Distributional semantics

Models

Getting distributions from text

Real distributions

Similarity

Distributions and classic lexical semantic relationships

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

it was authentic scrumpy, rather sharp and very strong we could taste a famous local product — scrumpy spending hours in the pub drinking scrumpy

Cornish Scrumpy Medium Dry. £19.28 - Case

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Scrumpy

This leads to the distributional hypothesis about word meaning:

- the context surrounding a given word provides information about its meaning;
- words are similar if they share similar linguistic contexts;
- semantic similarity \approx distributional similarity.

Models

Outline.

Models

Getting distributions from text

Real distributions

Similarity

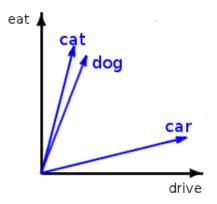
Distributions and classic lexical semantic relationships

The general intuition

- Distributions are vectors in a multidimensional semantic space, that is, objects with a magnitude (length) and a direction.
- ► The **semantic space** has dimensions which correspond to possible contexts **features**.
- For our purposes, a distribution can be seen as a point in that space (the vector being defined with respect to the origin of that space).
- scrumpy [...pub 0.8, drink 0.7, strong 0.4, joke 0.2, mansion 0.02, zebra 0.1...]

Models

Vectors



Feature matrix

	feature ₁	feature ₂	 $feature_n$
word ₁	f _{1,1}	f _{2,1}	$f_{n,1}$
word ₂	f _{1,2}	$f_{2,2}$	$f_{n,2}$
$mord_m$	f _{1,m}	f _{2,m}	$f_{n,m}$

The notion of context

1 Word windows (unfiltered): *n* words on either side of the lexical item.

```
Example: n=2 (5 words window):

/ The prime minister acknowledged the /
```

question.

minister [the 2, prime 1, acknowledged 1, question 0]

__ Models

Context

2 Word windows (filtered): n words on either side removing some words (e.g. function words, some very frequent content words). Stop-list or by POS-tag.

Example: n=2 (5 words window), stop-list:

| The prime **minister** acknowledged the | question.

minister [prime 1, acknowledged 1, question 0]

Context

3 Lexeme window (filtered or unfiltered); as above but using stems.

```
Example: n=2 (5 words window), stop-list:

| The prime minister acknowledged the | question.
```

minister [prime 1, acknowledge 1, question 0]

Context

4 Dependencies (directed links between heads and dependents). Context for a lexical item is the dependency structure it belongs to (various definitions).

Example:

The prime minister acknowledged the question.

```
minister [ prime_a 1, acknowledge_v 1]
minister [ prime_a_mod 1, acknowledge_v_subj 1]
minister [ prime_a 1, acknowledge_v+question_n 1]
```

Parsed vs unparsed data: examples

word (unparsed) meaning_n derive_v dictionary_n pronounce_v phrase_n latin_j ipa_n verb_n mean_v hebrew_n usage_n

literally r

```
word (parsed)
or c+phrase n
and c+phrase n
syllable n+of p
play n+on p
etymology n+of p
portmanteau n+of p
and c+deed n
meaning n+of p
from p+language n
pron rel +utter v
for p+word n
in p+sentence n
```

Dependency vectors

word (Subj) word (Dobj) come v use v mean v say v go v hear v take v speak v make v speak v find v say v seem v get v follow v remember v give v read v describe v write v get v utter v know v appear v begin v understand v sound v believe v occur v choose v

Context weighting

- ▶ Binary model: if context c co-occurs with word w, value of vector \vec{w} for dimension c is 1, 0 otherwise.
 - ... [a long long long **example** for a distributional semantics] model... (n=4)
 - ... {a 1} {dog 0} {long 1} {sell 0} {semantics 1}...
- ▶ Basic frequency model: the value of vector \vec{w} for dimension c is the number of times that c co-occurs with w.
 - ... [a long long long **example** for a distributional semantics] model... (n=4)
 - ... {a 2} {dog 0} {long 3} {sell 0} {semantics 1}...

Characteristic model

- Weights given to the vector components express how characteristic a given context is for word w.
- Pointwise Mutual Information (PMI)

$$PMI(w,c) = \log \frac{P(w,c)}{P(w)P(c)} = \log \frac{P(w)P(c|w)}{P(w)P(c)} = \log \frac{P(c|w)}{P(c)}$$

$$P(c) = \frac{f(c)}{\sum_{k} f(c_{k})}, \quad P(c|w) = \frac{f(w,c)}{f(w)},$$

$$PMI(w,c) = \log \frac{f(w,c)\sum_{k} f(c_{k})}{f(w)f(c)}$$

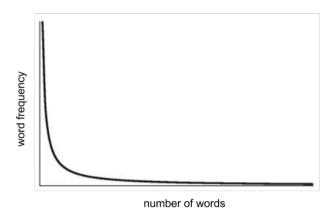
f(w, c): frequency of word w in context c f(w): frequency of word w in all contexts f(c): frequency of context c

What semantic space?

- Entire vocabulary.
 - + All information included even rare contexts
 - Inefficient (100,000s dimensions). Noisy (e.g. 002.png|thumb|right|200px|graph_n)
- Top n words with highest frequencies.
 - + More efficient (2000-10000 dimensions). Only 'real' words included.
 - May miss out on infrequent but relevant contexts.

Models

Word frequency: Zipfian distribution



What semantic space?

- Entire vocabulary.
 - + All information included even rare contexts
 - Inefficient (100,000s dimensions). Noisy (e.g. 002.png|thumb|right|200px|graph_n)
- Top n words with highest frequencies.
 - + More efficient (2000-10000 dimensions). Only 'real' words included.
 - May miss out on infrequent but relevant contexts.

What semantic space?

- Singular Value Decomposition (LSA Landauer and Dumais, 1997): the number of dimensions is reduced by exploiting redundancies in the data.
 - ► + Very efficient (200-500 dimensions). Captures generalisations in the data.
 - SVD matrices are not interpretable.
- Non-negative matrix factorization (NMF)
 - Similar to SVD in spirit, but performs factorization differently

Getting distributions from text

Outline.

Models

Getting distributions from text

Real distributions

Similarity

Distributions and classic lexical semantic relationships

Our reference text

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

 Example: Produce distributions using a word window, PMI-based model

The semantic space

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- Assume only keep open-class words.
- Dimensions:

difference	impossible	thing
get	major	turns
go	possibly	usually
goes	repair	wrong

Frequency counts...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

Counts:

difference 1	impossible 1	thing 3
get 1	major 1	turns 1
go 3	possibly 2	usually 1
goes 1	repair 1	wrong 4

Conversion into 5-word windows...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- Ø Ø the major difference
- ▶ ∅ the **major** difference between
- the major difference between a
- major difference between a thing
- **.**...

Distribution for wrong

Douglas Adams, Mostly harmless

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (frequencies):

difference 0	impossible 0	thing 0
get 0	major 0	turns 0
go 3	possibly 2	usually 1
goes 2	repair 0	wrong 2

Distribution for wrong

Douglas Adams, Mostly harmless

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (PPMIs):

difference 0	impossible 0	thing 0
get 0	major 0	turns 0
go 0.70	possibly 0.70	usually 0.70
goes 1	repair 0	wrong 0.40

Real distributions

Outline.

Models

Getting distributions from text

Real distributions

Similarity

Distributions and classic lexical semantic relationships

Experimental corpus

- Dump of entire English Wikipedia, parsed with the English Resource Grammar producing dependencies.
- Dependencies include:
 - For nouns: head verbs (+ any other argument of the verb), modifying adjectives, head prepositions (+ any other argument of the preposition).
 - e.g. cat: chase_v+mouse_n, black_a, of_p+neighbour_n
 - ► For verbs: arguments (NPs and PPs), adverbial modifiers. e.g. eat: cat_n+mouse_n, in_p+kitchen_n, fast_a
 - For adjectives: modified nouns; head prepositions (+ any other argument of the preposition)
 e.g. black: cat n, at p+dog n

System description

- Semantic space: top 100,000 contexts.
- ▶ Weighting: normalised PMI (Bouma 2007).

$$PMI(w,c) = \frac{\log \frac{f(w,c)*f_{total}}{f(w)*f(c)}}{-\log \frac{f(w,c)}{f_{total}}}$$
(1)

An example noun

language:

```
0.54::other+than p()+English_n
0.53::English n+as p()
0.52::English n+be v
0.49::english a
0.48::and c+literature n
0.48::people_n+speak_v
0.47::French n+be v
0.46::Spanish n+be v
0.46::and c+dialects n
0.45::grammar n+of p()
0.45::foreign a
0.45::germanic a
0.44::German n+be v
```

```
0.44::of p()+instruction n
0.44::speaker n+of p()
0.42::pron rel +speak v
0.42::colon v+English n
0.42::be v+English n
0.42::language n+be v
0.42::and c+culture n
0.41::arabic a
0.41::dialects n+of p()
0.40::percent n+speak v
0.39::spanish a
0.39::welsh a
0.39::tonal a
```

An example adjective

academic:

```
0.52::Decathlon n
                                       0.36::reputation n+for p()
0.51::excellence n
                                       0.35::regalia n
0.45::dishonesty n
                                       0.35::program n
                                       0.35::freedom n
0.45::rigor n
0.43::achievement n
                                       0.35::student n+with p()
0.42::discipline n
                                       0.35::curriculum n
0.40::vice president n+for p()
                                       0.34::standard n
0.39::institution n
                                       0.34::at p()+institution n
0.39::credentials n
                                       0.34::career n
0.38::journal n
                                       0.34::Career n
0.37::journal n+be v
                                       0.33::dress n
0.37::vocational a
                                       0.33::scholarship n
0.37::student n+achieve v
                                       0.33::prepare v+student n
0.36::athletic a
                                       0.33::qualification n
```

Corpus choice

- As much data as possible?
 - British National Corpus (BNC): 100 m words
 - Wikipedia: 897 m words
 - UKWac: 2 bn words
 - **.**..
- In general preferable, but:
 - More data is not necessarily the data you want.
 - More data is not necessarily realistic from a psycholinguistic point of view. We perhaps encounter 50,000 words a day. BNC = 5 years' text exposure.

Data sparsity

Distribution for *unicycle*, as obtained from Wikipedia.

```
0.45::motorized_a
0.40::pron_rel_+ride_v
0.24::for_p()+entertainment_n
0.24::half_n+be_v
0.24::unwieldy_a
0.23::earn_v+point_n
0.22::pron_rel_+crash_v
0.19::man_n+on_p()
0.19::on_p()+stage_n
0.19::position_n+on_p()
```

```
0.17::slip_v
0.16::and_c+1_n
0.16::autonomous_a
0.16::balance_v
0.13::tall_a
0.12::fast_a
0.11::red_a
0.07::come_v
0.06::high_a
```

Real distributions

Polysemy

▶ Distribution for *pot*, as obtained from Wikipedia.

```
0.57::melt_v
0.44::pron_rel_+smoke_v
0.43::of_p()+gold_n
0.41::porous_a
0.40::of_p()+tea_n
0.39::player_n+win_v
0.39::money_n+in_p()
0.38::of_p()+coffee_n
0.33::amount_n+in_p()
0.33::ceramic_a
0.33::hot a
```

```
0.32::boil_v
0.31::bowl_n+and_c
0.31::ingredient_n+in_p()
0.30::plant_n+in_p()
0.30::simmer_v
0.29::pot_n+and_c
0.28::bottom_n+of_p()
0.28::of_p()+flower_n
0.28::of_p()+water_n
0.28::food_n+in_p()
```

Polysemy

- Some researchers incorporate word sense disambiguation techniques.
- But most assume a single space for each word: can perhaps think of subspaces corresponding to senses.
- Graded rather than absolute notion of polysemy.

Idiomatic expressions

Distribution for time, as obtained from Wikipedia.

```
0.46::of_p()+death_n

0.45::same_a

0.45::1_n+at_p(temp)

0.45::Nick_n+of_p()

0.42::spare_a

0.42::playoffs_n+for_p()

0.42::of_p()+retirement_n

0.41::of_p()+release_n

0.40::pron_rel_+spend_v

0.39::sand_n+of_p()

0.39::pron_rel_+waste_v
```

```
0.38::place_n+around_p()
0.38::of_p()+arrival_n
0.38::of_p()+completion_n
0.37::after_p()+time_n
0.37::of_p()+arrest_n
0.37::country_n+at_p()
0.37::age_n+at_p()
0.37::space_n+and_c
0.37::in_p()+career_n
0.37::world_n+at_p()
```

Similarity

Outline.

Models

Getting distributions from text

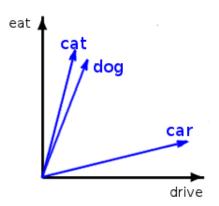
Real distributions

Similarity

Distributions and classic lexical semantic relationships

Calculating similarity in a distributional space

Distributions are vectors, so distance can be calculated.



Measuring similarity

Cosine:

$$cos(\theta) = \frac{\sum v1_k * v2_k}{\sqrt{\sum v1_k^2} * \sqrt{\sum v2_k^2}}$$
 (2)

- The cosine measure calculates the angle between two vectors and is therefore length-independent. This is important, as frequent words have longer vectors than less frequent ones.
- Other measures include Jaccard, Euclidean distance etc.

The scale of similarity: some examples

house – building 0.43 gem - jewel 0.31 capitalism - communism 0.29 motorcycle - bike 0.29 test - exam 0.27 school – student 0.25 singer – academic 0.17 horse – farm 0.13 man –accident 0.09 tree – auction 0.02 cat -county 0.007

Words most similar to cat

as chosen from the 5000 most frequent nouns in Wikipedia.

1 cat	0.29 human	0.25 woman	0.22 monster
0.45 dog	0.29 goat	0.25 fish	0.22 people
0.36 animal	0.28 snake	0.24 squirrel	0.22 tiger
0.34 rat	0.28 bear	0.24 dragon	0.22 mammal
0.33 rabbit	0.28 man	0.24 frog	0.21 bat
0.33 pig	0.28 cow	0.23 baby	0.21 duck
0.31 monkey	0.26 fox	0.23 child	0.21 cattle
0.31 bird	0.26 girl	0.23 lion	0.21 dinosaur
0.30 horse	0.26 sheep	0.23 person	0.21 character
0.29 mouse	0.26 boy	0.23 pet	0.21 kid
0.29 wolf	0.26 elephant	0.23 lizard	0.21 turtle
0.29 creature	0.25 deer	0.23 chicken	0.20 robot

But what is similarity?

- In distributional semantics, very broad notion: synonyms, near-synonyms, hyponyms, taxonomical siblings, antonyms, etc.
- Correlates with a psychological reality.
- Test via correlation with human judgments on the Miller & Charles (1991) test set.
- M&C was re-run of Rubenstein & Goodenough (1965). Correlation coefficient between M&C and R&G = 0.97.

Miller & Charles 1991

3.92 automobile-car	3.05 bird-cock	0.84 forest-graveyard
3.84 journey-voyage	2.97 bird-crane	0.55 monk-slave
3.84 gem-jewel	2.95 implement-tool	0.42 lad-wizard
3.76 boy-lad	2.82 brother-monk	0.42 coast-forest
3.7 coast-shore	1.68 crane-implement	0.13 cord-smile
3.61 asylum-madhouse	1.66 brother-lad	0.11 glass-magician
3.5 magician-wizard	1.16 car-journey	0.08 rooster-voyage
3.42 midday-noon	1.1 monk-oracle	0.08 noon-string
3.11 furnace-stove	0.89 food-rooster	
3.08 food-fruit	0.87 coast-hill	

Distributional systems, reported correlations 0.8 or more.

TOEFL synonym test

Test of English as a Foreign Language: task is to find the best match to a word:

Prompt: levied

Choices: (a) imposed

(b) believed

(c) requested

(d) correlated

Solution: (a) imposed

- Non-native English speakers applying to college in US reported to average 65%
- Best corpus-based results are 100%

Distributions and classic lexical semantic relationships

Outline.

Models

Getting distributions from text

Real distributions

Similarity

Distributions and classic lexical semantic relationships

Distributional methods are a usage representation

- Distributions are a good conceptual representation if you believe that 'the meaning of a word is given by its usage'.
- Corpus-dependent, culture-dependent, register-dependent.
 - Example: similarity between policeman and cop: 0.23

Distribution for *policeman*

policeman

0.59::ball n+poss rel 0.48::and c+civilian n 0.42::soldier n+and c 0.41::and c+soldier n 0.38::secret a 0.37::people n+include v 0.37::corrupt a 0.36::uniformed a 0.35::uniform n+poss rel 0.35::civilian n+and c 0.31::iraqi a 0.31::lot_n+poss_rel 0.31::chechen a 0.30::laugh v 0.29::and c+criminal n

0.28::incompetent a 0.28::pron rel +shoot v 0.28::hat n+poss rel 0.28::terrorist n+and c 0.27::and c+crowd n 0.27::military a 0.27::helmet n+poss rel 0.27::father n+be v 0.26::on p()+duty n 0.25::salary n+poss rel 0.25::on p()+horseback n 0.25::armed a 0.24::and c+nurse n 0.24::job n+as p() 0.24::open v+fire n

L Distributions and classic lexical semantic relationships

Distribution for *cop*

```
cop
0.45::crooked a
0.45::corrupt a
0.44::maniac a
0.38::dirty a
0.37::honest a
0.36::uniformed a
0.35::tough a
0.33::pron rel +call v
0.32::funky a
0.32::bad a
0.29::veteran a
0.29::and c+robot n
0.28::and c+criminal n
0.28::bogus a
0.28::talk v+to p()+pron rel
```

```
0.27::investigate v+murder n
0.26::on p()+force n
0.25::parody n+of p()
0.25::Mason n+and c
0.25::pron rel +kill v
0.25::racist a
0.24::addicted a
0.23::gritty a
0.23::and c+interference n
0.23::arrive v
0.23::and c+detective n
0.22::look v+way n
0.22::dead a
0.22::pron rel +stab v
0.21::pron_rel_+evade_v
```

The similarity of synonyms

- Similarity between egglant/aubergine: 0.11 Relatively low cosine. Partly due to frequency (222 for eggplant, 56 for aubergine).
- Similarity between policeman/cop: 0.23
- Similarity between city/town: 0.73

In general, true synonymy does not correspond to higher similarity scores than near-synonymy.

[☐] Distributions and classic lexical semantic relationships

Distributions and classic lexical semantic relationships

Similarity of antonyms

- Similarities between:
 - cold/hot 0.29
 - dead/alive 0.24
 - ▶ large/small 0.68
 - colonel/general 0.33

Identifying antonyms

- Antonyms have high distributional similarity: hard to distinguish from near-synonyms purely by distributions.
- Identification by heuristics applied to pairs of highly similar distributions.
- For instance, antonyms are frequently coordinated while synonyms are not:
 - a selection of cold and hot drinks
 - wanted dead or alive

Distributions and knowledge

What kind of information do distributions encode?

- lexical knowledge
- world knowledge
- boundary between the two is blurry
- no perceptual knowledge

Distributions are partial lexical semantic representations, but useful and theoretically interesting.

Distributions and classic lexical semantic relationships