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Edge-Based Linear Model A minimal feature set for a dependency parsing
model would simply look at the words in an edge, and score the edge based on
those words; for example, how likely is an edge from runs to lion? However,
such a feature set would be extremely sparse, in the sense that very few of the
large number of possible word pairs would appear in the training data (which
is typically of the order of 1M words). Hence, in practice, dependency parsing
models are much richer, in particular making extensive use of part-of-speech
(POS) tags, which are less sparse than words. Features are defined over the
edges themselves, in terms of both words and POS tags (and combinations of
the two); but also in terms of the POS tags in between dependent words, and
outside of dependent words.

Features in the MST Parser The table on the slide shows the feature set
from McDonald’s MST parser [2]. The basic unigram features effectively ask
questions such as: how likely is the word runs to be the parent of an edge?
how likely is the POS tag NN to be the child of an edge? The bigram features
effectively ask questions such as: how likely is the word runs with POS tag
VBZ to be the parent of the word lion? The in-between and surrounding POS
features are designed to capture patterns of POS tags seen frequently between,
and either side of, dependent words. For example, the VBD PRP$ NN feature
effectively asks the question: how likely is a dependency edge where the POS
tag sequence between the two dependent words (inclusive) is VBD PRP$ NN?

Global Linear Model In the edge-based linear model, the score for a whole
tree is defined as the sum of the scores for each edge; and the score for an edge is
a dot product between a local feature vector and a weight vector. The derivation
on the slide shows that, because of the properties of sums of products, the score
for a tree can be written as a dot product between a global feature vector and a
weight vector (the same weight vector used in the local dot products).

The function fk is an indicator function which takes an edge as argument
and has the value 1 or 0, depending on whether the edge displays a particular
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pattern. Here we overload fk by also have it take a whole tree τ as an argument,
and return a non-negative integer, so that it now counts the number of times
the corresponding pattern appears in the whole tree. If we encode all the values
of the fk(τ) counting functions as a global feature vector F(τ), then the score
for a tree τ can be written as the dot product between the weight vector and
the global feature vector.

Generic Online Learning The pseudocode for a generic online learning al-
gorithm shows the simplicity of the idea: start with a zero weights vector, use
the current weight vector to decode each training instance in turn, updating
the weight vector at each instance. For dependency parsing, the training in-
stances are pairs of sentences and gold-standard dependency trees, taken from
a dependency bank.

The final line outputs averaged weights [1], as a method to avoid overfitting.
So v is just an accumulation of all the weight vectors encountered during the
training process (N passes over T training instances), and w is the averaged
output.

The Perceptron Update The perceptron update uses the highest-scoring
dependency tree zt given the current weight vector wt−1; F(xt, zt) is the global
feature vector for tree zt (and sentence xt). The update to the current weight
vector is simple: add the global feature vector for the gold-standard tree, and
take away the global feature vector for the tree returned by the decoder. Note
that the update is passive, meaning that no update takes place if the decoder
returns the gold-standard tree.

A useful intuition for the perceptron update can be given in terms of the local
indicator features. The local features for a training instance can be divided into
three sets: 1) those that are in the gold standard and returned by the decoder;
2) those that are in the gold standard and not returned by the decoder; and 3)
those that are returned by the decoder but not in the gold standard. For the
features in 1), their weights remain the same (no update); for the features in
2), a value of 1 is added to their weights; and for the features in 3), a value of
1 is taken from their weights. Intuitively the update is attempting to force the
decoder to return correct features, and prevent it from returning the incorrect
ones.

CoNLL Shared Task Data The table on the slide is taken from [4]. The
point of the table is to demonstrate the range of languages for which depen-
dency parsers can be built and evaluated (Arabic, Basque, Catalan, Chinese,
Czech, English, Greek, Hungarian, Italian, and Turkish). Note that the amount
of training data varies considerably across languages, from 51,000 tokens for
Basque to 447,000 tokens for English. Notice also the variation in the level of
projectivity, from 0% of sentences for Chinese to over 30% for Turkish.
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Graph-based vs. Transition-based The table, from [3], compares the ac-
curacy of the graph-based MST parser with the transition-based Malt parser
(for the 2006 CoNLL shared task data). Interestingly the accuracies are similar
across languages, although what the paper shows is that the different parsing
architectures do lead to different parsing errors, paving the way for a fruitful
ensemble (or combination).

The table also shows how the accuracies for some languages are much higher
than for others. Whilst this may suggest that some languages are intrinsically
harder to parse than others, this conclusion needs to be reached with care, since
a number of other factors, such as the size of the corresponding dependency
banks, need to be taken into account.

State-of-the-Art (2015) The New York Google parsing team published a
paper in 2015 with the best reported results on English dependency parsing [5].
The parsing algorithm is shift-reduce, the training method is the perceptron,
but what is interesting about the parser is that a neural network is used to
automatically extract the features. One dissatisfying aspect of previous depen-
dency parsers is the huge number of features required for top performance –
as many as 30M in some cases! The neural network-based parsers use similar
feature templates, extracting similar information, but because the information
is distributed across dense feature vectors, rather than “one-hot” vectors, the
effective number of features is greatly reduced.

Any empirical result from industrial labs such as Google has to be interpreted
in the context of the vast resources available in such places, which can be used
to great effect in, for example, tuning hyperparameters. However, there are
currently many papers being published showing the benefits of the distributed
representations in neural networks (NNs), and parsing accuracies are likely to
continue to increase for a few years yet, using NN approaches.

Accuracy League Table (2015) The current best-performing parsers on
English newspaper data are transition-based parsers, but the difference is rela-
tively small. It’s possible that similar accuracuies could be achieved with graph-
based parsers using neural network models. The numbers may look impressively
high — almost 94% for unlabelled parsing, and over 92% for labelled parsing
— but bear in mind these are aggregate scores across all dependency types,
including the easy ones such as determiner-noun edges. Accuracies for some
individual dependency types, such as coordination and prepositional phrase at-
tachment, are still much lower, and the overall parsing problem is still far from
being solved.

One interesting feature of the latest transition-based parsing results is how
the accuracies vary by beam size. For the neural network parsers, the fully
greedy approach with a beam size of 1 is not far behind the scores with larger
beam sizes, and the best reported results are for a beam size as low as 8. Recall
that the beam size has a direct impact on the speed of the parser, which is an
important consideration in the context of a web-search company.
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Readings for Today’s Lecture The McDonald technical report is still the
core reading, although the online update described there is more complicated
than the simple perceptron update given in the lecture. For a description of
the perceptron, see [1], which shows how to apply perceptron models to the
POS tagging problem (although the same techniques can easily be adapted to
dependency parsing).
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