Introduction to Natural Language Syntax and
Parsing
Lecture 2: Introduction to Statistical Parsing

Stephen Clark
September 30, 2015

Automatic Parsing One way to characterise the natural language parsing
problem is in terms of these three questions:

e Where does the grammar come from?
e What’s the algorithm for generating possible parses?
e How do we decide between all the parses?

For the first question, there are three possibilities (and various combinations
in between). One option is to have a linguist hand code the grammar, typically
using a particular linguistic formalism such as HPSG. The resulting grammars
are often referred to as precision grammars, since the information contained
in them is detailed and precise, resulting in rich parse representations. The
downside with this approach, common to all rule-based approaches to NLP, is
that it is difficult to manually create grammars in this way which are robust
and can apply to a wide variety of textual input.

The second approach, which is currently dominant in the literature, is to
have a linguist annotate sentences with the desired parse output, and then
learn the grammar automatically from this annotation. The set of annotated
parses is often referred to as a treebank. This is the approach we’ll be following
in this course.

The third approach is to try and learn a grammar entirely from raw, or
POS tagged, text, with some biases encoded in the model (either implicitly or
explicitly) to help with the learning process. In some respects the third option
is the most desirable, because it does not require the costly human annotation
associated with treebank creation and it is (perhaps) the closest to how humans
learn language. However, learning grammars from raw or POS tagged text has
proven to be extremely difficult, and the performance of the resulting unsu-
pervised parsers is way below that of their supervised counterparts which learn
from manual annotation.

In terms of the parsing algorithm, there are a number of possibilities. For
dependency parsing, which is the focus of these lectures, there are two dominant



approaches: graph based and transition based. The graph-based method uses a
data structure called a chart to record all ways in which the words in the input
sentence can be linked together. The transition-based method uses a queue and
a stack to combine words, processing them from left to right by shifting words
off the queue, and combining words on the stack.

Because of the massive ambiguity problem that was described in Lecture 1,
we need a way to select one of the parses (or perhaps rank them and output
a scored subset). For scoring we use a parsing model, trained on the available
annotated data. Again there are many possibilities here — both probabilistic
and non-probabilistic — but in these lectures we will focus on a simple (non-
probabilistic) linear model, which is easy to train and yet surprisingly effective.

The Penn Treebank The Penn Treebank was created in the early 90s [2]
and immediately sparked a parsing “competition” that is still continuing today.
The part that has been used in this competition contains around 1M words of
newswire text, manually annotated with phrase-structure trees. The annotation
also contains traces and empty elements, marking aspects of predicate-argument
structure which are not overtly realised in the surface sentence; however, the
majority of work using the treebank has ignored this extra annotation. The
treebank took around 3 years to create, using a handful of annotators, based
on a detailed set of annotation guidelines. See my book chapter [1] for more
commentary on the history of statistical parsing and the effect the treebank
has had on NLP research (demonstrating the importance of resources for the
advancement of the field more generally).

The treebank can also be used to generate a “dependency bank”, consisting
of pairs of sentences with dependency, rather than phrase-structure, trees, which
can then be used to train a dependency parser. The dependencies are created
using the notion of linguistic heads, which can be heuristically recovered from
the phrase-structure annotation, and then used to generate head dependencies
between words.

Problems with the PTB Parsing Task There is no doubting the influence
that the PTB parsing task has had on NLP research, not just for parsing, but
also for other tasks such as statistical machine translation where parsing mod-
els have been applied. However, some researchers and commentators became
disillusioned with the central position that the PTB parsing task acquired in
NLP research, arguing that the focus on English newswire text was detrimen-
tal to the field. There is also the problem that the same test set — roughly
2,400 sentences from Section 23 — has been used continually by, not only the
same researchers, but the field as a whole. Hence there is the possibility that
the field has been implicitly fitting models to the test set, even if not explicitly
“cheating” by directly observing it during training and development.

In contrast, the dependency parsing community has developed a number
of dependency banks, for many different languages, and also different domains
within the same language. It is often suggested that manually annotating de-



pendency structure is easier than annotating phrase structure, and therefore
dependency banks are easier to create (although I don’t know of any scientific
studies demonstrating this empirically). One of the reasons that Google has
adopted dependency parsing as its main parsing paradigm is undoubtedly the
availability of training data in many languages.

Dependency Parsing Head dependencies of the sort shown in the examples
have proven useful for a variety of NLP tasks, such as Information Extraction,
Question Answering and Machine Translation. The reason is that they provide
an approximation to the underlying predicate-argument structure, expressing
roughly who did what to whom. Recovery of the dependencies can also be
performed accurately and efficiently (although the goal of 100% accuracy is still
a long way off, especially with the more difficult dependencies arising from e.g.
PP attachment and coordination).

Another possible reason for the success of dependency parsing is that the
formalism is easy to understand, unlike, say, CCG, which we’ll study later in
the course. That’s not to say that dependency grammar isn’t a serious syntactic
theory in linguistics — since it is — only that computer scientists with little
linguistic training can easily understand it. Another possible advantage is that
dependency parsers are almost entirely data driven, in the sense that the knowl-
edge required to parse unseen sentences is acquired entirely from a treebank,
with little or no manual intervention.

Dependency Trees Dependency graphs are graphs in a mathematical sense:
sets of edges and nodes, where the nodes are the words in the sentence. A
dummy word — $ in the example — is often placed at the beginning of the
sentence to act as a dummy root of the graph. The graph is directed, since the
notion of dependency incorporates the notion of head, with each edge pointing
from head to dependent. A lot of the evaluations in dependency parsing use
unlabelled graphs, but in practice it is likely to be useful to have grammatical
labels on the edges, such as subj (subject), mod (modifier), and so on. Depen-
dency graphs are typically restricted to be trees, so that each node has only one
parent. Whether this is desirable from a linguistic viewpoint is debatable, since
some constructions, such as control, result in some arguments having more than
one parent. However, performing computations with trees is generally easier
than with graphs.

Dependency Trees more Formally As well as the restriction to trees, de-
pendency graphs are typically restricted in other ways, again to ease any com-
putation (such as finding the highest scoring tree). Dependency trees are often
defined to be connected (so it’s possible to reach any node from any other node
by moving along the edges, ignoring the direction of the edges); acyclic, so that
it’s not possible to return to any node by moving along the edges; single-head,
so that each node only has one parent; and projective, so that none of the edges,
when the graph is written in two dimensions, cross.



Crossing Dependencies The example shows a case in English with crossing
dependencies, although cases such as these are relatively rare in English. In
fact, the dependency banks for English typically consist entirely of projective
dependencies. However, crossing dependencies are not rare in other languages,
such as Czech, German and Dutch. The Wang and Zhang tutorial states that
23% of the sentences in the Prague Dependency Treebank of Czech contain at
least one crossing dependency.

Graph-Based Models Graph-based models use scoring functions defined
over the graphs (as opposed to shift-reduce models which score the parsing
actions). Then a decoding algorithm is used to find the highest-scoring graph.
Much of the research in dependency parsing is concerned with devising optimal,
efficient decoding algorithms using dynamic programming over the graph (so
that the decoder is guaranteed to return the highest-scoring graph). This is
in contrast to shift-reduce approaches, which typically use heuristic search in
combination with very rich feature sets.

Edge-Based Factorisation Model In order to define efficient dynamic pro-
gramming decoders over the graph, it is crucial that the features used to define
the model are kept sufficiently local to the edges. The extreme version of this
idea, resulting in a first order model, is to define local scoring functions which
only look at a single edge (but which are allowed to look at any part of the
sentence). Then the score for the whole graph is the sum of the scores for each
edge.

Edge-Based Linear Model There are various ways of defining the local
scoring function, both probabilistic and non-probabilistic. Here we will use a
simple, non-probabilistic form for the scoring function: a linear model. The
features are typically indicator functions, taking the value zero or one, picking
out particular aspects of the edge. Very rich models are required for good per-
formance, resulting in millions of different features, each with a corresponding
weight which needs to be estimated. However, recent work using neural net-
works shows how to obtain good performance without the need for so many
features.

Example Features A later lecture will look at the features in more detail,
but I'd like to provide some intuition now in order to describe the decoder in the
next lecture (which uses the local scores to find the highest-scoring graph). The
key idea is that the features in a first-order model cannot span more than one
edge, but they are allowed to look anywhere in the sentence. Mathematically
features are binary-valued functions, but a more intuitive way to think of a
feature is that it captures a particular pattern in the graph. For example,
saw_VBD_duck NN captures the presence of a particular edge in the graph.
VBD_PRP$_NN captures a particular sequence of POS tags between the words
making up the edge. Note the extensive use of POS tags in the features, which is



designed to overcome the extreme sparsity that would result from only defining
features in terms of words.

Readings for Today’s Lecture There are various freely available tutorials
on dependency parsing. The one that I have been stealing pictures from is the
following:

e Recent Advances in Dependency Parsing, Qin Iris Wang and Yue Zhang.
NAACL Tutorial, Los Angeles June 1, 2010.
http://naaclhlt2010.isi.edu/tutorials/t7-slides.pdf

References

[1] Stephen Clark. Statistical parsing. In Clark, Fox, and Lappin, editors,
Handbook of Computational Linguistics and Natural Language Processing,
pages 333-363. Blackwell, 2010.

[2] Mitchell Marcus, Beatrice Santorini, and Mary Marcinkiewicz. Building a
large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330, 1993.



