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1. Using the Euclidean norm on an inner product space V = R3, for the following vectors
u, v ∈ V whose span is a linear subspace of V ,

u =

(
1√
3
,

1√
3
,

1√
3

)

v =

(
√

3, −
√

3

2
, −
√

3

2

)
demonstrate both whether u, v form an orthogonal system, and also whether they form
an orthonormal system.

2. (a) Define linear independence and linear dependence for the set of vectors {v1, v2, . . . , vn}
of a vector space V over a field F of scalars a1, a2, . . . , an ∈ F.

(b) For vectors u, v ∈ V in linear space V = Rn with u = (u1, u2, . . . , un), define the
Euclidean norm ||u||, and state the triangle inequality for ||u+ v||.

3. Let V be an inner product space spanned by an orthonormal system of vectors {e1, e2, . . . , en}
so that ∀i 6= j their inner product 〈ei, ej〉 = 0, but every ei is a unit vector so 〈ei, ei〉 = 1.
We wish to represent a data set consisting of vectors u ∈ span{e1, e2, . . . , en} in this

space as a linear combination of the orthonormal vectors: u =
n∑

i=1

aiei. Derive how the

coefficients ai can be determined for any vector u, and comment on the computational
advantage of representing the data in an orthonormal system.

4. An inner product space E containing piecewise continuous complex functions f(x) and
g(x) on some interval is spanned by the orthonormal basis functions {ei} used in the

Fourier series. Thus complex coefficients {αi} and {βi} exist such that f(x) =
∑
i

αiei(x)

and g(x) =
∑
i

βiei(x).

(a) Show that 〈f, g〉 =
∑
i

αiβi .

(b) Would the same result hold if the orthonormal basis functions {ei} that span E were
not the Fourier basis? Justify your answer, and provide the name for coefficients {αi} and
{βi} in such a case.
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5. Using complex exponentials, prove the following trigonometric identity, which describes
the multiplicative modulation of one cosine wave by another as being simply the sum of
a different pair of cosine waves:

cos(ax) cos(bx) =
1

2
cos((a+ b)x) +

1

2
cos((a− b)x)

6. Calculate the Fourier series of the function f(x) (x ∈ [−π, π]) defined by

f(x) =

{
1 0 ≤ x < π

0 −π ≤ x < 0 .

Find also the complex Fourier series for f(x).

7. From the well-known fact that a periodic squarewave
(f(x) = 1 for 0 < x < π, f(x) = −1 for π < x < 2π, · · · ) has the following Fourier series

f(x) =
4

π

[
sin(x) +

sin(3x)

3
+

sin(5x)

5
+

sin(7x)

7
+ · · ·

]
,

produce the first four terms of the Fourier series for the triangle-wave whose derivative is
this squarewave. Comment on the relative rates of convergence of these two series, and
state the general rule about series convergence rates for periodic functions that become
impulsive first in their nth derivative.

8. Suppose that f(x) is a 2π-periodic function with complex Fourier series

∞∑
n=−∞

cne
inx .

Now consider the shifted version of f(x) given by

g(x) = f(x− x0)

where x0 is a constant. Find the relationship between the complex Fourier coefficients
of g(x) in terms of those of f(x). How do the magnitudes of the corresponding coefficients
compare?
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9. The Modulation Theorem asserts that if f(x) has Fourier transform F (ω), then modu-
lating f(x) at frequency c (multiplying it by eicx) simply shifts its transform up by c to
become F (ω − c). Prove this, and explain one important practical application of this
property.

10. For a function f(x) whose Fourier Transform is F (ω), what is the Fourier Transform of
f (n)(x), the nth derivative of f(x) with respect to x? Explain how Fourier methods make
it possible to define non-integer orders of derivatives, and name one scientific field in which
it is useful to take half-order derivatives.

11. Show how Fourier methods facilitate solution of differential equations such as the following,
in which the non-zero function g(x) is known, its Fourier TransformG(ω) can be computed,
and a, b, c are constant coefficients. Derive an expression for f(x) that is a solution to this
differential equation, assuming its Fourier Transform exists.

a
d2f(x)

dx2
+ b

df(x)

dx
+ cf(x) = g(x)

12. The function sinc(x) =
sin(πx)

πx
for x 6= 0 as plotted here plays an important role in the

Sampling Theorem. By considering its Fourier Transform, show that this function is
unchanged in form after convolution with itself, and show that it even remains unchanged
in form after convolution with any higher frequency sinc function sinc(ax) for a > 1, but
that if 0 < a < 1, then the result is instead that lower frequency sinc function sinc(ax).
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13. Using a diagram in the complex plane showing the N th roots of unity, explain why all
the values of complex exponentials that are needed for computing the Discrete Fourier
Transform of N data points are powers of a primitive N th root of unity (circled below for
N = 16), and explain why such factorisation greatly reduces the number of multiplications
required in a Fast Fourier Transform.

14. Consider a sequence f [n] (n = 0, 1, . . . , 15) with Fourier coefficients F [k] (k = 0, 1, . . . , 15).
Using the 16th roots of unity as labelled around the unit circle in powers of w1, the
primitive 16th root of unity, construct a sequence of these 16 roots wi that could be used
to compute F [3].
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15. What sets of frequencies are required to perform the following analyses?

• Fourier transform of a non-periodic continuous function;
• Fourier analysis of a piecewise continuous periodic function with period 2π;
• Wavelet transform of a non-periodic function, either continuous or discrete.

Comment on the relationship between the density of frequencies required and the role of
“locality” in the analysis.

16. Show how a generating (or “mother”) wavelet Ψ(x) can spawn a family of “daughter”
wavelets Ψjk(x) by simple shifting and scaling (“dyadic”) operations, and explain the
advantages of representing continuous functions in terms of such a family of self-similar
dilates and translates of a mother wavelet.
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