
Introduction to Natural Language Syntax and

Parsing

Lecture 7: A CCG Grammar and Treebank for

naturally occurring text

Stephen Clark

October 22, 2015

CCG Analyses for Real Text? The examples found in linguistic textbooks
and papers can often appear artificial and unlike the sentences encountered
in the real world. It is a reasonable question to ask whether the “neat” formal
grammar we’ve seen so far can be applied to the “messy” sentences found on the
web or social media, or to sentences which are less messy but contain technical
jargon, e.g. from biomedical research papers.

We’ll look at examples from three different domains or genres: newspapers,
biomedical research papers, and Wikipedia. It’s true that these still consist of
reasonably well-edited text, so we’ll leave open the question of whether a CCG
grammar could be developed for e.g. Twitter.

Newspaper Example The sentence on the slide is the famous first sentence
from Section 00 of the Penn Treebank. It is immediately clear that, given the
lexical categories assigned to the words, the CCG rules we’ve seen so far will
not be able to assemble a spanning analysis.

The first problem is that Pierre Vinken is an N , but the verb phrase requires
a subject NP . The distinction between N and NP is not clear-cut in CCG, and
the two are often conflated, so we’ll effectively do the same by introducing a
new unary type-changing rule which turns an N into an NP . In keeping with
CCG convention, the rule is written bottom-up on the slide.

The phrase 61 years old has the type S [adj ]\NP , the type of a predicative
adjective (since I can say e.g the man is 61 years old). However, in this ex-
ample the phrase is acting as a post-nominal modifier of Pierre Vinken. Hence
we’ll introduce another unary type-changing rule which turns S [adj ]\NP into
NP\NP .

Punctutation is ubiquitous in natural language, and often carries important
syntactic information, but is rarely discussed in the NLP literature.1 Here we’ll
adopt a simple approach to analysing punctuation, by introducing rules which

1One exception is Prof. Briscoe’s work on punctuation in the late 1990s.

1



effectively merge the punctuation mark into a neighbouring constituent. For
example, there is the following binary rule instance in the CCG parser: S . ⇒ S,
meaning that an S followed by a period can be replaced with an S .2 Introducing
a similar rule for commas and NPs will suffice for this example sentence.

With all these additional rules in place, the sentence can now be analysed.
Note that, out of all the combinatory rule schema, only forward and backward
application are necessary for this example. It is possible to use the type-raising
and composition rules and still arrive at the correct semantic interpretation —
because of CCG’s “spurious” ambiguity — but they are not required.

Grammatical Features in CCGbank You may have noticed that many
of the S categories in the examples carry grammatical features, such as dcl
(declarative). The grammar in CCGbank does not make much use of feature
structures (in a linguistic, rather than machine learning, sense), unlike, say,
a full implementation of an HPSG grammar. However, there is a feature set
which distinguishes between different types of sentence and verb phrase, and
the CCG parser does contain a unification mechanism to deal with these fea-
tures. For example, when a verb phrase (S [dcl ]\NP) is modified by an adverb
((S\NP)\(S\NP)), the resulting verb phrase inherits the dcl feature. The S
categories in the adverbial category effectively carry a variable grammatical
feature [X ] which gets instantiated when the full categories combine.

The slide lists some of the grammatical features. Julia Hockenmaier’s thesis
[2] (p.47) contains a full list.

Biomedical Example The main difficulty with analysing biomedical text is
the profusion of long and complicated noun phrases. Even linguistic experts
have difficulty analysing such noun phrases, which often requires biomedical,
as well as linguistic, expertise. For example, is T cell activation a kind of T
activation, or cell activation? It’s probably cell activation, and that’s how it has
been analysed on the slide. On my resources webpage there are a number
of files that have been manually annotated with CCG lexical categories (by
me and Laura Rimell), including 1,000 sentences from the Genia corpus. Note
that two versions are provided: one where Laura and I made a best guess at
the bracketing for noun phrase cases we weren’t sure about, and one where we
didn’t even try and left the structure flat.

Continuing with the example sentence, the phrase resulting in enhanced pro-
duction ... has the type S [ng ]\NP ; however, in this sentence it is acting as an
adverbial modifier of the preceding verb phrase. (Intuitively it’s the providing
of the signal which results in the enhanced production.) Hence we need another
unary type-changing rule, similar to the one used for the newspaper sentence,
which turns S [ng ]\NP into (S\NP)\(S\NP).

Another common feature of biomedical text is the use of brackets, especially
to delimit abbreviations. Similar to punctuation, the CCG parser has some rules

2These rules are referred to as rule instances, rather than schema, since they do not contain
any variables.

2



which merge a bracket with a neighbouring constituent; for example, the right
bracket after the noun IL-2 will merge with the noun, to give another noun. But
other brackets receive lexical categories. For example, the left bracket before
the noun IL-2 will receive the category (N \N )/N (not shown on the slide),
allowing the phrase interleukin-2 (IL-2) to become a noun.

Once all these additional rules are in place, and the noun phrases have
been identified and analysed, the remaining structure is straightforward, again
requiring only forward and backward application.

Wikipedia Example Aside from the punctuation, the notable aspects of the
example sentence are the possessive s, which receives the category (NP/N )\NP ,
and the compound noun Alfriston Clergy House – is it the Alfriston Clergy or
the Alfriston House? Otherwise the structure is straightforward, once the lexical
categories have been assigned, not even requiring a unary rule in this example
(except N changing to NP).

Unary Type-Changing Rules The unary type-changing rules are in some
sense against the spirit of CCG, with an emphasis on its lexicalised nature, since
these rules are not part of the lexicon and are language-specific. An alternative
solution would be to effectively push these rules onto the lexical categories,
retaining the fully lexicalised nature of the formalism. The first example on
the slide shows what happens to the lexical categories for once and used when
this approach is adopted. Note that we now require additional lexical categories
for these words, whereas, with the application of unary type-changing rules, the
lexical categories remain the same (i.e. the same as in the canonical construction
Asbestos was once used ...). Hence the advantage of the unary rules is that, in
practice, they lead to a more compact lexicon and reduce the number of possible
lexical categories for some of the words.

Real Examples using Composition So far, the real examples we’ve seen
only require function application, with no unbounded dependencies. Do such
cases occur at all in real text? The slide shows two example sentences from
natural language corpora which contain instances of object extraction, requiring
function composition for their analysis. In Rimell et al. [5] we describe the
creation of a corpus of naturally occurring sentences which contain unbounded
dependencies, across a variety of syntactic constructions, and give statistics for
how often such cases occur in corpora. My resources webpage has a link to
the data described in the paper.

Creating a Treebank for CCG In order to build a statistical parser for
CCG — following the standard supervised methodology — we need a CCG
treebank: gold-standard pairs of sentences and CCG analyses. The sentence
analyses are likely to be CCG derivations, but they could be predicate-argument
dependencies (in addition to, or instead of, the derivations). The treebank fulfils

3



two main roles: it provides data for inducing a grammar, and data for training
a statistical disambiguation model.

Building a treebank is expensive, requiring significant time and expertise, so
rather than build a CCG treebank from scratch it is more desirable to leverage
the information in the existing Penn Treebank.

The Penn Treebank The Penn Treebank (PTB) contains analyses in the
form of phrase-structure trees, so somehow we need to transform these into
CCG analyses. You may think it is just a case of relabeling the nodes in the
trees, but there are various reasons why the transduction problem is harder
than that. One reason is that, for some constructions, such as various types of
coordination, the PTB trees are not even isomorphic to the CCG derivations,
and so it’s not just a case of relabelling – the tree structures themselves need
changing. Hence it was a considerable effort to produce CCGbank, the CCG
version of the Penn Treebank (which was achieved by Julia Hockenmaier and
Mark Steedman as part of Julia’s PhD thesis [2]).

Three types of information are required from the PTB trees to produce
CCG derivations: linguistic head information; the argument/adjunct distinction
(since CCG lexical categories encode this explicitly); and information regarding
traces and extracted arguments so that long-range dependencies can be analysed
correctly.

Example PTB Tree (with traces) Most PTB parsers produce phrase-
structure trees without the trace information and co-indexing present. How-
ever, this information, which can be used to extract the underlying predicate-
argument structure, is an important part of the PTB annotation and crucial for
deriving the CCG analyses. In the example on the slide, there are two “traces”
or “empty elements”: NPs 01 and 02. The idea is that these are not overtly
realised in the surface sentence, but in terms of the underlying structure there
is both an object of the verb do and a subject of to do. The object is what, and
the subject is I, encoded by the co-indexing shown in the diagram.

The Basic Transformation Algorithm If we ignore the more difficult long-
range dependency examples, the basic translation algorithm from PTB to CCG,
at an abstract level, is straightforward, consisting of the three methods given
on the slide. Each one is now described in turn.

Determining Constituent Type Three types of constituent need distin-
guishing: head, complement and adjunct. In fact, this information is not ex-
plicitly encoded in the PTB trees, but rules for heuristically recovering it have
been around at least since Collins’ thesis [1], whose statistical parsing models
were defined in terms of heads and complements (e.g. Collins’ Model 2 explicitly
uses subcategorisation frames, similar to CCG lexical categories).

4



Appendix A of Collins’ thesis gives a list of head-finding rules, and Appendix
A of the CCGbank manual [3] also explains how the complement-adjunct dis-
tinction is made.

Binarizing the Tree Section 4 from Hockenmaier and Steedman [4] contains
an instructive example showing the translation of a PTB tree to a CCG deriva-
tion. Section 4.2 shows how the tree is binarized. Binarization is necessary since
the nodes in CCG derivation trees contain at most two children, whereas the
trees in the PTB are relatively flat, with some nodes having significantly more
children than two. In fact, for some constructions, such as compound noun
phrases, the PTB doesn’t even contain the requisite information to produce
the correct analysis, in which case the CCG (sub-)derivation assumes a default
right-branching structure.

Assigning Categories Assigning categories can now be performed by distin-
guishing three cases. Assigning a CCG label to the root node of a derivation
tree is performed by a manually-defined mapping; for example a PTB VP node
is mapped to S\NP , and any of { S ,SINV ,SQ } get mapped to S .

For heads and complements, the category of a complement child is given a
CCG label from a manually-defined mapping, similar to the root node; e.g. a
PTB PP node is also labelled PP in the CCG derivation. The category of the
head can be determined from the category of the parent node and the relative
position and category of the child. For example, if the parent node is S , and
the child is an NP to the left, then the category of the head will be S\NP
(corresponding to a VP).

Finally, for heads and adjuncts, the adjunct category essentially has two
copies of the parent label, with the direction determined by the relative position
of the adjunct. For example, if the parent is S\NP and the adjunct is to the
left, then the adjunct category will be (S\NP)/(S\NP).

Long Range Dependencies Perhaps the most interesting part of the trans-
lation procedure is how the trace information in the PTB is propagated around
the tree, via the co-indexing, to create the correct CCG lexical categories for
analysing long-range dependencies. The interested reader is referred to p.57 of
the CCGbank manual for a detailed example.

Properties of CCGbank The coverage of the translation algorithm — in
terms of how many PTB trees get turned into CCG derivations — is very high:
over 99%. One of the striking features of the resulting CCGbank is how many
lexical categories there are for some very common words; e.g. is and as are
assigned over 100 different category types!

More Statistics The numbers on the slide are calculated for sections 2-21,
traditionally used as training data. Another striking statistic is that, for word
tokens, the average number of lexical categories is over 19. This number is high

5



because of the large number of possible categories for many frequent words; for
word types the average number is lower. There are over 1,200 lexical category
types in total, although a large proportion of these occur only once or twice in
the training data. Finally, perhaps the most important statistic on this slide
is the coverage figure on unseen data. For section 00, 6% of the tokens do not
have the correct lexical category in the lexicon: 3.8% because the token is not in
the lexicon; and 2.2% because the token is there, but not with the appropriate
category.

References

[1] Michael Collins. Head-Driven Statistical Models for Natural Language Pars-
ing. PhD thesis, University of Pennsylvania, 1999.

[2] Julia Hockenmaier. Data and Models for Statistical Parsing with Combina-
tory Categorial Grammar. PhD thesis, University of Edinburgh, 2003.

[3] Julia Hockenmaier and Mark Steedman. CCGbank: User’s manual. Tech-
nical Report MS-CIS-05-09, Department of Computer and Information Sci-
ence, University of Pennsylvania, 2005.

[4] Julia Hockenmaier and Mark Steedman. CCGbank: a corpus of CCG deriva-
tions and dependency structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396, 2007.

[5] Laura Rimell, Stephen Clark, and Mark Steedman. Unbounded dependency
recovery for parser evaluation. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP-09), pages 813–821, Singapore, 2009.

6


