibiting different trade-offs and leading to
different operating regimes

3 . 3

CPU UTILISATION

Maximise the fraction of the time the CPU is actively being
used

Keep the (expensive?) machine as busy as possible

But may penalise processes that do a lot of IO as they appear to result in the CPU
not being used

3 . 4

THROUGHPUT

Maximise the number of that that complete their execution
per time unit

Get useful work completed at the highest rate possible

But may penalise long-running processes as short-run processes will complete
sooner and so are preferred

3 . 5

TURNAROUND TIME

Minimise the amount of time to execute a particular process

Ensures every processes complete in shortest time possible

WAITING TIME

Minimise the amount of time a process has been waiting in
the ready queue

Ensures an interactive system remains as responsive as possible

But may penalise IO heavy processes that spend a long time in the wait queue

3 . 6

RESPONSE TIME

Minimise the amount of time it takes from when a request
was submitted until the first response is produced

Found in time-sharing systems. Ensures system remains as responsive to clients as
possible under load

But may penalise longer running sessions under heavy load

4 . 1

SCHEDULING ALGORITHMS
Scheduling Concepts
Scheduling Criteria
Scheduling Algorithms

First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

4 . 2

FIRST-COME FIRST-SERVED (FCFS)
Simplest possible scheduling algorithm, depending only on the order in which
processes arrive

E.g. given the following demand:

Process Burst Time

P1 25
P2 4
P3 7

4 . 3

EXAMPLE: FCFS
Consider the average waiting time under different arrival orders

, , :P1 P2 P3

Waiting time , ,
Average waiting time:

= 0P1 = 25P2 = 29P3

= 18(0+25+29)
3

, , :P3 P2 P1

Waiting time , ,
Average waiting time:

= 11P1 = 7P2 = 0P3

= 6(11+7+0)
3

Arriving in reverse order is three times as good!

The first case is poor due to the convoy effect: later processes are held up behind
a long-running first process
FCFS is simple but not terribly robust to different arrival processes

4 . 4

SHORTEST JOB FIRST (SJF)
Intuition from FCFS leads us to shortest job first (SJF) scheduling

Associate with each process the length of its next CPU burst

Use these lengths to schedule the process with the shortest time

Use, e.g., FCFS to break ties

4 . 5

EXAMPLE: SJF
Process Arrival Time Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Waiting time for , , , . Average waiting time: = 0P1 = 6P2 = 3P3 = 7P4

= 4(0+6+3+7)
4

SJF is optimal with respect to average waiting time:

It minimises average waiting time for a given set of processes
What might go wrong?

4 . 6

SHORTEST REMAINING-TIME FIRST (SRTF)
Simply a preemptive version of SJF: preempt the running process if a new process
arrives with a CPU burst length less than the remaining time of the current
executing process

4 . 7

EXAMPLE: SRTF
As before:

Process Arrival Time Burst Time

P1 0 7
P2 2 4
P3 4 1
P4 5 4

Waiting time for , , , = 9P1 = 1P2 = 0P3 = 2P4

Average waiting time: = 3(9+1+0+2)
4

4 . 8

EXAMPLE: SRTF
Surely this is optimal in the face of new runnable processes arriving? Not
necessarily — why?

Context switches are not free: many very short burst length processes may thrash
the CPU, preventing useful work being done

More fundamentally, we can't generally know what the future burst length is!

4 . 9

PREDICTING BURST LENGTHS
For both SJF and SRTF require the next "burst length" for each process means we
must estimate it

Can be done by using the length of previous CPU bursts, using exponential
averaging:

1. = actual length of CPU burst.
2. = predicted value for next CPU burst.
3. For define:

tn nth

τn+1
α, 0 ≤ α ≤ 1

= α + (1 − α)τn+1 tn τn

4 . 10

PREDICTING BURST LENGTHS
If we expand the formula we get:

= α + … + (1 − α α + … + (1 − ατn+1 tn)j tn−j)n+1τ0

where is some constantτ0

Choose value of according to our belief about the system, e.g., if we believe
history irrelevant, choose and then get
In general an exponential averaging scheme is a good predictor if the variance is
small
Since both and are less than or equal to one, each successive term has
less weight than its predecessor
NB. Need some consideration of load, else get (counter-intuitively) increased
priorities when increased load

α
α ≈ 1 ≈τn+1 tn

α (1 − α)

4 . 11

ROUND ROBIN
A preemptive scheduling scheme for time-sharing systems.

Define a small fixed unit of time called a quantum (or time-slice), typically 10 —
100 milliseconds
Process at the front of the ready queue is allocated the CPU for (up to) one
quantum
When the time has elapsed, the process is preempted and appended to the ready
queue

4 . 12

ROUND ROBIN: PROPERTIES
Round robin has some nice properties:

Fair: given n processes in the ready queue and time quantum q, each process gets
 of the CPU

Live: no process waits more than time units before receiving a CPU
allocation
Typically get higher average turnaround time than SRTF, but better average
response time

1/nth

(n − 1)q

But tricky to choose the correct size quantum, :q

 too large becomes FCFS/FIFO
 too small becomes context switch overhead too high

q
q

4 . 13

PRIORITY SCHEDULING
Associate an (integer) priority with each process, e.g.,

Prio Process type

0 system internal processes

1 interactive processes (staff)

2 interactive processes (students)

3 batch processes

Simplest form might be just system vs user tasks

4 . 14

PRIORITY SCHEDULING
Then allocate CPU to the highest priority process: "highest priority" typically
means smallest integer

Get preemptive and non-preemptive variants
E.g., SJF is a priority scheduling algorithm where priority is the predicted next
CPU burst time

4 . 15

TIE-BREAKING
What do with ties?

Round robin with time-slicing, allocating quantum to each process in turn

Problem: biases towards CPU intensive jobs (Why?)

Solution?
Per-process quantum based on usage?
Just ignore the problem?

4 . 16

STARVATION
Urban legend about IBM 7074 at MIT: when shut down in 1973, low-priority processes
were found which had been submitted in 1967 and had not yet been run...

This is the biggest problem with static priority systems: a low priority process is not
guaranteed to run — ever!

4 . 17

DYNAMIC PRIORITY SCHEDULING
Prevent the starvation problem: use same scheduling algorithm, but allow priorities
to change over time

Processes have a (static) base priority and a dynamic effective priority
If process starved for seconds, increment effective priority
Once process runs, reset effective priority

k

4 . 18

EXAMPLE: COMPUTED PRIORITY
First used in Dijkstra's THE

Timeslots:
In each time slot , measure the CPU usage of process
Priority for process in slot :

E.g.,
Penalises CPU bound but supports IO bound

. . . , t, t + 1, . . .
t j : uj

j t + 1
= f (, , , , . . .)pj

t+1 uj
t pj

t uj
t−1 pj

t−1

= + kpj
t+1

pj
t

2 uj
t

Once considered impractical but now such computation considered acceptable

5

SUMMARY
Scheduling Concepts

Queues
Non-preemptive vs Preemptive
Idling

Scheduling Criteria
Utilisation
Throughput
Turnaround, Waiting, Response Times

Scheduling Algorithms
First-Come First-Served
Shortest Job First
Shortest Response Time First
Predicting Burst Length
Round Robin
Static vs Dynamic Priority

