◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Lecture 2: Morphology and finite state techniques

Outline of today's lecture

Lecture 2: Morphology and finite state techniques A brief introduction to morphology Using morphology in NLP Aspects of morphological processing Finite state techniques More applications for finite state techniques

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Stems and affixes

- morpheme: the minimal information carrying unit
- affix: morpheme which only occurs in conjunction with other morphemes
- words made up of stem (more than one for compounds) and zero or more affixes.
 e.g., dog+s, book+shop+s
- slither, slide, slip etc have somewhat similar meanings, but sl- not a morpheme.

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Affixation

- suffix: dog +s, truth +ful
- prefix: un+ wise (derivational only)
- infix: Arabic stem k_t_b: kataba (he wrote); kotob (books) In English: sang (stem sing): not productive e.g., (maybe) absobloodylutely

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

circumfix: not in English
 German ge+kauf+t (stem kauf, affix ge-t)

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Productivity

productivity: whether affix applies generally, whether it applies to new words sing, sang, sung ring, rang, rung BUT: ping, pinged, pinged So this infixation pattern is not productive: sing, ring are irregular

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Productivity

productivity: whether affix applies generally, whether it applies to new words sing, sang, sung ring, rang, rung BUT: ping, pinged, pinged So this infixation pattern is not productive: sing, ring are irregular

Lecture 2: Morphology and finite state techniques

LA brief introduction to morphology

Inflectional morphology

- e.g., plural suffix +s, past participle +ed
- sets slots in some paradigm
 e.g., tense, aspect, number, person, gender, case
- inflectional affixes are not combined in English
- generally fully productive (modulo irregular forms)

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Derivational morphology

- e.g., un-, re-, anti-, -ism, -ist etc
- broad range of semantic possibilities, may change part of speech
- indefinite combinations
 e.g., antiantidisestablishmentarianism anti-anti-dis-establish-ment-arian-ism
- generally semi-productive: e.g., escapee, textee, ?dropee, ?snoree, *cricketee (* and ?)
- zero-derivation: e.g. tango, waltz

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually ambiguous: e.g. *dog* (noun or verb), *+s* (plural or 3persg-verb) Structural ambiguity: e.g., *shorts* or *short -s unionised* could be *union -ise -ed* or *un- ion -ise -ed* Bracketing: *un- ion -ise -ed*

- un- ion is not a possible form, so not ((un- ion) -ise) -ed
- un- is ambiguous:
 - with verbs: means 'reversal' (e.g., untie)
 - with adjectives: means 'not' (e.g., unwise, unsurprised)

therefore (un- ((ion -ise) -ed))

Lecture 2: Morphology and finite state techniques

Using morphology in NLP

Using morphological processing in NLP

- compiling a full-form lexicon
- stemming for IR (not linguistic stem)
- lemmatization (often inflections only): finding stems and affixes as a precursor to parsing
- generation

Morphological processing may be bidirectional: i.e., parsing and generation.

```
party + PLURAL <-> parties
sleep + PAST_VERB <-> slept
```

Lecture 2: Morphology and finite state techniques

Using morphology in NLP

Using morphological processing in NLP

run runs ran running

Lecture 2: Morphology and finite state techniques

Using morphology in NLP

Using morphological processing in NLP

run runs ran running	Бегал Бежал Побежал Бегала Бежала	Побегу Побежишь Побежит Побежим Побежите
Бегаю	Побежала Бегало	Побегут Бегущий
Бегу Бегаешь	Бежало Побежало –	Бежавший Бежавшая -
Бежишь Бегает –	Бегали Бежали	Бегущая Бегущее –
Бежит Бегаем	Побежали Бегай Бала	Бежавшее Побежавший
Бежим Бегаете	Беги Побеги	Побежавшая Побежавшее
Бежите Бегают Бегут	Бегайте Бегите Побегите	Побежав Побегав Бегая

200

э

Lecture 2: Morphology and finite state techniques

Using morphology in NLP

Using morphological processing in NLP

- compiling a full-form lexicon
- stemming for IR (not linguistic stem)
- lemmatization (often inflections only): finding stems and affixes as a precursor to parsing
- generation

Morphological processing may be bidirectional: i.e., parsing and generation.

```
party + PLURAL <-> parties
sleep + PAST_VERB <-> slept
```

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

Morphological processing

1. Surface mapped to stem(s) and affixes (or abstractions of affixes):

OPTION 1	pinged / ping-ed
OPTION 2	pinged / ping PAST_VERB
	pinged / ping PSP_VERB
	sang / sing PAST_VERB
	sung / sing PSP_VERB

- 2. Internal structure / bracketing (e.g., (un- ((ion -ise) -ed)).
- Syntactic and semantic effects (lecture 5) parsing can filter results of previous stages.
 e.g., *feed* analysed as *fee-ed* (as well as *feed*)

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

Spelling rules

- English morphology is essentially concatenative
- irregular morphology inflectional forms have to be listed
- regular phonological and spelling changes associated with affixation, e.g.
 - -s is pronounced differently with stem ending in s, x or z
 - spelling reflects this with the addition of an e (boxes etc)

 in English, description is independent of particular stems/affixes

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

e-insertion

e.g. box^s to boxes

$$\varepsilon
ightarrow \mathbf{e} \left(\begin{array}{c} \mathbf{s} \\ \mathbf{x} \\ \mathbf{z} \end{array} \right)^{\mathbf{s}} \mathbf{s}$$

- map 'underlying' form to surface form
- mapping is left of the slash, context to the right
- notation:

~

- position of mapping
- ε empty string
 - affix boundary stem ^ affix
- same rule for plural and 3sg verb
- formalisable/implementable as a finite state transducer

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

e-insertion

e.g. box^s to boxes

$$\varepsilon
ightarrow \mathbf{e} \left(\begin{array}{c} \mathbf{s} \\ \mathbf{x} \\ \mathbf{z} \end{array} \right)^{\mathbf{s}} \mathbf{s}$$

- map 'underlying' form to surface form
- mapping is left of the slash, context to the right
- notation:
 - position of mapping
 - ε empty string
 - ^ affix boundary stem ^ affix
- same rule for plural and 3sg verb
- formalisable/implementable as a finite state transducer

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

e-insertion

e.g. box^s to boxes

$$\varepsilon
ightarrow \mathbf{e} \left(\begin{array}{c} \mathbf{s} \\ \mathbf{x} \\ \mathbf{z} \end{array} \right)^{\mathbf{s}} \mathbf{s}$$

- map 'underlying' form to surface form
- mapping is left of the slash, context to the right
- notation:

^

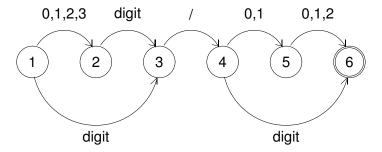
- position of mapping
- ε empty string
 - affix boundary stem ^ affix
- same rule for plural and 3sg verb
- formalisable/implementable as a finite state transducer

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

Lexical requirements for morphological processing

- affixes, plus the associated information conveyed by the affix
 - ed PAST_VERB
 - ed PSP_VERB
 - s PLURAL_NOUN
- irregular forms, with associated information similar to that for affixes


```
began PAST_VERB begin
begun PSP_VERB begin
```

stems with syntactic categories

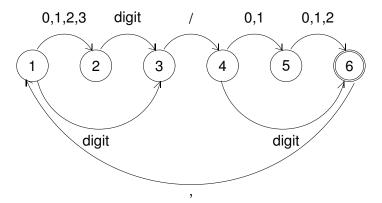
Lecture 2: Morphology and finite state techniques

-Finite state techniques

Finite state automata for recognition day/month pairs:

non-deterministic — after input of '2', in state 2 and state 3.

・ロト・日本・日本・日本・日本


- double circle indicates accept state
- accepts e.g., 11/3 and 3/12
- also accepts 37/00 overgeneration

Lecture 2: Morphology and finite state techniques

Finite state techniques

Recursive FSA

comma-separated list of day/month pairs:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

- list of indefinite length
- e.g., 11/3, 5/6, 12/04

Lecture 2: Morphology and finite state techniques

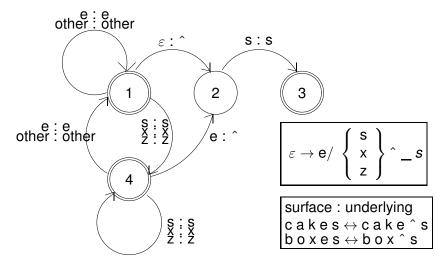
Finite state techniques

e-insertion

e.g. box^s to boxes

$$arepsilon o \mathbf{e} / \left\{ egin{array}{c} \mathbf{s} \\ \mathbf{x} \\ \mathbf{z} \end{array} \right\}^{\mathbf{r}} \mathbf{s}$$

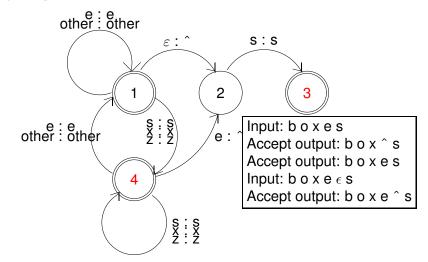
- map 'underlying' form to surface form
- mapping is left of the slash, context to the right
- notation:


^

- position of mapping
- ε empty string
 - affix boundary stem ^ affix

Lecture 2: Morphology and finite state techniques

Finite state techniques


Finite state transducer

Lecture 2: Morphology and finite state techniques

Finite state techniques

Analysing *b* o *x* e s

Lecture 2: Morphology and finite state techniques

Finite state techniques

Using FSTs

- FSTs assume tokenization (word boundaries) and words split into characters. One character pair per transition!
- Analysis: return character list with affix boundaries, so enabling lexical lookup.
- Generation: input comes from stem and affix lexicons.
- One FST per spelling rule: either compile to big FST or run in parallel.
- FSTs do not allow for internal structure:
 - can't model un- ion -ize -d bracketing.
 - can't condition on prior transitions, so potential redundancy

Lecture 2: Morphology and finite state techniques

More applications for finite state techniques

Some other uses of finite state techniques in NLP

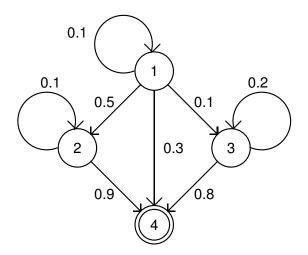
Dialogue models for spoken dialogue systems (SDS) e.g. obtaining a date:

1. No information. System prompts for month and day.

- 2. Month only is known. System prompts for day.
- 3. Day only is known. System prompts for month.
- 4. Month and day known.

Lecture 2: Morphology and finite state techniques

More applications for finite state techniques


Example FSA for dialogue

Lecture 2: Morphology and finite state techniques

More applications for finite state techniques

Example of probabilistic FSA for dialogue

