Understanding the reference swapping examples

public class Check2 {

public static void main(String[] args) {

1.
2
3 int a[]={1,2,3,4};
4 int b[]={5,6,7,8};

a=b;

}

SO NOoO

0.}

int[] tmp = a;

b=tmp;
System.out.printin(a[0]+" "+b[0]);

Line 3 declares a to be a (label for a) reference to an integer array, and then initialises it to point to
an array that is sitting in the heap with values {1,2,3,4}. Line 4 does similarly for b with the array

g e

15,6,7,8}. i.c.

b

O\

tm P

b

O\

S

3

p|

g

2

5

AI.

|

Heep
Line 5 declares a new reference to an integer array called tmp that is made equal to a. i.e. both tmp
and a contain the same memory address (for the {1,2,3,4} array).

Line 6 reassigns reference a to point to the same as b,

tmpP

b

O\

sle| 2%
1 [2[2][4
sle| 2%
1 [2[2][4

Line 7 then reassigns b to point to the same as tmp. Therefore we get 5 for a[0] and 1 for b[0].

tm P

-

=

F

¥

1. public class Check2 {

2. public static void swap(int[] a, int b[]) {
3. int[] tmp = a;

4. a=b;

5. b=tmp;

6. }

7. public static void main(String[] args) {
8. int a[]={1,2,3,4};

9 int b[]={5,6,7,8};

10. swap(a,b);

11. System.out.printin(a[0]+" "+b[0]);
12. }

13.}

On the face of it, this looks very similar — I've just moved the swapping code into a function.
Unfortunately it has a very different result. When we call swap(...), a new frame is created on the
stack. It has two parameters that are references to integer arrays. These parameters are also called a
and b. We know Java passes everything by value, so the new a and b and copies of the initial a and

b.
; — 2P |s|c| 2%
(&N]

The code in the function then succeeds in swapping over the new references (just as it did in the
first example).

—H;\? el 2%
o 1 [2[2]4
o j _,_"’

Now the swap(...) function finishes, and so it is wiped from the stack. We are left with the original
a and b, so printing just gives us “1 5” since a[0] is 1 and b[0] is 5:

