
Note: Please see the web page for information regarding which later topics
are not going to be covered this year. That information will be posted near the
middle of the lectures.

This single PDF file now contains all three sheets.

Numerical Methods - 2015/16 - Example Sheet 1. (First edition.)

S1.1. Discover the details of BCD (binary-coded decimal). Why do pocket calculators tend
to work internally in BCD? Babbage’s machines also used base ten directly: discuss
with your supervisor why he did not use BCD.

S1.2. Here are two programs for long multiplication in a Java. They are online in the file
demos/long-multiplication.

static void naive_method()

{

for (int x=0; x<xd.length; x++)

for (int y=0; y<yd.length; y++)

{

int b = x+y;

int s = xd[x] * yd[y];

while (s > 0)

{

s += rd[b];

rd[b++] = s % base;

s = s / base;

}

}

} // Do we need to check most-significant result bit is less than base?

static void vehdic_method()

{

int b, c_in = 0;

for (b=0; b<xd.length+yd.length; b++)

{

int s = c_in;

for (int x=0; x<=b; x++)

{

int y = b-x;

if (x >= xd.length || y >= yd.length) continue;

s += xd[x] * yd[y];

}

rd[b] = s % base;

c_in = s / base;

}

}

Ignoring implementation language, what is the essential difference between these long
multiplications and the ML versions in the lecture notes?

Is long multiplication linear or quadratic in word length?

What is the maximum value of s in each method and can s overflow ?

Which method makes the fewest memory operations (operations on arrays) ?

———————————————————

1

S1.3. IBM System 360 used (uses!) floating point with basis 16. Was (is) this a good
idea? Consider a 32-bit word partitioned into exponent and mantissa where the value
represented jumps by a factor of 16 for each increment of the exponent. Can a hidden
bit still be used?

S1.4. Give a program for base/radix 4 multiplication without Booth’s optimisation. This will
need to multiply by 3 on occasions. It can be a variant of the provided Booth version.
(This is a purely academic exercise — we would normally use Booth’s optimisation
wherever we can.)

S1.5. Exercise: Do these ‘long’ multiplication algorithms work with two’s complement num-
bers? In one or both arguments?

S1.6. The standard, variable-latency divide algorithm uses only a little hardware and a lot
of iterations (clock cycles). This may have been suitable for early computers like the
EDSAC, but today we have abundance of transistors and can easily afford to use them
to speed up such an important operations as divide. How could the algorithm go
faster?

S1.7. Does the fixed-latency division code implement a different algorithm from the variable-
latency (standard) algorithm? Which one is quicker on average and in the worst case?
What does the fixed-latency algorithm return for a divide by zero and why?

S1.8. a) Where does the hidden bit get re-inserted in the floating point to float-to-ASCII
base conversion code? (Answer either for the ML version or the C version in the
projected slide deck and demos folder). Describe the full details of that step. Does it
involve shifting the mantissa? Does it round correctly when only a limited number of
significant digits are requested?

b) Is the provided range in the tables, ±1063 sufficient?

c) Describe how the fourth base conversion program (ASCII input leading to floating
point) not given in the printed slides should work. Give either a program or else a full
description of the procedure.

S1.9. Does the provided integer to ASCII function have a bug ? How can one modify that
code to avoid suppressing all leading zeros in its special case?

S1.10. a) Perform round-to-even on the following decimal numbers 2.2, 3.5, 4.5, 5.6, 10.9.
Answers should be natural numbers.

b) Perform round-to-even applied to the following binary numbers 111.11, 111.101,
101.10, 110.1. Answers should be natural numbers expressed in binary.

c) Apply round-to-even for 3 significant digits to the following 1.2345e5, 2.255e-10.

S1.11. Given that most computer languages today support 32-bit signed integers and double-
precision floating point, can it be argued that having the integers is silly since they
are a subset of the doubles ?

S1.12. Sketch a proof that integer comparison predicates can be applied to the bit patterns of
IEEE unsigned floating point and mention any exceptions. (Or do a structured proof
if feeling ambitious).

S1.13. What do the following single precision IEEE bit patterns represent, where the msb of
the first-listed byte is the sign bit ?

a) 00 00 00 00

b) 80 00 00 00

c) BF 01 00 00

2

d) 3F C0 00 00

e) 04 04 04 00

S1.14. What is log10(2)? How does this relate the number of bits in a binary integer to the
number of digits in a decimal integer ? Give an example or two.

S1.15. From the slides: ‘For the example where a, b & c all have type float, give an example
where f(a*b+c) generally gives a different answer to { float t=a*b; f(t+c); }’.

S1.16. Define machine epsilon and sketch a program to determine its value experimentally.

S1.17. F1) (3.4522 * 11.233) + 13.966

F2) (3.4522 - 3.4166) / 17.822

a) Round the numbers in F1 and F2 to three significant figures. Compute the exact
results of the expressions before and after rounding.

b) Assume we did only know the numbers in their rounded form (so did not know
the accurate versions). Work out the relative and absolute error bounds for the two
expressions using the lectured rules (abs. errors sum for add and sub, rel. errors sum
for times and divide). Compare the errors predicted by the rules with the actual errors
if you work to 3sf throughout.

c) What difference does it make if you do not truncate and round to 3sf after each
step but only at the end?

d) What is the expected value of the initial quantisation errors and final result assuming
fair rounding is used?

Note: questions that are easier to answer with a calculator than without will not be set

for Tripos exams.

S1.18. Give hand-crafted code in ML or Java that divides a floating point number by the
constant 3. (Note: the slides provide code that divides a 32-bit integer by the constant
10). The following Java fragment might help:

public class MyDiv3

{

public static float div3(final float f)

{ int i = Float.floatToRawIntBits(f);

//TODO: divide f by 3 by performing operations on i

// ...

float fDiv3 = Float.intBitsToFloat(i);

return fDiv3;

}

void testDiv3()

{ //TODO: call div3 with a set of test inputs and check it works

//...

//For example:

int fpuResult = Float.floatToRawIntBits(div3(5.0));

int myResult = Float.floatToRawIntBits(5.0/3.0);

}

3

Numerical Methods - 2015/16 - Examples Sheet 2 of 3.

S2.1. Give four candidate control criteria that might be used to control the number of steps
in an iteration and explain when they might be a good or bad choice ?

S2.2. a) What is the formula for finding the square root of a number using Newton Raphson?
(This is given in the slide pack but derive it from first principles please.)

b) When do we say that a numerical method is a second-order method and when do
we say an iteration has order of convergence 2 ?

c) What is the order of convergence of Newton Raphson?

d) Suppose the derivative of the target function is expensive to compute or not available
in computable form: suggest a cheaper iteration based on Newton’s method (makes
the same graphical construction) and estimate/find/state its order of convergence.

S2.3. a) Give the Taylor series expansion for cosine ignoring cubic and higher powers.

b) For what input range is this approximation to cosine completely accurate for a
single precision range and domain ? (Completely accurate means its result is always
rounded to the closest representable result to the true answer, but standard libraies
are allowed to be off by one u.lp.).

c) Is this crude implementation at least semi-monotonic ? Why?

d) Precisely why should range reduction be used for periodic trigonometric functions
like cosine? What is the best range reduction approach for cosine?

Note: Answers which illustrate the correct approach will be given full marks, even if the final

answer is output is wrong by, say, a factor of two.

S2.4. Consider an iteration for the division n/d expressed using the following code fragment:

float n = 3223.231;

float d = 0.342;

for(...)

{

printf("%f %f %f\n", n, d, n/d);

double f = 2.0 - d;

n *= f;

d *= f;

}

a) What happens? Does it work for a good range of n and d ?

b) What is the order of convergence and why ? [Hint: This is a bit like an iteration
to find the reciprocal. Concentrate first on the denominator’s order of convergence to
unity.]

c) Is this a good method for division in general ?

S2.5. Consider the quadratic x2 + 5x+ 2 = (x+ 0.438)(x+ 4.561) = 0.

Two iterations can be considered (derive these):

xn+1 = −2/(xn + 5)

xn+1 = −2/xn − 5

Is it the case that one finds one root and the other finds the other ? What happens if
the starting guess for one is set at the solution of the other? (You may find it helpful
to code this in ML or a language of your preference and try a few experiments.)

[Note: You will not be expected to answer problems that are easier to solve using calcula-
tor/computer than by hand in Tripos Examinations.]

4

Hint: here are the helpful runes for gnuplot: gnuplot> plot -2/(x+5),x with lines

gnuplot> plot -5-2/(x),x with lines

S2.6. : The slides relating to this question were skipped in 2015/16.

Additional exercise if you have time: Using the poly.m Octave/Matlab program pro-
vided, or otherwise, compare the roughness in the plot to your own estimate of the
worst-case absolute error. [Hint: First Consider whether the standard technique of
adding absolute errors it relevant or whether you need to think about loss of precision
owing to cancelling.]

S2.7. : The slides relating to this question were skipped in 2015/16.

a) Show all the Chebyshev polynomials pass through (1,1). What other point do half
of them pass through ?

(* ML coding of Tchebychev basis functions *)

fun compute_cheby n x =

let fun tch 0 = (1.0, 123456.0) (*snd arbitrary*)

| tch 1 = (x, 1.0)

| tch n =

let val (p, pp) = tch (n-1)

in (2.0 * x * p - pp, p) end

val (ans, _) = tch n

in ans end

b) The ML program provided online directly uses the coefficients it has generated
in its output phase. An alternative is to collate on each power of x to convert the
answer back to a regular polynomial. Another possibility is to use the polynomial
form of the basis polynomials rather than the recursive form illustrated above. (The
expanded forms for the first four or so are in the notes and there is a longer list on
Wikipedia.) It is interesting to compare the collated form coefficients with their Taylor
equivalents: perhaps make such a comparison if you have time. You will probably need
to implement the code to collate the coefficients. What form is likely to be used in
practice ?

S2.8. a) The CORDIC algorithm is used to determine the cosine of 22.5 degrees. Give the
result obtained by CORDIC limited to using at most three subdivision steps (in other
words quite an approximate result). (Hint: The fact that 22.5 is a binary subdivision
of the right angle is unimportant.)

b) Given that arctan(x) ≈ x− x3/3 explain why we need at “least 30 and potentially
40 iterations” to achieve 10 significant figures as stated on Wikipedia.

c) Is it helpful that arctan(0.5) > 90◦/4 and is such a condition strictly needed for the
algorithm to work?

d) How would you use CORDIC for angles greater than 45 degrees (or does it work
anyway)?

S2.9. Consider the function arctan(y/x) giving the angle subtended at the origin for the
point (x, y).

a) The above function is ‘two quadrant’ only. Using ML or Java, provide a more-
complex implementation of this function that involves ‘if’ statement(s) and which
gives a different answer in all four quadrants. The new implementation should have
the same type as the old implementation.

b) Provide a rough and approximate implementation of four-quadrant arctan that,
instead of any sort of Taylor series, uses just a few applications of the four basic

5

arithmetic operators and also some ‘if’ statements. You may return degrees instead
of radians if you prefer.

c) If a computer game needs to rapidly determine whether one point subtends a greater
or smaller angle than another, is your implementation in part b suitable ?

S2.10. Consider the functions:

F1: f1(x, y) = 10000x− 500y.

F2: f2(x, y) = (x + y)/(x− y).

a) What are their partial derivatives ∂f
∂x

and ∂f
∂y

?

b) What are the condition numbers for the two expressions (log10 of largest relative
error amplification) ? Or do we need to qualify these?

c) If we are given simultaneous numeric values for f1(x, y) and f2(x, y) we can clearly
work out the values of x and y. Are they backwards stable (everywhere) ?

S2.11. Consider fixed-point decimal arithmetic:

a) What are the following decimal numbers when rounded to even for a fixed-point
decimal arithmetic system with eight places before the point and two after: 10.751,
-100.755, -4032.382.

b) Give an example, possibly such as an addition, in this number system where round
to minus infinity gives a different answer from the normal round to even rule. Or say
why not possible.

c) Give an example of an interval arithmetic multiplication that illustrates the different
rounding modes needed for the upper and lower bounds of the result.

NB: An interval arithmetic system might equally well use floating point or fixed point for

each member of a max/min pair.

6

Numerical Methods - 2015/16 - Examples Sheet 3 of 3 (rev0).

S3.1. a) What condition is needed for a pair of matrices to be multipliable?

b) What is the complexity (in floating point operations (flops)) of converting to upper
triangular form for a general set of coefficients ?

c) What is the complexity of converting to the triangular form generated using Cholesky’s
method ?

d) What is the complexity of forwards and backwards substitution ?

e) If we need to solve a set of equations for R right-hand sides, is there a number
of right-hand sides for which L/U (or L/D/U) decomposition becomes better than
working on the right-hand sides as we go ?

f) What happens if Gaussian Elimination is attempted for non-square matrices?

g) Perform a Cholesky decomposition by solving for the following 2x2 by inspection:

(

a 0
b c

)(

a b
0 c

)

=

(

25 15
15 58

)

What would be the answer if the top right number in the r.h.s. were changed from 15
to 0?

h) Optional: Look at the McMaster’s L/U lecture note on the course web page for last
year. http://www.cl.cam.ac.uk/teaching/1314/NumMethods/supporting/mcmaster-kiruba-ludecomp.pdf
Note that it performs the L/U decomposition in-place, putting both L and U in the
same array that originally held A. What is the complexity of its code to find the matrix
inverse? Why is the L/U method preferable to first finding the inverse of the coefficient
matrix and then multiplying by it?

S3.2. Consider the following transformation

(

x′

y′

)

=

(

1.111 1.112
2.222 2.222

)(

x
y

)

a) What can you say about condition number (log10 thereof) for points near the
origin?

S3.3. Consider the darts throwing exercise in the slides:

double x = new_random(0.0, 1.0);

double y = new_random(0.0, 1.0);

if (x*x + y*y < 1.0) hit ++;

darts ++;

a) What is the expected change in accuracy if the < were changed to <= ?

b) Is this an ergodic simulation? Give examples of ergodic and non-ergodic simulations.

c) Make notes on or discuss with your supervisor whether weather forecasting needs
to use Monte Carlo simulation or some other type.

S3.4. Relate the heat flow (thermal) and charge flow (electrical) systems, given in the slides,
to a third: a water flow (hydraulic) system where each element is a bucket with a given
depth of water in it and the buckets are interconnected by narrow pipes between their
bottoms.

7

S3.5. NB: The related material was not lectured owing to running out of time.

a) What was the signal to noise ratio achieved by NiCam digital audio ?

b) An echo unit is implemented with the following block diagram. Assuming the
feedback gain is set such that successive echos die away (i.e. don’t get louder) what is
the maximum number of discernible echos it could generate ?

Diagram missing - material not lectured.

8

S3.6. Consider the following 1-D system (with or without gravity). Two masses are con-
nected with two springs and a dashpot (shock adsorber). The springs apply restoring
forces proportional to their extension above or below their nominal lengths. The dash-
pot provides a dampening force proportional its rate of operation.

M1

M2

x

y

Fixed wall

f2

f1

f3

f1 = −k1(x− x0)

f2 = −k2(y − y0)

f3 = −k3
dy

dt

a) Give a suitable state vector. This is the list of values that must be preserved from
one iteration to the next. Write out suitable update equations for a FDTD simulation
of this system using forward differences and fixed time step ∆T (Hint: There are four
state variables).

b) What, roughly, is the worst error in computing each state variable in terms of ∆T ?
Does this error accumulate systematically as time progresses?

c) Assuming that the dashpot is man enough to eliminate significant oscillations in
the lower subsystem, what is the resonant frequency of the system and how does this
indicate we should choose ∆T .

S3.7.

R1/8
R2/
40 R3/20

R4/6

n1n0

n2

n3

Pump

5 amps

(or 5 litres/second)

For the above figure, complete the steady-state flow equations in matrix form (filling
in the 3x3 matrix provided below) to find the potentials at nodes 0 to 2. Node 3
potential can be taken as a zero reference. The conductances between nodes can be
found by reciprocating the resistances that are shown.

? ? ?
? ? ?
? ? ? + 1/6.0

n0

n1

n2

 =

5.0
0.0
0.0

Check your answer by seeing whether ohm’s law holds for R1.

9

S3.8.

R1/8
R2/
40

R4/6

n1n0

n2

n3

Pump

5 amps

(or 5 litres/second)

Flow limiter
max rate 3

One resistor is replaced by a non-linear component, a flow-rate limiting valve. This will
not conduct more than 3 litres per second or amps. (Note, the rate limiter is rather like
the opposite of an electrical diode which tends to limit the maximum potential across
it, regardless of rate, but it can be modelled within a system of linear equations using
the same linearisation technique whereby it is thought of as a conductor in parallel
with an additional flow generator. For a flow limiter, no additional flow generator is
in fact needed since all the flows are already present.)

You can write down the modified nodal potentials by inspection since the flow in each
resistor/pipe is nearly obvious. Write out the modified nodal equation matrix with
all of its values installed and deduce the effective conductance of the flow rate limiter
that would be found by iteration in a real simulation.

Note, non-linear components in flow systems will not be asked in examinations in

Summer 2016.

S3.9.

R1/8R
R2/
40R

R4/
7R

n1n0

n2

n3

Pump

5 amps

Turned on between
T=10 and T=20

C1/
0.1F

The above circuit contains a capacitor that is initially discharged (aka empty), meaning
it has no potential between its terminals (n2=0.0). The current generator is present
between times 10 and 20. At other times n0 is essentially disconnected (floating). The
capacitor has capacitance of 0.1 Farad which means, for example, with a current flow
into it of 2 amps the potential at n2 will rise at 20 volts per second.

a) For a time step, ∆T of 1 millisecond, write out the flow equations at time T=10
in matrix form assuming the supply is now connected but that the capacitor is not
seeing any fill effect yet. Work out the nodal voltages at this time. Then repeat for
the time 10.001.

b) (For enthusiasts only, work out by any means the true voltage at the nodes at time
10.001.)

S3.10. a) Does an adaptive time step help when modelling non-linear components?

b) Does an adaptive time step help when modelling time-varying components?

10

S3.11. Killer Question: A full answer to this question might take a long time, but
please at least consider how you would go about each part and discuss it
with your supervisor.

The sacred river Alph enters the mountainous country of Xanadu at flow rate of
Fa = 160 litres/second. 2 km inside the border it dives over the Kubla Falls. The
emperor builds a stately pleasure dome beside the river, half the way to the falls. The
dome contains an enormous parabolic basin swimming pool which is fed from the river
by a channel conveying λ liters/second from the river. The water extraction causes
the river level at the point of extraction to fall a small amount, given by δ = ρλ where
ρ is the constant 1/32=0.03125.

The pool has a crack in the bottom that lets water out at a rate µ litres/second.
The water flows through unmeasurable caverns inside the mountains and eventually
rejoins the Alph in the lower plains (where there is a sunless sea). The shape of the
pool causes the flow through the crack µ to be θd2 where d is the depth of water in
the pool and θ is the constant 0.5. The channel delivers water to the pool at a rate, λ,
equal to α = 32/3 = 10.667 times the height difference between the levels in the pool
and the river. The bottom of the pool is B = 5 metres below river bank level, which
would be the level of the river if no water were extracted.

crack

River
Alph

Kubla Falls

Pool

non-linear
crack flow

Xanadu Border

mulambdaForeign constant
80 litres/sec
flow source)

Caverns measureless to man

This drawing may suggest the water from the channel spills into the pool. But such
an arrangement would be like the Kubla Falls and the flow rate would be unaffected
by the current depth. In reality the channel joins the pool below the waterline, and
hence backpressure applies.

a) Steady-state solution: Once the water depth has stabilised we are in the steady
state. Find the steady-state solution (also known as the operating point).

δ = ρλ = λ/32

λ = α(B − δ − d) = 32/3× (5 − δ − d)

µ = θd2 = 4× d2

The pool’s radius at height h is 50h
1

2 : you need the volume of revolution given by this
to find its (non-linear) capacity function.

volume(d) = π

∫ d

0

(50h
1

2)2dh = 2500πd2/2

b) Phrase the simultaneous equations in a matrix form as though they were linear
in preparation for being solved using Gaussian elimination. You will needa square
conductance matrix multiplied by a potential/height vector to give a vector of node
flow sums. Measure heights with respect to the bottom of the pool. Note: one equation

11

is not linear so you will have to make a linearisation construction. Since we have closed-
form, analytic equations for each flow we can differentiate them and potentially use
Newton-Raphson iterations. How many iterations are needed to solve the equations
to four significant figures? (Note: you do not actually need to construct the iteration
function to answer this.)

c) Time-varying simulation: The channel is closed every night and the water drains
out.

Roughly determine a suitable time step so that the refilling each morning is modelled
to four significant figures.

d) Sketch the code for an FDTD simulation of the system. You do not need to use the
‘formal’ nodal matrix style for this unles you wish to. Instead, just use free-form code.
(Write a fully running program if you wish. There are just four simple key assignment
statements.)

You may give answers by running your own program and adjusting the parameters or
by using mathematical analysis.

Note, this question is a lot longer than any that would be set for Tripos.

Note: If you wish, you can assume the river has even fall between the border and the
Kubla Falls. So, as the channel is taken off half way along the river course, the river
altitude, when no water is extracted, with respect to the falls, will be half the altitude
at the border. However, what happens upstream of the channel take off does not make
any difference: a resistance connected in series with the output of a constant flow
generator may make the flow generator have to work harder, but this had no effect on
the system under study and such a resistance can always be ignored.

12

Additional Exercises
This is not sheet 3. These are additional exercises that are perhaps not as useful as

practising on past Floating Point Questions or other exercises set by your supervisor.

AD1. See if you understand the corner case described in (Java hangs when converting)

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308

AD2. a) What is meant by a chaotic system ? What feature of xn+1 = 4 ∗xn ∗ (1−xn) leads
to chaos ?

NB: Verhulst’s Logistic map: runes for gnuplot: gnuplot> plot 4*x*(1-x), x with lines

b) What would we expect and like to see in terms of the numerical values of, and
analytic expressions for, the partial derivatives in

i) a well-behaved system,

ii) a chaotic system, and

iii) a system for suggesting re-balancing operations on an investment portfolio ?

AD3. Consider the matrix filled with Fibonacci numbers in the lecture notes:
(

17711 10946
6765 4181

)

they were inserted from the bottom right. What undesirable effect does this lead to
when considered as a transformer on 2D co-ordinate spaces? Is it backwards stable?
An array based on Fib(1,1) always has determinant 1, but what general propery of a
2×2 array leads to this undesirable effect?

c© DJ Greaves 2011-16.

13

